دورية أكاديمية

Mechanistic Study of Rhodium/xantphos-Catalyzed Methanol Carbonylation.

التفاصيل البيبلوغرافية
العنوان: Mechanistic Study of Rhodium/xantphos-Catalyzed Methanol Carbonylation.
المؤلفون: Williams, Gary L.1 (AUTHOR) a.haynes@sheffield.ac.uk, Parks, Christopher M.1 (AUTHOR), Smith, C. Robert1 (AUTHOR), Adams, Harry1 (AUTHOR), Haynes, Anthony1 (AUTHOR), Meijer, Anthony J. H. M.1 (AUTHOR), Sunley, Glenn J.2 (AUTHOR), Gaemers, Sander2 (AUTHOR)
المصدر: Organometallics. Nov2011, Vol. 30 Issue 22, p6166-6179. 14p.
مستخلص: Rhodium/iodide catalysts modified with the xantphos ligand are active for the homogeneous carbonylation of methanol to acetic acid using either pure CO or CO/H2. Residues from catalytic reactions contain a Rh(III) acetyl complex, [Rh(xantphos)(COMe)I2] (1), which was isolated and crystallographically characterized. The xantphos ligand in 1 adopts a "pincer" κ3-P,O,P coordination mode with the xanthene oxygen donor trans to the acetyl ligand. The same product was also synthesized under mild conditions from [Rh(CO)2I]2. Iodide abstraction from 1 in the presence of donor ligands (L = MeCN, CO) gives the cationic acetyl species [Rh(xantphos)(COMe)I(L)]+, whereas in CH2Cl2 migratory CO deinsertion gives [Rh(xantphos)(Me)I(CO)]+ (4), which reacts with H2 to liberate methane, as observed in catalytic reactions using syngas. A number of Rh(I) xantphos complexes have been synthesized and characterized. Oxidative addition of methyl iodide to the cation [Rh(xantphos)(CO)]+ is very slow but can be catalyzed by addition of an iodide salt, via a mechanism involving neutral [Rh(xantphos)(CO)I] (6). IR spectroscopic data and DFT calculations for 6 suggest the existence in solution of conformers with different Rh–O distances. Kinetic data and activation parameters are reported for the reaction of 6 with MeI, which proceeds by methylation of the Rh center and subsequent migratory insertion to give 1. The enhancement of nucleophilicity arising from a Rh- - -O interaction is supported by DFT calculations for the SN2 transition state. A mechanism for catalytic methanol carbonylation based on the observed stoichiometric reaction steps is proposed. A survey of ligand conformations in xantphos complexes reveals a correlation between P–M–P bite angle and M–O distance and division into two broad categories with bite angle <120° (cis) or >143° (trans). [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:02767333
DOI:10.1021/om2006968