يعرض 1 - 10 نتائج من 21 نتيجة بحث عن '"underactuated surface vessels"', وقت الاستعلام: 1.76s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Applied Sciences; Volume 13; Issue 12; Pages: 7156

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Marine Science and Engineering; https://dx.doi.org/10.3390/app13127156Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Journal of Marine Science and Engineering; Volume 9; Issue 11; Pages: 1204

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Ocean Engineering; https://dx.doi.org/10.3390/jmse9111204Test

  8. 8
  9. 9
    دورية أكاديمية

    المؤلفون: Chen, Yun, Chen, Hua

    وصف الملف: application/pdf

    العلاقة: mr:MR4600378; reference:[1] Avila, J. P. J., Donha, D. C., Amowski, J. C. Ad: Experimental model identification of open-frame underwater vehicles.Ocean Engrg. 60 (2013), 81-94.; reference:[2] Behtash, S.: Robust output tracking for non-linear systems.Int. J. Control 51 (1990), 6, 1381-1407. MR 1061713; reference:[3] Chen, H., Chen, Y., Wang, M.: Trajectory tracking for underactuated surface vessels with time delays and unknown control directions.IET Control Theory Appl. 16 (2022), 6, 587-599.; reference:[4] Chen, W., Wei, Y., Zeng, J., Hu, J., Wang, Z.: Adaptive backstepping control of underactuated AUV based on disturbance observer.J. Central South University 48 (2017), 1, 69-76.; reference:[5] Chu, Z., Zhu, D., Yang, S. X., E., G., Jan: Adaptive Sliding mode control for depth trajectory tracking of remotely operated vehicle with thruster nonlinearity.J. Navigation 70 (2017), 1, 149-164.; reference:[6] Druzhinina, O., Sedova, N.: Optimization Problems in tracking control design for an underactuated ship with feedback delay, state and control constraints.Optim. Appl. 12422 (2020), 71-85. MR 4381485; reference:[7] Du, J., Li, J.: Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated autonomous underwater vehicles.Control Theory Appl. 39 (2022), 383-392.; reference:[8] Feng, Z., Lam, J., Yang, G.-H.: Optimal partitioning method for stability analysis of continuous/discrete delay systems.Int. J. Robust Nonlinear Control 25 (2015), 4, 559-574. MR 3303356; reference:[9] Jia, Z., Hu, Z., Zhang, W.: Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels.ISA Trans. 95 (2019), 18-56.; reference:[10] Jian, X., Man, W., Lei, Q.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles.Ocean Engrg. 105 (2015), 54-63.; reference:[11] Lakhekar, G. V., Waghmare, L. M.: Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle.Int. J. Dynamics Control 6.4 (2018), 1690-1705. MR 3870196; reference:[12] Liao, Z. Y., Dai, Y. S., Li, L. G., Jin, J. C., F., Shao: Overview of unmanned surface vehicle motion control methods.Marine Sci. 44 (2020), 3, 153-162.; reference:[13] Liao, Y. L., Zhang, M. J., Wan, L., Li, Y.: Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties.J. Central South Univ. 23 (2016), 2, 370-378.; reference:[14] Liu, Z.: Practical backstepping control for underactuated ship path following associated with disturbances.IET Intell. Transport Systems 13 (2018), 5, 834-840.; reference:[15] Manley, J. E.: Unmanned surface vehicles, 15 years of development.Oceans (2008), Supplement, 1-4.; reference:[16] Marco, B., Massimo, C., Lionel, L.: Path-following algorithms and experiments for an autonomous surface vehicle.IFAC Proc. Vol. 40 (2007), 17, 81-86.; reference:[17] Min, Y., Liu, Y.: Barbalat Lemma and its application in analysis of system stability.J. Shandong Univ., Engrg. Sci. (2007), 51-55+114.; reference:[18] Pastore, T., Djapic, V.: Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios.J. Field Robotics 27 (2010), 6, 903-914.; reference:[19] Qijia, Y.: Robust fixed-time trajectory tracking control of marine surface vessel with feedforward disturbance compensation.Int. J. Systems Sci. 53 (2022), 4, 726-742. MR 4385666; reference:[20] Qiu, B., Wang, G., Fan, Y., Mu, D., Sun, X.: Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation.Appl. Sci. 9 (2019), 6, 1240.; reference:[21] Qudrat, K., Rini, A.: Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems.Neurocomputing 226 (2017), 126-134.; reference:[22] Ramakrishnan, K., Ray, G.: Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations.International Journal of Automation and Computing, vol.8.1, (2011), 141-146. MR 2913561, 10.1007/s11633-010-0566-9; reference:[23] Wang, F., Chao, Z., Huang, L.: Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode.Cluster Comput. 22 (2019), 3, 5799-5809.; reference:[24] Xu, D., Liu, Z., Zhou, X., Yang, L., Huang, L.: Trajectory tracking of underactuated unmanned surface vessels: non-singular terminal sliding control with nonlinear disturbance observer.Appl. Sci. 12 (2022), 6, 3004.; reference:[25] Yu, L., Guoqing, Z., Lei, Q., Weidong, Z.: Adaptive output-feedback formation control for underactuated surface vessels.Int. J. Control 93 (2020), 3, 400-409. MR 4070903; reference:[26] Zhou, J., Xinyi, Z., Zhiguang, F., Di, W.: Trajectory tracking sliding mode control for underactuated autonomous underwater vehicles with time delays.Int. J. Advanced Robotic Systems 17 (2020), 3, 1729881420916276.; reference:[27] Zhou, J., Zhao, X., Chen, T., Yan, Z., Yang, Z.: Trajectory tracking control of an underactuated AUV based on backstepping sliding mode with state prediction.IEEE Access 7 (2019), 181983-181993.; reference:[28] Zou, L., Liu, H., Tian, X.: Robust neural network trajectory-tracking control of underactuated surface vehicles considering uncertainties and unmeasurable velocities.IEEE Access9 (2021), 117629-117638.

  10. 10