يعرض 1 - 10 نتائج من 805 نتيجة بحث عن '"snow thickness"', وقت الاستعلام: 1.49s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The field work was carried out with the financial support of the NP “Arctic Development Center” together with the State Institution of the Yamalo-Nenets Autonomous District “Scientific Center for Arctic Studies” (Salekhard) within the framework of the research project “Monitoring of the Cryolithozone and the creation of a geotechnical monitoring system in the Yamalo-Nenets Autonomous District in 2021” and within the State Assignment Scientific Theme (no. АААА-А19- 119022190172-5 (FMGE-2019-0004) of the Institute of Geography RAS., Полевые работы выполнены при финансовой поддержке НП “Центр освоения Арктики” совместно с ГКУ ЯНАО “Научный Центр изучения Арктики” (г. Салехард) в рамках НИР “Мониторинг криолитозоны и создание системы геотехнического мониторинга в ЯмалоНенецком автономном округе в 2021 году” и в рамках темы государственного задания Института географии АААА-А19-119022190172-5 (FMGE2019-0004).

    المصدر: Ice and Snow; Том 63, № 1 (2023); 5-16 ; Лёд и Снег; Том 63, № 1 (2023); 5-16 ; 2412-3765 ; 2076-6734

    وصف الملف: application/pdf

    العلاقة: https://iceTest-snow.igras.ru/jour/article/view/1146/644; Боровинский Б.А. Геофизические исследования ледников Полярного Урала // МГИ. 1964. Вып. 9. С. 227–230.; Волошина А.П. Некоторые итоги исследований баланса массы ледников Полярного Урала // МГИ. 1988. Вып. 61. С. 44–51.; Каталог ледников СССР. Т. 3. Северный Край. Ч. 3 Урал. Ленинград: Гидрометеоиздат, 1966. 52 с.; Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С. 6–11.; Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с.; Мачерет Ю.Я. Применение геофизических методов для изучения мощности льда и строения горных ледников. Дисс. на соиск. уч. степ. канд. техн. наук. М.: Московский гос. ун-т, 1974. 174 с.; Носенко Г.А., Муравьев А.Я., Иванов М.Н., Синицкий А.И., Кобелев В.О., Никитин С.А. Реакция ледников Полярного Урала на современные изменения климата // Лёд и Снег. 2020. Т. 60. № 1. С. 42–57. https://doi.org/10.31857/S2076673420010022Test; Троицкий Л.С., Ходаков В.Г., Михалев В.И., Гуськов А.С., Лебедева И.М., Адаменко В.Н., Живкович Л.А. Оледенение Урала. М.: Наука, 1966. 355 с.; Цветков Д.Г. 10 лет фотогеодезических работ на ледниках Полярного Урала (Опыт наземной съёмки и составления планов малых ледников с приложением топокарт ледников ИГАН и Обручева в масштабе 1:5000) // МГИ. 1970. Вып. 16. С. 245–257.; Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada // Journ. of Glaciology. 2009. V. 55. № 192. P. 691–700. https://doi.org/10.3189/002214309789470851Test; ECMWF ERA5 (0.5×0.5 deg) // Электронный ресурс. https://climatereanalyzer.org/reanalysis/monthly_tseriesTest/ (Дата обращения: 01.06.2022).; Farinotti D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus, estimate for the ice thickness distribution of all glaciers on Earth // Nature Geosciences. 2019. V. 12. P. 168–173. https://doi.org/10.1038/s41561-019-0300-3Test; Farinotti D. and the ITMIX Consortium: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment // The Cryosphere. 2017. V. 11. P. 949–970. https://doi.org/10.5194/tc-11-949-2017Test; Fischer M., Huss M., Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps // The Cryosphere. 2016. V. 10. P. 1279–1295. https://doi.org/10.5194/tc-10-1279-2016Test; GISS Surface Temperature Analysis (v4) Station Data: Salekhard (66.5294N, 66.5294E) // Электронный ресурс. https://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_RSM00023330_14_0_1/station.txtTest. (Дата обращения: 01.06.2022).; Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming // Climate Dynamic. 1998. V. 14. № 4. P. 267–274.; Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., Smiraglia C. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2 // Earth System Science Data. 2020. V. 12. P. 1805–1821. https://doi.org/10.5194/essd-12-1805-2020Test; Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers // Journ. of Geosciences. 2018. V. 8. № 5. P. 174–188. https://doi.org/10.3390/geosciences8050174Test; Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. P. 537–552. https://doi.org/10.3189/2014JoG13J176Test; Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J.L., Basantes R., Vuille M., Sicart J.-E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change // The Cryosphere. 2013. № 7. P. 81–102. https://doi.org/10.5194/tc-7-81-2013Test; Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008 // Journ. of Glaciology. 2017. V. 58. № 211. P. 953–964. https://doi.org/10.3189/2012JoG11J233Test; Tielidze L., Nosenko G., Khromova T., Paul F. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020 // The Cryosphere. 2022. V. 16. P. 489–504. https://doi.org/10.5194/tc-16-489-2022Test; Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovskiy K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications // Journ. of Glaciology. 2011. V. 57. P. 1113–1118. https://doi.org/10.3189/002214311798843430Test; Zemp M., Nussbaumer S.U., Gärtner-Roer I., Bannwart J., Paul F., Hoelzle M. WGMS 2021. Global Glacier Change Bulletin No. 4 (2018–2019) // ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO. World Glacier Monitoring Service. ZurichSwitzerland. 2021. 278 p. https://doi.org/10.5904/wgms-fog-2021-05Test; https://iceTest-snow.igras.ru/jour/article/view/1146

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
  5. 5
  6. 6
    دورية أكاديمية

    مصطلحات موضوعية: Permafrost, Active layer, Snow thickness, Enthalpy

    العلاقة: info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FAAG-GLO%2F3908%2F2012/PT; https://www.mdpi.com/2073-4433/11/12/1332Test; Ramos, M., Vieira, G., de Pablo, M. A., Molina, A. & Jimenez, J.J. (2020). Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic). Atmosphere, 11(12), 1332. https://doi.org/10.3390/atmos11121332Test; http://hdl.handle.net/10451/45580Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
  10. 10