يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"similar joints"', وقت الاستعلام: 0.90s تنقيح النتائج
  1. 1
    دورية أكاديمية

    وصف الملف: 21 páginas; application/pdf

    العلاقة: Applied Sciences; 1. Derazkola, H.A.; Khodabakhshi, F. Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel. Int. J. Adv. Manuf. Technol. 2019, 102, 4383–4395. [CrossRef]; 2. Khalaf, H.I.; Al-Sabur, R.; Demiral, M.; Tomków, J.; Łabanowski, J.; Abdullah, M.E.; Aghajani Derazkola, H. The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW. Polymers 2022, 14, 4632. [CrossRef]; 3. Mahto, R.P.; Gupta, C.; Kinjawadekar, M.; Meena, A.; Pal, S.K. Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. J. Manuf. Process. 2019, 38, 370–386. [CrossRef]; 4. Mugada, K.K.; Adepu, K. Influence of ridges shoulder with polygonal pins on material flow and friction stir weld characteristics of 6082 aluminum alloy. J. Manuf. Process. 2018, 32, 625–634. [CrossRef]; 5. Derazkola, H.A.; MohammadiAbokheili, R.; Kordani, N.; Garcia, E.; Murillo-Marrodán, A. Evaluation of nanocomposite structure printed by solid-state additive manufacturing. CIRP J. Manuf. Sci. Technol. 2022, 37, 174–184. [CrossRef]; 6. Inaniwa, S.; Kurabe, Y.; Miyashita, Y.; Hori, H. Application of friction stir welding for several plastic materials. In Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, Japan, 6–8 November 2013; Woodhead Publishing, 2013; pp. 137–142, ISBN 978-1-78242-163-4.; 7. Bheekya Naik, R.; Venkateswara Reddy, K.; Madhusudhan Reddy, G.; Arockia Kumar, R. Microstructure, mechanical and wear properties of friction stir processed Cu-1.0%Cr alloys. Fusion Eng. Des. 2021, 164, 112202. [CrossRef]; 8. Aghajani Derazkola, H.; Simchi, A. Processing and characterizations of polycarbonate/alumina nanocomposites by additive powder fed friction stir processing. Thin-Walled Struct. 2020, 157, 107086. [CrossRef]; 9. Kang, S.H.; Vasudevan, M.; Noh, S.; Jin, H.J.; Jang, J.; Kim, T.K. Friction stir welding of F/M ODS steel plug and F/M steel tube. Fusion Eng. Des. 2016, 109–111, 182–185. [CrossRef]; 11. Khalaf, H.I.; Al-sabur, R.; Abdullah, M.E.; Kubit, A.; Derazkola, H.A. Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy. Materials 2022, 15, 2223. [CrossRef]; 12. Aghajani Derazkola, H.; Kordani, N.; Aghajani Derazkola, H. Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. CIRP J. Manuf. Sci. Technol. 2021, 33, 264–276. [CrossRef]; 13. Bokov, D.O.; Jawad, M.A.; Suksatan, W.; Abdullah, M.E.; Swierczy ´nska, A.; Fydrych, D.; Derazkola, H.A. Effect of pin shape on ´ thermal history of aluminum-steel friction stir welded joint: Computational fluid dynamic modeling and validation. Materials 2021, 14, 7883. [CrossRef] [PubMed]; 14. Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 2014, 69, 264–274. [CrossRef]; 15. Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 2013, 62, 35–42. [CrossRef]; 16. Xu, X.; Zhang, C.; Derazkola, H.A.; Demiral, M.; Zain, A.M.; Khan, A. UFSW tool pin profile effects on properties of aluminiumsteel joint. Vacuum 2021, 192, 110460. [CrossRef]; 17. Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 2012, 50, 1843–1852. [CrossRef]; 18. Izadi, H.; Gerlich, A.P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 2012, 50, 4744–4749. [CrossRef]; 19. Aghajani Derazkola, H.; García, E.; Eyvazian, A.; Aberoumand, M. Effects of rapid cooling on properties of aluminum-steel friction stir welded joint. Materials 2021, 14, 908. [CrossRef]; 20. Campanelli, S.; Casalino, G.; Casavola, C.; Moramarco, V. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy. Materials 2013, 6, 5923–5941. [CrossRef]; 21. Ruilin, L.; Diqiu, H.; Luocheng, L.; Shaoyong, Y.; Kunyu, Y. A study of the temperature field during ultrasonic-assisted friction-stir welding. Int. J. Adv. Manuf. Technol. 2014, 73, 321–327. [CrossRef]; 22. Derazkola, H.A.; Khodabakhshi, F. A novel fed friction-stir (FFS) technology for nanocomposite joining. Sci. Technol. Weld. Join. 2020, 25, 89–100. [CrossRef]; 23. Padhy, G.K.; Wu, C.S.; Gao, S. Auxiliary energy assisted friction stir welding – Status review. Sci. Technol. Weld. Join. 2015, 20, 631–649. [CrossRef]; 24. Luo, J.; Wang, X.J.; Wang, J.X. New technological methods and designs of stir head in resistance friction stir welding. Sci. Technol. Weld. Join. 2009, 14, 650–654. [CrossRef]; 25. Saha, R.; Biswas, P. Current status and development of external energy-assisted friction stir welding processes: A review. Weld. World 2022, 66, 577–609. [CrossRef]; 26. Pitschman, M.; Dolecki, J.W.; Johns, G.W.; Zhou, J.; Roth, J.T. Application of Electric Current in Friction Stir Welding. In Proceedings of the International Manufacturing Science and Engineering Conference, Erie, PA, USA, 12–15 October 2010; pp. 185–189.; 27. Potluri, H.; Jones, J.J.; Mears, L. Comparison of Electrically-Assisted and Conventional Friction Stir Welding Processes by Feed Force and Torque. In Proceedings of the International Manufacturing Science and Engineering Conference, Madison, WI, USA, 10–14 June 2013.; 28. Santos, T.G.; Miranda, R.M.; Vilaça, P. Friction stir welding assisted by electrical joule effect to overcome lack of penetration in aluminium alloys. Key Eng. Mater. 2014, 611–612, 763–772. [CrossRef]; 29. Santos, T.G.; Miranda, R.M.; Vilaça, P. Friction Stir Welding assisted by electrical Joule effect. J. Mater. Process. Technol. 2014, 214, 2127–2133. [CrossRef]; 30. Chen, S.; Zhang, H.; Jiang, X.; Yuan, T.; Han, Y.; Li, X. Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy. J. Manuf. Process. 2019, 44, 197–206. [CrossRef]; 31. Luo, J.; Chen, W.; Fu, G. Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys. J. Mater. Process. Technol. 2014, 214, 3002–3012. [CrossRef]; 32. Chen, S.; Wang, L.; Jiang, X.; Yuan, T.; Jiang, W.; Liu, Y. Microstructure and mechanical properties of AZ31B Mg alloy fabricated by friction stir welding with pulse current. J. Manuf. Process. 2021, 71, 317–328. [CrossRef]; 33. Han, Y.; Jiang, X.; Chen, S.; Yuan, T.; Zhang, H.; Bai, Y.; Xiang, Y.; Li, X. Microstructure and mechanical properties of electrically assisted friction stir welded AZ31B alloy joints. J. Manuf. Process. 2019, 43, 26–34. [CrossRef]; 34. Han, Y.; Chen, S.; Jiang, X.; Bai, Y.; Yuan, T.; Wang, X. Effect of microstructure, texture and deformation behavior on tensile properties of electrically assisted friction stir welded Ti-6Al-4 V joints. Mater. Charact. 2021, 176, 111141. [CrossRef]; 35. Jiang, X.; Han, Y.; Chen, S.; Bai, Y.; Yuan, T.; Wang, X. Microstructure and texture investigation on electrically assisted friction stir welded titanium alloy. Mater. Sci. Technol. 2020, 36, 1628–1638. [CrossRef]; 36. Das Chowdhury, I.; Sengupta, K.; Singh, D.K.; Roy, S.; Ghosal, S.; Mondal, A.K.; Sengupta, U. Study of mechanical properties of mild steel joint made by electrically assisted friction stir welding using DC and AC. Mater. Today Proc. 2021, 44, 3959–3966. [CrossRef]; 37. Sengupta, K.; Kr Singh, D.; Mondal, A.K.; Bose, D.; Ghosh, B. Analysis of mechanical property of electrically assisted friction stir welding to enhance the efficiency of joints. Mater. Today Proc. 2021, 38, 2263–2270. [CrossRef]; 38. Sengupta, K.; Singh, D.K.; Mondal, A.K.; Bose, D.; Patra, D.; Dhar, A. Characterization of tool wear in similar and dissimilar joints of MS and SS using EAFSW. Mater. Today Proc. 2021, 44, 3967–3975. [CrossRef]; 39. Sengupta, K.; Chowdhury, I.; Banerjee, A.; Mondal, A.K.; Bose, D. Analysis of suitability of WC tool for joining Inconel 601 alloy by electric assisted friction stir welding. Mater. Today Proc. 2022, 60, 2093–2098. [CrossRef]; 40. Xiaoqing, J.; Yongyong, L.; Tao, Y.; Shujun, C.; Lei, W.; Wang, J. Enhanced mechanical properties of dissimilar Al and Mg alloys fabricated by pulse current assisted friction stir welding. J. Manuf. Process. 2022, 76, 123–137. [CrossRef]; 41. Shaffer, D.; Grimm, T.J.; Ragai, I.; Roth, J. Utilization of XSYTIN-1 Tool in Electrically-Assisted Friction Stir Welding of Dissimilar Metals - Al 6061-T651 to Mild Steel. Adv. Mater. Res. 2019, 1152, 31–41. [CrossRef]; 42. Chen, K.; Liu, X.; Ni, J. Electrically Assisted Friction Stir Spot Welding of Aluminum Alloy to Advanced High Strength Steel. In Proceedings of the International Manufacturing Science and Engineering Conference, Los Angeles, CA, USA, 4–8 June 2017.; 43. Li, M.; Xiong, X.; Ji, S.; Hu, W.; Yue, Y. Achieving high-quality metal to polymer-matrix composites joint via top-thermic solid-state lap joining. Compos. Part B Eng. 2021, 219, 108941. [CrossRef]; 44. Aghajani Derazkola, H.; Kordani, N.; Mohammadi Abokheili, R. Investigation of joining mechanism of electrical-assist friction stir joining between polyethylene (PE) and 316 stainless steel. Arch. Civ. Mech. Eng. 2022, 22, 199. [CrossRef]; 45. Sengupta, K.; Mondal, A.K.; Bose, D.; Singh, D.K. Fundamentals of Electric Resistance Friction Stir Welding of Metals: A Review. In Proceedings of the 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), Kolkata, India, 5–6 September 2020; pp. 32–37.; 46. Memon, S.; Fydrych, D.; Fernandez, A.C.; Derazkola, H.A.; Derazkola, H.A. Effects of fsw tool plunge depth on properties of an al-mg-si alloy t-joint: Thermomechanical modeling and experimental evaluation. Materials 2021, 14, 4754. [CrossRef] [PubMed]; 47. Yan, F.; Zhang, Y.; Fu, X.; Li, Q.; Gao, J. A new calculating method of frictional heat and its application during friction stir welding. Appl. Therm. Eng. 2019, 153, 250–263. [CrossRef]; 48. Liu, X.; Lan, S.; Ni, J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J. Mater. Process. Technol. 2015, 219, 112–123. [CrossRef]; 49. Aghajani Derazkola, H.; Garcia, E.; Elyasi, M. Underwater friction stir welding of PC: Experimental study and thermo-mechanical modelling. J. Manuf. Process. 2021, 65, 161–173. [CrossRef]; 50. Khodabakhshi, F.; Derazkola, H.A.; Gerlich, A.P. Monte Carlo simulation of grain refinement during friction stir processing. J. Mater. Sci. 2020, 55, 13438–13456. [CrossRef]; 51. Long, X.; Khanna, S.K. Modelling of electrically enhanced friction stir welding process using finite element method. Sci. Technol. Weld. Join. 2005, 10, 482–487. [CrossRef]; 21; 13; Sajed, M.; Guerrero, J.W.G.; Derazkola, H.A. A Literature Survey on Electrical-Current-Assisted Friction Stir Welding. Appl. Sci. 2023, 13, 1563. https://doi.org/10.3390Test/ app13031563; https://hdl.handle.net/11323/10219Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  2. 2
    دورية أكاديمية

    المصدر: Applied Sciences; Volume 13; Issue 3; Pages: 1563

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Marine Science and Engineering; https://dx.doi.org/10.3390/app13031563Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5