يعرض 1 - 10 نتائج من 61 نتيجة بحث عن '"reducing body weight"', وقت الاستعلام: 0.95s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
  3. 3
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 15 (2022); 83-89 ; Медицинский Совет; № 15 (2022); 83-89 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7075/6349Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test. Maevskaya M.V., Kotovskaya Yu.V., Ivashkin V.T., Tkacheva O.N., Troshina E.A., Shestakova M.V. et al. National consensus for physicians on the management of adult patients with non-alcoholic fatty liver disease and its major comorbid conditions. Terapevticheskii Arkhiv. 2022;(2):216–253. (In Russ.) https://doi.org/10.26442/00403660.2022.02.201363Test.; Jichitu A., Bungau S., Stanescu A.M.A., Vesa C.M., Toma M.M., Bustea C. et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. https://doi.org/10.3390/diagnostics11040689Test.; Li X., Jiao Y., Xing Y., Gao P. Diabetes Mellitus and Risk of Hepatic Fibrosis/ Cirrhosis. Biomed Res Int. 2019;2019:5308308. https://doi.org/0.1155/2019/5308308Test.; Nakahara T., Hyogo H., Yoneda M., Sumida Y., Eguchi Y., Fujii H. et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49(11):1477–1484. https://doi.org/10.1007/s00535-013-0911-1Test.; Trombetta M., Spiazzi G., Zoppini G., Muggeo M. Review article: Type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22(2 Suppl.):24–27. https://doi.org/10.1111/j.1365-2036.2005.02590.xTest.; Mantovani A., Scorletti E., Mosca A., Alisi A., Byrne C.D., Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170. https://doi.org/10.1016/j.metabol.2020.154170Test.; Targher G., Lonardo A., Byrne C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018;14(2):99–114. https://doi.org/10.1038/nrendo.2017.173Test.; Machado M., Marques-Vidal P., Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45(4):600–606. https://doi.org/10.1016/j.jhep.2006.06.013Test.; Younossi Z.M., Golabi P., de Avila L., Paik J.M., Srishord M., Fukui N. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. https://doi.org/10.1016/j.jhep.2019.06.021Test.; Masarone M., Rosato V., Aglitti A., Bucci T., Caruso R., Salvatore T. et al. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE. 2017;12(6):e0178473. https://doi.org/10.1371/journal.pone.0178473Test.; Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–1789. https://doi.org/10.1007/s00125-008-1116-7Test.; Defronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795. https://doi.org/10.2337/db09-9028Test.; Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012Test.; Eslam M., Sanyal A.J., George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1. https://doi.org/10.1053/j.gastro.2019.11.312Test.; Younossi Z.M., Corey K.E., Lim J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology. 2021;160(3):912–918. https://doi.org/10.1053/j.gastro.2020.11.051Test.; Finer N. Weight loss interventions and nonalcoholic fatty liver disease: Optimizing liver outcomes. Diabetes Obes Metab. 2022;24(Suppl. 2):44–54. https://doi.org/10.1111/dom.14569Test.; Петунина Н.А., Тельнова М.Э., Кузина И.А. Влияние ипраглифлозина на компоненты метаболического синдрома и неалкогольную жировую болезнь печени. Медицинский совет. 2021;(12):305–310. https://doi.org/10.21518/2079-701X-2021-12-305-310Test. Petunina N.A., Telnova M.E., Kuzina I.A. Effect of ipragliflozin on components of the metabolic syndrome and non-alcoholic fatty liver disease. Meditsinskiy Sovet. 2021;(12):305–310. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-305-310Test.; Моргунов Л.Ю., Мамедгусейнов Х.С. Новые возможности коррекции сахарного диабета 2-го типа у пациентов с заболеваниями печени. Лечащий врач. 2021;(12):26–32. https://doi.org/10.51793/OS.2021.24.12.004Test. Morgunov L.Yu., Mamedguseynov Kh.S. New opportunities for the correction of type 2 diabetes mellitus in patients with liver diseases. Lechaschi Vrach. 2021;(12):26–32. (In Russ.) https://doi.org/10.51793/OS.2021.24.12.004Test.; Vallon V., Thomson S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16(6):317–336. https://doi.org/10.1038/s41581-020-0256-yTest.; Simes B.C., MacGregor G.G. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician’s Guide. Diabetes Metab Syndr Obes. 2019;12:2125–2136. https://doi.org/10.2147/DMSO.S212003Test.; Yu A.S., Hirayama B.A., Timbol G., Liu J., Basarah E., Kepe V. et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6):C1277–1284. https://doi.org/10.1152/ajpcell.00296.2010Test.; Fonseca-Correa J.I., Correa-Rotter R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front Med (Lausanne). 2021;8:777861. https://doi.org/10.3389/fmed.2021.777861Test.; Yanai H., Hakoshima M., Adachi H., Katsuyama H. Multi-Organ Protective Effects of Sodium Glucose Cotransporter 2 Inhibitors. Int J Mol Sci. 2021;22(9):4416. https://doi.org/10.3390/ijms22094416Test.; Амосова М.В., Фадеев В.В. Эмпаглифлозин – новые показания к применению – поворотный момент в лечении сахарного диабета 2-го типа. Медицинский совет. 2017;(3):38–43. https://doi.org/10.21518/2079-701X-2017-3-38-43Test. Amosova M.V., Fadeev V.V. Empagliflozin – new indications for use – a turning point in the treatment of type 2 diabetes mellitus. Meditsinskiy Sovet. 2017;(3):38–43. (In Russ.) https://doi.org/10.21518/2079-701X-2017-3-38-43Test.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом: клинические рекомендации. М.; 2021. 222 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest. Dedov I.I., Shestakova M.V., Maiorov A.Yu. (eds.). Algorithms of specialized medical care for patients with diabetes mellitus: clinical recommendations. Мoscow; 2021. 228 p. (In Russ.) Available at: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest.; Komiya C., Tsuchiya K., Shiba K., Miyachi Y., Furuke S., Shimazu N. et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS ONE. 2016;11(3):e0151511. https://doi.org/10.1371/journal.pone.0151511Test.; Petito-da-Silva T. I., Souza-Mello V., Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol Cell Endocrinol. 2019;498:110539. https://doi.org/10.1016/j.mce.2019.110539Test.; Androutsakos T., Nasiri-Ansari N., Bakasis A.D., Kyrou I., Efstathopoulos E., Kassi E. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci. 2022;23(6):3107. https://doi.org/10.3390/ijms23063107Test.; Hüttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M. et al. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci. 2021;22(21):11513. https://doi.org/10.3390/ijms222111513Test.; Seko Y., Nishikawa T., Umemura A., Yamaguchi K., Moriguchi M., Yasui K. et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsy-proven nonalcoholic steatohepatitis classified as stage 1-3 fibrosis. Diabetes Metab Syndr Obes. 2018;11:835–843. https://doi.org/10.2147/DMSO.S184767Test.; Wang D., Luo Y., Wang X., Orlicky D.J., Myakala K., Yang P., Levi M. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. Int J Mol Sci. 2018;19(1):137. https://doi.org/10.3390/ijms19010137Test.; Li B., Wang Y., Ye Z., Yang H., Cui X., Wang Z., Liu L. Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. J Pharm Pharm Sci. 2018;21(1):222–235. https://doi.org/10.18433/jpps29831Test.; Gallo S., Calle R.A., Terra S.G., Pong А., Tarasenko L., Raji А. Effects of Ertugliflozin on Liver Enzymes in Patients with Type 2 Diabetes: A PostHoc Pooled Analysis of Phase 3 Trials. Diabetes Ther. 2020;11(8):1849– 1860. https://doi.org/10.1007/s13300-020-00867-1Test.; Arase Y., Shiraishi K., Anzai K., Sato H., Teramura E., Tsuruya K. et al. Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Clin Drug Investig. 2019;39(7):631–641. https://doi.org/10.1007/s40261-019-00785-6Test.; Eriksson J.W., Lundkvist P., Jansson P.A., Johansson L, Kvarnström M., Moris L. et al. Effects of dapagliflozin and n-3 carboxylic acids on nonalcoholic fatty liver disease in people with type 2 diabetes: a doubleblind randomised placebo-controlled study. Diabetologia. 2018;61(9):1923–1934. https://doi.org/10.1007/s00125-018-4675-2Test.; Kashiwagi A., Takahashi H., Ishikawa H., Yoshida S., Kazuta K., Utsuno A. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015;17(2):152–160. https://doi.org/10.1111/dom.12403Test.; Kashiwagi A., Sakatani T., Nakamura I., Akiyama N., Kazuta K., Ueyama E. et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J. 2018;65(7):693–705. https://doi.org/10.1507/endocrj.EJ17-0491Test.; Honda Y., Imajo K., Kato T., Kessoku T., Ogawa Y., Tomeno W. et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS ONE. 2016;11(1):e0146337. https://doi.org/10.1371/journal.pone.0146337Test.; Tobita H., Sato S., Miyake T., Ishihara S., Kinoshita Y. Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr Ther Res Clin Exp. 2017;87:13–19. https://doi.org/10.1016/j.curtheres.2017.07.002Test.; Tabuchi H., Maegawa H., Tobe K., Nakamura I., Uno S. Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: a subgroup analysis of the STELLA-LONG TERM study (3-month interim results). Endocr J. 2019;66(1):31–41. https://doi.org/10.1507/endocrj.EJ18-0217Test.; Ohta A., Kato H., Ishii S., Sasaki Y., Nakamura Y., Nakagawa T. et al. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin Pharmacother. 2017;18(14):1433–1438. https://doi.org/10.1080/14656566.2017.1363888Test.; Nakamura I., Maegawa H., Tobe K., Tabuchi H., Uno S. Safety and efficacy of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice: interim results of the STELLA-LONG TERM postmarketing surveillance study. Expert Opin Pharmacother. 2018;19(3):189–201. https://doi.org/10.1080/14656566.2017.1408792Test.; Nishimiya N., Tajima K., Imajo K., Kameda A., Yoshida E., Togashi Y. et al. Effects of Canagliflozin on Hepatic Steatosis, Visceral Fat and Skeletal Muscle among Patients with Type 2 Diabetes and Non-alcoholic Fatty Liver Disease. Intern Med. 2021;60(21):3391–3399. https://doi.org/10.2169/internalmedicine.7134-21Test.; Pokharel A., Kc S., Thapa P., Karki N., Shrestha R., Jaishi B., Paudel M.S. The Effect of Empagliflozin on Liver Fat in Type 2 Diabetes Mellitus Patients With Non-Alcoholic Fatty Liver Disease. Cureus. 2021;13(7):e16687. https://doi.org/10.7759/cureus.16687Test.; Lai L.L., Vethakkan S.R., Nik Mustapha N.R., Mahadeva S., Chan W.K. Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes Mellitus. Dig Dis Sci. 2020;65(2):623–631. https://doi.org/10.1007/s10620-019-5477-1Test.; Akuta N., Watanabe C., Kawamura Y., Arase Y., Saitoh S., Fujiyama S. et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: Preliminary prospective study based on serial liver biopsies. Hepatol Commun. 2017;1(1):46–52. https://doi.org/10.1002/hep4.1019Test.; Yabiku K., Nakamoto K., Tsubakimoto M. Effects of Sodium-Glucose Cotransporter 2 Inhibition on Glucose Metabolism, Liver Function, Ascites, and Hemodynamics in a Mouse Model of Nonalcoholic Steatohepatitis and Type 2 Diabetes. J Diabetes Res. 2020;2020:1682904. https://doi.org/10.1155/2020/1682904Test.; Ribeiro Dos Santos L., Baer Filho R. Treatment of nonalcoholic fatty liver disease with dapagliflozin in non-diabetic patients. Metabol Open. 2020;5:100028. https://doi.org/10.1016/j.metop.2020.100028Test.; Shiba K., Tsuchiya K., Komiya C., Miyachi Y., Mori K., Shimazu N. et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep. 2018;8(1):2362. https://doi.org/10.1038/s41598-018-19658-7Test.; Jojima T., Wakamatsu S., Kase M., Iijima T., Maejima Y., Shimomura K. et al. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci. 2019;20(20):5237. https://doi.org/10.3390/ijms20205237Test.; Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314. https://doi.org/10.1126/science.123.3191.309Test.; Scafoglio C., Hirayama B.A., Kepe V., Liu J., Ghezzi C., Satyamurthy N. et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112(30):E4111–1119. https://doi.org/10.1073/pnas.1511698112Test.; Du D., Liu C., Qin M., Zhang X., Xi T., Yuan S. et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558–580. https://doi.org/10.1016/j.apsb.2021.09.019Test.; https://www.med-sovet.pro/jour/article/view/7075Test

  4. 4
  5. 5
  6. 6
    صورة
  7. 7
  8. 8
    صورة
  9. 9
  10. 10