يعرض 1 - 10 نتائج من 621 نتيجة بحث عن '"push-off"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Materiales de Construcción; Vol. 73 No. 351 (2023); e322 ; Materiales de Construcción; Vol. 73 Núm. 351 (2023); e322 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2023.v73.i351

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3258/4268Test; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3258/4269Test; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3258/4270Test; CNR-DT 204 (2006) Guide for the design and construction of fiber-reinforced concrete structures. Consiglio Nazionale delle Riserche: Roma, Italy, 2006.; EHE-08, Instrucción de hormigón estructural (2008) Ministerio de Fomento, Madrid, España.; Fib model code for concrete structures 2010. (2013) Ernst & Sohn. Wiley: Berlin, Germany. https://doi.org/10.1002/9783433604090Test; Alberti, M.; Enfedaque, A.; Gálvez, J. (2015) Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Constr. Build. Mat. 85 182-194. https://doi.org/10.1016/j.conbuildmat.2015.03.007Test; Alberti, M.; Enfedaque, A.; Gálvez, J. (2017) Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Compos. Struct. 171, 317-325. https://doi.org/10.1016/j.compstruct.2017.03.033Test; Alberti, M.; Enfedaque, A.; Gálvez, J. (2016) Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Eng. Fract. Mech. 154, 225-244. https://doi.org/10.1016/j.engfracmech.2015.12.032Test; Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Carmona, A.; Valverde, C.; Pardo, G. (2018) Use of steel and polyolefin fibres in the La Canda tunnels: Applying mives for assessing sustainability evaluation. Sustainability-Basel. 10 [12], 4765. https://doi.org/10.3390/su10124765Test; Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Pinillos, L. (2017) Structural cast-in-place application of polyolefin fiber-reinforced concrete in a water pipeline supporting elements. J. Pipeline Syst. Eng. Pract. 8 [4], 05017002. https://doi.org/10.1061Test/(ASCE)PS.1949-1204.0000274; A. García Santos (1988) Comportamiento mecánico de yeso reforzado con polı́meros sintéticos, Ph.D. thesis, Arquitectura. https://doi.org/10.3989/ic.1988.v40.i397.1550Test; Santos, A.G. (2009) Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandidoescayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. Mater. Construcc. 59 [293], 105-124. https://doi.org/10.3989/mc.2009.41107Test; Dalmay, P.; Smith, A.; Chotard, T.; Sahay-Turner, P.; Gloaguen, V.; Krausz, P. (2010) Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 45 [3], 793-803. https://doi.org/10.1007/s10853-009-4002-xTest; Iucolano, F.; Liguori, B.; Aprea, P.; Caputo, D. (2018) Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Constr. Build. Mat. 185, 256-263. https://doi.org/10.1016/j.conbuildmat.2018.07.036Test; Iucolano, F.; Boccarusso, L.; Langella, A. (2019) Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Compos. Part B-Eng. 175, 107073. https://doi.org/10.1016/j.compositesb.2019.107073Test; Zhu, C.; Zhang, J.; Peng, J.; Cao, W.; Liu, J. (2018) Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Constr. Build. Mat. 163, 695-705. https://doi.org/10.1016/j.conbuildmat.2017.12.168Test; Suárez, F.; Felipe-Sesé, L.; Díaz, F.; Gálvez, J.; Alberti, M. (2020) On the fracture behaviour of fibre-reinforced gypsum using micro and macro polymer fibres. Constr. Build. Mat. 244, 118347. https://doi.org/10.1016/j.conbuildmat.2020.118347Test; Barbero-Barrera, M.M.; Flores-Medina, N.; Pérez-Villar, V. (2017) Assessment of thermal performance of gypsum-based composites with revalorized graphite filler. Constr. Build. Mat. 142, 83-91. https://doi.org/10.1016/j.conbuildmat.2017.03.060Test; (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18, 287-290. https://doi.org/10.1007/BF02472918Test; Simo, J.C.; Oliver, J.; Armero, F. (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12 [5], 277-296. https://doi.org/10.1007/BF00372173Test; Li, Y.N.; Bažant, Z.P. (1997) Cohesive crack model with rate-dependent opening and viscoelasticity: II. numerical algorithm, behavior and size effect. Int. J. Fracture. 86 [3], 267-288.; Sancho, J.M.; Planas, J.; Cendón, D.A.; Reyes, E.; Gálvez, J. (2007) An embedded crack model for finite element analysis of concrete fracture. Eng. Fract. Mech. 74 [1-2], 75-86. https://doi.org/10.1016/j.engfracmech.2006.01.015Test; Jirásek, M. (2011) Damage and smeared crack models, in: Numerical modeling of concrete cracking, Springer, pp. 1-49. https://doi.org/10.1007/978-3-7091-0897-0_1Test; Alberti, M.; Enfedaque, A.; Gálvez, J.; Reyes, E. (2017) Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Compos. Part B-Engineer. 111, 200-210. https://doi.org/10.1016/j.compositesb.2016.11.052Test; Havlásek, P.; Kabele, P. (2017) A detailed description of the computer implementation of SHCC material model in OOFEM, CTU in Prague.; Nooru-Mohamed, M.B. (1992) Mixed-mode fracture of concrete: An experimental approach., Ph.D. thesis, Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:a6a773f1-dacd-4598-aa6a-960dddf71117Test.; Nooru-Mohamed, M.; Schlangen, E.; van Mier, J.G.(1993) Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv. Cem. Based Mater. 1 [1], 22-37. https://doi.org/10.1016/1065-7355Test(93)90005-9; Soetens, T.; Matthys, S. (2017) Shear-stress transfer across a crack in steel fibre-reinforced concrete. Cem. Concr. Comp. 82, 1-13. https://doi.org/10.1016/j.cemconcomp.2017.05.010Test; JSCE-G 553-1999 (2005) Test method for shear strength of steel fiber reinforced concrete. Standard specifications for concrete structures. Test methods and specifications. Japan Society of Civil Engineers (JSCE), Tokyo.; Navas, F.O.; Navarro-Gregori, J.; Herdocia, G.L.; Serna, P.; Cuenca, E. (2018) An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres. Constr. Build. Mater. 169, 888-899. https://doi.org/10.1016/j.conbuildmat.2018.02.023Test; Picazo, A.; Gálvez, J.; Alberti, M.; Enfedaque, A. (2018) Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation. Constr. Build. Mat. 181, 565-578. https://doi.org/10.1016/j.conbuildmat.2018.05.235Test; Picazo, A.; Alberti, M.; Gálvez, J.; Enfedaque, A. (2021) Shear slip post-cracking behaviour of polyolefin and steel fibre reinforced concrete. Constr. Build. Mater. 290, 123187. https://doi.org/10.1016/j.conbuildmat.2021.123187Test; Cendón, D.; Gálvez, J.; Elices, M.; Planas, J. (2000) Modelling the fracture of concrete under mixed loading. Int. J. Fracture. 103 [3], 293-310. https://doi.org/10.1023/A:1007687025575Test; García-Álvarez, V.O.; Gettu, R.; Carol, I. (2000) Numerical analysis of mixed mode fracture in concrete using interface elements, in: Proceedings of the european congress on computational methods in applied sciences and engineering. Barcelona, Spain, pp. 11-14.; Suárez, F.; Gálvez, J.; Cendón, D. (2019) A material model to reproduce mixed-mode fracture in concrete. Fatigue Fract. Eng. M. 42 [1], 223-238. https://doi.org/10.1111/ffe.12898Test; ASTM, C. 496-96 (1996) Standard test method for splitting tensile strength of cylindrical concrete specimens.; UNE-EN 13279-2. (2014) Gypsum binders and gypsum plasters - Part 2: Test methods.; UNE-EN 13279-1. (2009) Gypsum binders and gypsum plasters - Part 1: Definitions and requirements.; Suárez Guerra, F.; Felipe-Sesé, L.; Dı́az, F.; Gálvez Ruiz, J.; García Alberti, M. (2019) Comportamiento en fractura de yeso con adición de fibras poliméricas. Secretaría del grupo español de la fractura. Anal. Mecán. Fract. 36, 114-119.; Mayo-Corrochano, C.; Sánchez-Aparicio, L.J.; Aira, J.R., Sanz-Arauz, D.; Moreno, E.; Pinilla Melo, J. (2022) Assessment of the elastic properties of high-fired gypsum using the digital image correlation method. Constr. Build. Mat. 317, 125945. https://doi.org/10.1016/j.conbuildmat.2021.125945Test; C.S. Vic-2D. (2009) Reference manual.; Bocca, P.; Carpinteri, A.; Valente, S. (1991) Mixed mode fracture of concrete. Int. J. Solids Struct. 27 [9], 1139-1153. https://doi.org/10.1016/0020-7683Test(91)90115-V; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3258Test

  8. 8
    مؤتمر
  9. 9
    مؤتمر

    المساهمون: Davolio, Marco, Azhar, Hamza, Volpatti, Giovanni, Florez Gutierrez, Alfredo Alan, Zampini, Davide, Lo Monte, Francesco, Ferrara, Liberato

    مصطلحات موضوعية: Fiber Reinforced Concrete, Fatigue, Push-off

    العلاقة: ispartofbook:Proceedings 11th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-11; FraMCoS 11; firstpage:1; lastpage:10; numberofpages:10; https://hdl.handle.net/11311/1258689Test

  10. 10
    دورية أكاديمية