يعرض 1 - 10 نتائج من 110 نتيجة بحث عن '"pilot tests"', وقت الاستعلام: 0.84s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: La Tadeo Dearte; Vol. 8 No. 9 (2022): Confinados; 66-87 ; La Tadeo Dearte; Vol. 8 Núm. 9 (2022): Confinados; 66-87 ; 2590-6453 ; 2422-3158

    وصف الملف: application/pdf

    العلاقة: https://revistas.utadeo.edu.co/index.php/ltd/article/view/Incorporacion-metodologias-virtuales-ensenanza-patronaje-confeccion/1888Test; Bravo Palacios, Rosa Natalia. Diseño, construcción y uso de objetos virtuales de aprendizaje OVA. Pasto: Universidad Nacional Abierta y a Distancias (UNAD), 2016.; Entornos.net. ¡Moodle 3.5 ya está disponible! La versión 3.5 del LMS más utilizado en el mundo se lanzó el 17 de mayo de 2018.[Internet, 21 de mayo de 2018]. https://www.entornos.net/moodle-3-5-ya-esta-disponibleTest/; Fundación Universitaria del Área Andina. Sello Areandino o Trasformador - Proyecto Educativo Institucional. Cumbre. Forjando Sello Areandino. Paipa, Boyacà, marzo de 2018.; Fundación Universitaria del Área Andina. «Así es el Modelo de Aprendizjaje aumentado de Areandina».Youtube, 7 de septiembre de 2020. https://www.youtube.com/watch?v=JVK-XKZhxuETest; Fundación Universitaria del Área Andina. Funciones sustantivas y campos de acción para la misiòn. Fomento de la Investigación, Sello Trasformador. Bogotá: Areandina, 2018.; Fundación Universitaria del Área Andina. Perspectiva pedagógica y curricular. Sello trasformador. Bogotá: Areandina, 2018.; Fundación Universitaria del Área Andina. RAES de trabajos de grado - marco teórico de la investigación. Bogotá: Colombia, 2018.; Fundación Universitaria del Área Andina. Diseño de metodologías virtuales para la enseñanza de Patronaje y Confección. Proyecto de Investigaciòn Diseño de Modas. Bogotá: Areandina, 2018.; Gómez Reyes, Leydy. B-Learning: ventajas y desventajas en la educación superior. VII Congreso Virtual Iberoamericano de Calidad en Educación Virtual y a Distancia. México, 20-30 de abril de 2017.; Revista Electrónica Educare del Centro de Investigación y Docencia en Educación de la Universidad Nacional, C. R. (s.f.). Obtenido de http://www.una.ac.cr/educareTest; Ruiz, Mary Evelin. Manual para la confeccion de cuellos para camisa formal, 2004.; Santiago, Raúl. Flipped Classroom. Cataluña: Editorial UOC/Jon Bergmann.; https://revistas.utadeo.edu.co/index.php/ltd/article/view/Incorporacion-metodologias-virtuales-ensenanza-patronaje-confeccionTest

  5. 5
    دورية أكاديمية

    المصدر: Sustainability; Volume 14; Issue 16; Pages: 10353

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Waste and Recycling; https://dx.doi.org/10.3390/su141610353Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

    وصف الملف: application/pdf

    العلاقة: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2021. Т. 332, № 5; Обоснование технологии ультразвукового воздействия для разрушения стойких водонефтяных эмульсий / А. В. Лекомцев, В. А. Мордвинов, Р. В. Дворецкас [и др.] // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2021. — Т. 332, № 5. — [С. 101-109].; http://earchive.tpu.ru/handle/11683/66367Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: Revista Colombiana de Biotecnología; Vol. 22 Núm. 2 (2020); 53-69 ; Revista Colombiana de Biotecnología; Vol. 22 No. 2 (2020); 53-69 ; 1909-8758 ; 0123-3475

    وصف الملف: application/vnd.openxmlformats-officedocument.wordprocessingml.document; application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090/78027Test; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090/78028Test; Adams, B., Anderson, R., Bless, D., Butler, B., Conway, B., Dailey, A., y Zownir, A. (2014). Reference guide to Treatment Technologies for mining-influenced water.; Amos, P., y Younger, P. (2003). Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Research, 37, 108–120.; Aoyagi, T., Hamai, T., Hori, T., Sato, Y., Kobayashi, M., Sato, Y y Sakata, T. (2017). Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. AMB Express, 7(1), 142.; Ayora, C., Macías, F., Torres, E., Lozano, A., Carrero, S., Nieto, J.M., y Castillo-Michel, H. (2016). Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environmental science y technology, 50(15), 8255-8262.; Ayora, C., Macías, F., Torres, E., y Nieto, J.M. (2015). Rare Earth Elements in Acid Mine Drainage. XXXV Reunión de La Sociedad Española de Mineralogía, 2016(S3), 1–22.; Baldwin, S.A., Khoshnoodi, M., Rezadehbashi, M., Taupp, M., Hallam, S., Mattes, A., y Sanei, H. (2015). The Microbial Community of a Passive Biochemical Reactor Treating Arsenic, Zinc, and Sulfate-Rich Seepage. Frontiers in Bioengineering and Biotechnology, 1–13. https://doi.org/10.3389/fbioe.2015.00027Test; Baldwin, S.A., Mattes, A., Rezadehbashi, M., y Taylor, J. (2016). Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage. Minerals, 6(2), 36. https://doi.org/10.3390/min6020036Test; Biermann, V., Lillicrap, A.M., Magana, C., Price, B., Bell, R.W., y Oldham, C.E. (2014). Applicability of passive compost bioreactors for treatment of extremely acidic and saline waters in semi-arid climates. Water Research, 55, 83–94. https://doi.org/10.1016/j.watres.2014.02.019Test; Bolis, J. L., Wildeman, T.R., y Dawson, H.E. (1992). Hydraulic conductivity of substrates used for passive acid mine drainage treatment. In National Meeting of the American Society for Surface Mining and Reclamation, Duluth, Minnesota (pp. 14-18).; Chen, L.X., Hu, M., Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., y Shu, W.S. (2014). Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. The ISME Journal, 9(7), 1579–1592. https://doi.org/10.1038/ismej.2014.245Test; Cheong, Y., Min, J., y Kwon, K. (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64, 147–152.; Cook, K.L., Whitehead, T.R., Spence, C., y Cotta, M. A. (2008). Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe, 14(3), 172–180.; Costello, C. (2003). Acid Mine Drainage: Innovative Treatment Technologies Prepared by Technology Innovation Office (No. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office).; Doshi, S.M. (2006). Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation, 65.; Drennan, D.M., Almstrand, R., Lee, I., Landkamer, L., Figueroa, L., y Sharp, J.O. (2016). Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems. Environmental Science and Technology, 50(1), 378–387. https://doi.org/10.1021/acs.est.5b04268Test; Dvorak, D.H., Hedin, R.S., Edenborn, H.M., y McIntire, P.E. (1992). Treatment of metal‐contaminated water using bacterial sulfate reduction: Results from pilot‐scale reactors. Biotechnology and bioengineering, 40(5), 609-616.; García-Moyano, A., Austnes, A., Lanzén, A., González-Toril, E., Aguilera, Á., y Øvreås, L. (2015). Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches. Microorganisms, 3(4), 667–694.; Gibert, O., Cortina, J.L., de Pablo, J., y Ayora, C. (2013). Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environmental Science and Pollution Research, 20(11), 7854–7862.; Gibert, O., De Pablo, J., Cortina, J., y Ayora, C. (2004). Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage. Water Research, 38(19), 4186–4196; Gusek, J. J. (2002). Sulfate-reducing bioreactor design and operating issues: is this the passive treatment technology for your mine drainage. National Association of Abandoned Mine Land Programs, Park City, Utah.; Haakensen, M., Pittet, V., Spacil, M. M., Castle, J. W., y Rodgers, J. H. (2015). Key Aspects for Successful Design and Implementation of Passive Water Treatment Systems. Journal of Environmental Solutions for Oil, Gas, and Mining, 1(1), 59–81. https://doi.org/10.3992/1573-2377-374X-1.1.59Test; Hallberg, K.B. (2010). New perspectives in acid mine drainage microbiology. Hydrometallurgy, 104(3–4), 448–453.; Hao, O.J. (2003). Sulphate-reducing bacteria. The Handbook of Water and Wastewater Microbiology. Academic Press, London, 459-469. Hao, T.W., Xiang, P.Y., Mackey, H.R., Chi, K., Lu, H., Chui, H.K., Chen, G.H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1–21. https://doi.org/10.1016/j.watres.2014.06.043Test; Hedin RS, Nairn RW, K.R. (1994). Passive treatment of coal mine drainage. US Bureau of Mines IC 9389, Pittsburgh. Pittsburgh.; Hiibel, S.R., Pereyra, L.P., Breazeal, M.V.R., Reisman, D. J., Reardon, K.F., y Pruden, A. (2011). Effect of Organic Substrate on the Microbial Community Structure in Pilot-Scale Sulfate-Reducing Biochemical Reactors Treating Mine Drainage. Environmental Engineering Science, 28(8), 563–572. https://doi.org/10.1089/ees.2010.0237Test; Hiibel, S.R., Pereyra, L.P., Inman, L.Y., Tischer, A., Reisman, D.J., Reardon, K. F., y Pruden, A. (2008). Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environmental Microbiology, 10(8), 2087–97. https://doi.org/10.1111/j.1462-2920.2008.01630.xTest; Huntsman BE, Solch J.G, Porter M.O (1978). Utilization of Sphagnum species dominated bog for coal acid mine drainage abatement. Abstracts, 91st annual meeting. Geological Society of America, Toronto, ON, Canada, p 322; Izquierdo, J.A., Sizova, M.V. y Lynd, L.R. (2010). Diversity of Bacteria and Glycosyl Hydrolase Family 48 Genes in Cellulolytic Consortia Enriched from Thermophilic Biocompost. Applied and Environmental Microbiology 76(11), 3545–3553; INAP, International Network for Acid Prevention (2019). Global acid rock drainage guide. Consultado 4 abril 2018 en http://www.gardguide.comTest; ITRC, Interstate Technology & Regulatory Council, (2011). Biochemical Reactors for Mining-Influenced Water. Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Consultado 4 abril 2018 in http://www.itrcweb.orgTest; Johnson, D., y Hallberg, K. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1–2), 3–14.; Kaksonen, A.H., y Puhakka, J.A. (2007). Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals. Engineering in Life Sciences, 7(6), 541–564. https://doi.org/10.1002/elsc.200720216Test; Laothanachareon, T., Kanchanasuta, S., Mhuanthong, W., Phalakornkule, C., Pisutpaisal, N., y Champreda, V. (2014). Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management, 144, 143–151. https://doi.org/10.1016/j.jenvman.2014.05.019Test; Lefticariu, L., Walters, E.R., Pugh, C.W., y Bender, K.S. (2015). Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Applied Geochemistry, 63, 70–82. https://doi.org/10.1016/j.apgeochem.2015.08.002Test; Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., y Giuliano, V. (2010). Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage. Journal of Biotechnology, 150 (Supplement 1), 252–253. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168165610010400Test; Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., y Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(MAY), 1–17. https://doi.org/10.3389/fmicb.2015.00475Test; Meyer, J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cellular and Molecular Life Sciences 64, 1063 – 1084.; Mirjafari, P., y Baldwin, S. (2016). Decline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition. Water, 8(4), 124. https://doi.org/10.3390/w8040124Test; Moreau, J., Zierenberg, R., y Banfield, J. (2010). Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage. Applied and Environmental Microbiology, 76(14), 4819–4828.; Muyzer, G., y Stams, A. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews, 6, 441–457.; Nagpal, S., Chuichulcherm, S., Livingston, A. y Peeva, L. (2000). Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study. Biotechnology and Bioengineering 70, 533–543; Ňancucheo, I., y Barrie Johnson, D. (2014). Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.04.025Test.; Neculita, C. Zagury, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Journal of Environmental Quality, 36(1), 1–16. https://doi.org/10.2134/jeq2006.0066Test; Neculita, C., Yim, G.J., Lee, G., Ji, S.W., Jung, J.W., Park, H.S., y Song, H. (2011). Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Chemosphere, 83(1), 76–82. https://doi.org/10.1016/j.chemosphere.2010.11.082Test; Newman, D.K., y Banfield, J.F. (2002). Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science (New York, N.Y.), 296(5570), 1071–7. https://doi.org/10.1126/science.1010716Test; Nordstrom, D.K. (2011). Mine waters: Acidic to circumneutral. Elements, 7(6), 393–398. https://doi.org/10.2113/gselements.7.6.393Test Nordstrom, D.K., Blowes, D. W., y Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry. Elsevier Ltd. https://doi.org/10.1016/j.apgeochem.2015.02.008Test; Pereyra, L.P., Hiibel, S.R., Perrault, E.M., Reardon, K.F., y Pruden, A. (2012). Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling. FEMS Microbiology Ecology, 82(1), 135–47. https://doi.org/10.1111/j.1574-6941.2012.01412.xTest; Pereyra, L.P., Hiibel, S.R., Prieto Riquelme, M.V, Reardon, K.F., y Pruden, A. (2010). Detection and quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea. Applied and Environmental Microbiology, 76(7), 2192–202. https://doi.org/10.1128/AEM.01285-09Test; Pereyra, L.P., Hiibel, S.R., Pruden, A., y Reardon, K. F. (2008). Comparison of microbial community composition and activity in sulfate-reducing batch systems remediating mine drainage. Biotechnology and Bioengineering, 101(4), 702–13. https://doi.org/10.1002/bit.21930Test; Postgate, J. R., (1984). The sulphate-reducing bacteria. Cambridge University Press, Cambridge, UK.; Pruden, A., Messner, N., Pereyra, L., Hanson, R. E., Hiibel, S. R., y Reardon, K. F. (2007). The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Research, 41(4), 904–14. https://doi.org/10.1016/j.watres.2006.11.025Test; Rabus, R., Hansen, T.A., y Widdel, F. (2006). Dissimilatory Sulfate and Sulfur-Reducing Prokaryotes. In F. T. Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Eugene Rosenberg (Ed.), The Prokaryotes (fourth, pp. 659–768). Berlin: Springer Verlag.; Rodríguez, Y., Ballester, A., Blazquez, M., Gonzalez, F., y Muñoz, J. (2003). New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71(1–2), 37–46.; Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F. M., y Stams, A. J. M. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269(3), 98–109. https://doi.org/10.1016/j.jhazmat.2013.12.032Test; Schmidtova, J., y Baldwin, S. (2011). Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate. Water Research, 45(3), 1115–1128.; Seyler, J., Figueroa, L., y Ahmann, D. (2003). Effect of solid phase organic substrate characteristics on sulfate reducer activity and metal removal in passive mine drainage treatment systems. In Proceedings of National (pp. 1112–1130).; Skousen, J., Zipper, C. E., Rose, A., y Ziemkiewicz, P. F. (2016). Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water and the Environment. https://doi.org/10.1007/s10230-016-0417-1Test; Song, H., Yim, G.J., Ji, S.W., Neculita, C. M., y Hwang, T. (2012a). Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. Journal of Environmental Management, 111, 150–8. https://doi.org/10.1016/j.jenvman.2012.06.043Test; Song, H., Yim, G.J., Ji, S.W., Nam, I.H., Neculita, C.M., y Lee, G. (2012b). Performance of mixed organic substrates during treatment of acidic and moderate mine drainage in column bioreactors. Journal of Environmental Engineering, 138(10), 1077-1084.; Spence, C., Whitehead, T.R., y Cotta, M.A. (2008). Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. Journal of Applied Microbiology, 105(6), 2143–2152.; Tuttle, J.H., Dugan, P.R., & Randles, C.I. (1969). Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Applied Microbiology, 17(2), 297-302.; Utgikar, V., y Harmon, S. (2002). Inhibition of sulfate‐reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environmental, 40–48. https://doi.org/10.1002/tox.10031Test; Vardar-Schara, G., Maeda, T. y Wood, T.K. (2008). Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology 1(2), 107–125.; Vasquez, Y., Escobar, M.C., Neculita, C. M., Arbeli, Z., y Roldan, F. (2016). Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Chemosphere, 153. https://doi.org/10.1016/j.chemosphere.2016.03.052Test; Vasquez, Y., Escobar, M.C., Saenz, J. S., Quiceno-Vallejo, M. F., Neculita, C. M., Arbeli, Z., y Roldan, F. (2018). Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Bioresource Technology, 247. https://doi.org/10.1016/j.biortech.2017.09.144Test; Xu, R., Yang, Z.H., Zheng, Y., Liu, J.B., Xiong, W.P., Zhang, Y.R., Fan, C.Z. (2018). Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresource Technology, 262, 184–193. https://doi.org/10.1016/j.biortech.2018.04.083Test; Yim, G., Ji, S., Cheong, Y., Neculita, C.M., y Song, H. (2014). The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment. Environmental Earth Sciences. https://doi.org/10.1007/s12665-014-3757-9Test; Zagury, G., Neculita, C.M., y Bussiere, B. (2007). Passive treatment of acid mine drainage in bioreactors: short review, applications, and research needs. Ottawa Geo2007, 1439–1446.; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090Test