دورية أكاديمية

Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices

التفاصيل البيبلوغرافية
العنوان: Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices
المؤلفون: Kathrin Kowalczuk, Valentin D. Wegner, Alexander S. Mosig, Felix H. Schacher
سنة النشر: 2024
المجموعة: Smithsonian Institution: Figshare
مصطلحات موضوعية: Biophysics, Biochemistry, Cell Biology, Biotechnology, Ecology, Developmental Biology, Cancer, Infectious Diseases, Space Science, Chemical Sciences not elsewhere classified, transforming growth factor, natural scaffold within, natural ecm compound, fibroblastic cell lines, although cell adhesion, hydrogels induced stimulation, catalyze hydrolytic degradation, dynamic cell culture, cell culture conditions, dynamic hydrogels enhance, defined time frame, cell culture, degradation time, enhance cell, hydrogels provide, based hydrogels, vitro <, substrate surface, situ <, short segments
الوصف: Poly(ethylene glycol)-based (PEG) hydrogels provide an ideal platform to obtain well-defined and tailor-made cell culture matrices to enhance in vitro cell culture conditions, although cell adhesion is often challenging when the cells are cultivated on the substrate surface. We herein demonstrate two approaches for the synthesis of polycationic PEG-based hydrogels which were modified to enhance cell-matrix interactions, to improve two-dimensional (2D) cell culture, and catalyze hydrolytic degradation. While the utilization of N , N -(bisacryloxyethyl) amine (BAA) as cross-linker for in situ gelation provides degradable scaffolds for dynamic cell culture, the incorporation of short segments of poly( N -(3-(dimethylamino)propyl)acrylamide) (PDMAPAam) provides high local cationic charge density leading to PEG-based hydrogels with high selectivity for fibroblastic cell lines. The adsorption of transforming growth factor (TGF-β) into the hydrogels induced stimulation of fibrosis and thus the formation of collagen as a natural ECM compound. With this, these dynamic hydrogels enhance in vitro cell culture by providing a well-defined, artificial, and degradable matrix that stimulates cells to produce their own natural scaffold within a defined time frame.
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
العلاقة: https://figshare.com/articles/journal_contribution/Tailoring_the_Degradation_Time_of_Polycationic_PEG-Based_Hydrogels_toward_Dynamic_Cell_Culture_Matrices/25393338Test
DOI: 10.1021/acsabm.4c00057.s001
الإتاحة: https://doi.org/10.1021/acsabm.4c00057.s001Test
حقوق: CC BY-NC 4.0
رقم الانضمام: edsbas.E4CC64E6
قاعدة البيانات: BASE