يعرض 1 - 10 نتائج من 947 نتيجة بحث عن '"mtrr"', وقت الاستعلام: 1.38s تنقيح النتائج
  1. 1
    رسالة جامعية

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Ciències Mèdiques Bàsiques

    مرشدي الرسالة: Fernández i Ballart, Joan D., Murphy, Michelle

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 46-54 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 46-54 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/1878/1173Test; Society for Maternal-Fetal Medicine (SMFM). Electronic address: pubs@smfm.org; Martins J.G., Biggio J.R., Abuhamad A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am J Obstet Gynecol. 2020;223(4):B2–B17. https://doi.org/10.1016/j.ajog.2020.05.010Test.; Головченко О.В. Молекулярно-генетические детерминанты преэклампсии. Научные результаты биомедицинских исследований. 2019;5(4):139–49. https://doi.org/10.18413/2658-6533-2019-5-4-0-11Test.; Решетников Е.А. Поиск ассоциаций генов-кандидатов, дифференциально экспрессирующихся в плаценте, с риском развития плацентарной недостаточности с синдромом задержки роста плода. Научные результаты биомедицинских исследований. 2020;6(3):338–49. https://doi.org/10.18413/2658-6533-2020-6-3-0-5Test.; Баев Т.О., Панова И.А., Кузьменко Г.Н. и др. Состояние микроциркуляции у беременных женщин с гипертензивными расстройствами в III триместре беременности. Научные результаты биомедицинских исследований. 2023;9(1):113–28. https://doi.org/10.18413/2658-6533-2023-9-1-0-8Test.; Pels A., Beune I.M., van Wassenaer-Leemhuis A.G. et al. Early-onset fetal growth restriction: A systematic review on mortality and morbidity. Acta Obstet Gynecol Scand. 2020;99(2):153–66. https://doi.org/10.1111/aogs.13702Test.; D'Agostin M., Di Sipio Morgia C., Vento G., Nobile S. Long-term implications of fetal growth restriction. World J Clin Cases. 2023;11(3):2855–863. https://doi.org/10.12998/wjcc.v11.i13.2855Test.; Anil K.C., Basel P.L., Singh S. Low birth weight and its associated risk factors: Health facility-based case-control study. PLoS ONE. 2020;15(6):e0234907. https://doi.org/10.1371/journal.pone.0234907Test.; Gaccioli F., Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40. https://doi.org/10.3389/fphys.2016.00040Test.; Ducker G.S., Rabinowitz J.D. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42. https://doi.org/10.1016/j.cmet.2016.08.009Test.; Jiang H.L., Cao L.Q., Chen H.Y. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction. Genet Mol Res. 2016;15(4). https://doi.org/10.4238/gmr15048890Test.; Liu C., Luo D., Wang Q. et al. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: The Sichuan Homocysteine study. BMC Pregnancy Childbirth. 2020;20(1):176. https://doi.org/10.1186/s12884-020-02860-9Test.; Gaiday A., Balash L., Tussupkaliyev A. The role of high concentrations of homocysteine for the development of fetal growth restriction. Rev Bras Ginecol Obstet. 2022;44(4):352–9. https://doi.org/10.1055/s-0042-1743093Test.; Yila T.A., Sasaki S., Miyashita C. et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C Polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J Epidemiol. 2012;22(2):91–102. https://doi.org/10.2188/jea.JE20110039Test.; Sukla K.K., Tiwari P.K., Kumar A., Raman R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: Association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS ONE. 2013;8(8):e71587. https://doi.org/10.1371/journal.pone.0071587Test.; Liew S.C., Gupta E.D. Methylenetetrahydrofolatereductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1–10. https://doi.org/10.1016/j.ejmg.2014.10.004Test.; Tiwari D., Bose P.D., Das S. et al. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study. Meta Gene. 2015;3:31–42. https://doi.org/10.1016/j.mgene.2014.12.002Test.; Wu H., Zhu P., Geng X. et al. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet. 2017;295(5):1105–18. https://doi.org/10.1007/s00404-017-4322-zTest.; Wang S., Duan Y., Jiang S. et al. Relationships between maternal gene polymorphisms in one carbon metabolism and adverse pregnancy outcomes: a prospective mother and child cohort study in China. Nutrients. 2022;14(10):2108. https://doi.org/10.3390/nu14102108Test.; Медведев М.В. Пренатальнаяэхография: дифференциальный диагноз и прогноз. М.: Реал Тайм, 2012. 448 с.; Пономаренко И.В., Решетников Е.А., Полоников А.В., Чурносов М.И. Полиморфный локус rs314276 гена LIN28B ассоциирован с возрастом менархе у женщин Центрального Черноземья России. Акушерство и гинекология. 2019;(2):98–104. https://doi.org/10.18565/aig.2019.2.98-104Test.; Wu P.P., Tang R.N., An L. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J BUON. 2015;20(3):918–22.; Bergen N.E., Schalekamp-Timmermans S., Jaddoe V.W. et al. Maternal and neonatal markers of the homocysteine pathway and fetal growth: The Generation R Study. Paediatr Perinat Epidemiol. 2016;30(4):386–96. https://doi.org/10.1111/ppe.12297Test.; Laskowska M., Laskowska K., Oleszczuk J. Differences in the association between maternal serum homocysteine and ADMA levels in women with pregnancies complicated by preeclampsia and/or intrauterine growth restriction. Hypertens Pregnancy. 2013;32(1):83–93. https://doi.org/10.3109/10641955.2012.751993Test.; Cawley S., O'Malley E.G., Kennedy R.A.K. et al. The relationship between maternal plasma homocysteine in early pregnancy and birth weight. J Matern Fetal Neonatal Med. 2020;33(18):3045–9. https://doi.org/10.1080/14767058.2019.1567705Test.; Gaughan D.J., Kluijtmans L.A., Barbaux S. et al The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451–6. https://doi.org/10.1016/s0021-9150Test(00)00739-5.; Wu X., Zou T., Cao N. Plasma homocysteine levels and genetic polymorphisms in folatemetablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract. 2014;12(1):2. https://doi.org/10.1186/1897-4287-12-2Test.; Ni J., Liu Y., Zhou T., Wu X., Wang X. Single nucleotide polymorphisms in key one-carbon metabolism genes and their association with blood folate and homocysteine levels in a Chinese population in Yunnan. Genet Test Mol Biomarkers. 2018;22(3):193–8. https://doi.org/10.1089/gtmb.2017.0195Test.; Dewelle W.K., Melka D.S., Aklilu A.T. et al. Polymorphisms in maternal selected folate metabolism-related genes in neural tube defect-affected pregnancy. Adv Biomed Res. 2023;12:160. https://doi.org/10.4103/abr.abr_103_22Test.; Su J., Li Z. Analysis of MTR and MTRR gene polymorphisms in Chinese patients with ventricular septal defect. Appl Immunohistochem Mol Morphol. 2018;26(10):769–74. https://doi.org/10.1097/PAI.0000000000000512Test.; Yadav U., Kumar P., Rai V. Distribution of methionine synthase reductase (MTRR) gene A66G polymorphism in Indian Population. Indian J Clin Biochem. 2021;36(1):23–32. https://doi.org/10.1007/s12291-019-00862-9Test.; https://www.gynecology.su/jour/article/view/1878Test

  5. 5
  6. 6
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية