يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"molecular biology: mRNA / mRNA expression"', وقت الاستعلام: 0.90s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: American Journal of Transplantation. 21(6)

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Rosales, Ivy A.; Yang, Chao; Farkash, Evan A.; Ashry, Tameem; Ge, Jifu; Aljabban, Imad; Ayyar, Archana; Ndishabandi, Dorothy; White, Rebecca; Gildner, Elena; Gong, Jingjing; Liang, Yan; Lakkis, Fadi G.; Nickeleit, Volker; Russell, Paul S.; Madsen, Joren C.; Alessandrini, Alessandro; Colvin, Robert B. (2022). "Novel intragraft regulatory lymphoid structures in kidney allograft tolerance." American Journal of Transplantation (3): 705-716.; https://hdl.handle.net/2027.42/172105Test; American Journal of Transplantation; Tang H, Zhu M, Qiao J, Fu YX. Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy. Cell Mol Immunol. 2017; 14 ( 10 ): 809 ‐ 818.; Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med. 2002; 195 ( 12 ): 1641 ‐ 1646.; Shevach EM. Foxp3(+) T regulatory cells: still many unanswered questions‐A perspective after 20 years of study. Front Immunol. 2018; 9: 1048.; Russell PS, Chase CM, Colvin RB, Plate JM. Induced immune destruction of long‐surviving, H‐2 incompatible kidney transplants in mice. J Exp Med. 1978; 147 ( 5 ): 1469 ‐ 1486.; Cook CH, Bickerstaff AA, Wang JJ, et al. Spontaneous renal allograft acceptance associated with "regulatory" dendritic cells and IDO. J Immunol. 2008; 180 ( 5 ): 3103 ‐ 3112.; Miyajima M, Chase CM, Alessandrini A, et al. Early acceptance of renal allografts in mice is dependent on foxp3(+) cells. Am J Pathol. 2011; 178 ( 4 ): 1635 ‐ 1645.; Hu M, Wang C, Zhang GY, et al. Infiltrating Foxp3(+) regulatory T cells from spontaneously tolerant kidney allografts demonstrate donor‐specific tolerance. Am J Transplant. 2013; 13 ( 11 ): 2819 ‐ 2830.; Wang Z, Lyu Z, Pan L, Zeng G, Randhawa P. Defining housekeeping genes suitable for RNA‐seq analysis of the human allograft kidney biopsy tissue. BMC Med Genomics. 2019; 12 ( 1 ): 86.; Hsiao HM, Li W, Gelman AE, Krupnick AS, Kreisel D. The role of lymphoid neogenesis in allografts. Am J Transplant. 2016; 16 ( 4 ): 1079 ‐ 1085.; Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006; 7 ( 4 ): 344 ‐ 353.; Ruddle NH. High endothelial venules and lymphatic vessels in tertiary lymphoid organs: characteristics, functions, and regulation. Front Immunol. 2016; 7: 491.; Koenig A, Thaunat O. Lymphoid neogenesis and tertiary lymphoid organs in transplanted organs. Front Immunol. 2016; 7: 646.; Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA. Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas. Proc Natl Acad Sci USA. 1992; 89 ( 21 ): 10036 ‐ 10040.; Smith RN, Matsunami M, Adam BA, et al. RNA expression profiling of nonhuman primate renal allograft rejection identifies tolerance. Am J Transplant. 2018; 18 ( 6 ): 1328 ‐ 1339.; Adam BA, Smith RN, Rosales IA, et al. Chronic antibody‐mediated rejection in nonhuman primate renal allografts: validation of human histological and molecular phenotypes. Am J Transplant. 2017; 17 ( 11 ): 2841 ‐ 2850.; Tran DQ, Andersson J, Hardwick D, Bebris L, Illei GG, Shevach EM. Selective expression of latency‐associated peptide (LAP) and IL‐1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood. 2009; 113 ( 21 ): 5125 ‐ 5133.; Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012; 12 ( 11 ): 762 ‐ 773.; Shin DL, Pandey AK, Ziebarth JD, et al. Segregation of a spontaneous Klrd1 (CD94) mutation in DBA/2 mouse substrains. G3: Genes ‐ Genomes ‐ Genetics. 2014; 5 ( 2 ): 235 ‐ 239.; Miragaia RJ, Gomes T, Chomka A, et al. Single‐cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity. 2019; 50 ( 2 ): 493 ‐ 504.e497.; Kratz A, Campos‐Neto A, Hanson MS, Ruddle NH. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med. 1996; 183 ( 4 ): 1461 ‐ 1472.; Ishii D, Rosenblum JM, Nozaki T, et al. Novel CD8 T cell alloreactivities in CCR5‐deficient recipients of class II MHC disparate kidney grafts. J Immunol. 2014; 193 ( 7 ): 3816 ‐ 3824.; Browning JL, Allaire N, Ngam‐Ek A, et al. Lymphotoxin‐beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity. 2005; 23 ( 5 ): 539 ‐ 550.; Ochando JC, Yopp AC, Yang Y, et al. Lymph node occupancy is required for the peripheral development of alloantigen‐specific Foxp3+ regulatory T cells. J Immunol. 2005; 174 ( 11 ): 6993 ‐ 7005.; Futterer A, Mink K, Luz A, Kosco‐Vilbois MH, Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity. 1998; 9 ( 1 ): 59 ‐ 70.; Joshi NS, Akama‐Garren EH, Lu Y, et al. Regulatory T cells in tumor‐associated tertiary lymphoid structures suppress anti‐tumor T cell responses. Immunity. 2015; 43 ( 3 ): 579 ‐ 590.; Li W, Gauthier JM, Higashikubo R, et al. Bronchus‐associated lymphoid tissue‐resident Foxp3+ T lymphocytes prevent antibody‐mediated lung rejection. J Clin Invest. 2019; 129 ( 2 ): 556 ‐ 568.; Oh NA, O’Shea T, Ndishabandi DK, et al. Plasmacytoid dendritic cell‐driven Induction of treg is strain specific and correlates with spontaneous acceptance of kidney allografts. Transplantation. 2020; 104 ( 1 ): 39 ‐ 53.; Pedersen MS, Muller M, Rulicke T, et al. Lymphangiogenesis in a mouse model of renal transplant rejection extends life span of the recipients. Kidney Int. 2020; 97 ( 1 ): 89 ‐ 94.; Motallebzadeh R, Rehakova S, Conlon TM, et al. Blocking lymphotoxin signaling abrogates the development of ectopic lymphoid tissue within cardiac allografts and inhibits effector antibody responses. FASEB J. 2012; 26 ( 1 ): 51 ‐ 62.; Savage TM, Shonts BA, Obradovic A, et al. Early expansion of donor‐specific Tregs in tolerant kidney transplant recipients. JCI Insight. 2018; 3 ( 22 ).; Yang C, Ge J, Rosales I, et al. Kidney‐induced systemic tolerance of heart allografts in mice. JCI Insight. 2020; 5 ( 18 ).; Cherukuri A, Salama AD, Mehta R, et al. Transitional B cell cytokines predict renal allograft outcomes. Sci Transl Med. 2021; 13 ( 582 ).; Newell KA, Adams AB, Turka LA. Biomarkers of operational tolerance following kidney transplantation–the immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Hum Immunol. 2018; 79 ( 5 ): 380 ‐ 387.; Newell KA, Asare A, Kirk AD, et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010; 120 ( 6 ): 1836 ‐ 1847.; Brown K, Sacks SH, Wong W. Tertiary lymphoid organs in renal allografts can be associated with donor‐specific tolerance rather than rejection. Eur J Immunol. 2011; 41 ( 1 ): 89 ‐ 96.; Tse GH, Johnston CJ, Kluth D, et al. Intrarenal B cell cytokines promote transplant fibrosis and tubular atrophy. Am J Transplant. 2015; 15 ( 12 ): 3067 ‐ 3080.; Matsunami M, Rosales IA, Adam BA, et al. Long‐term kinetics of intragraft gene signatures in renal allograft tolerance induced by transient mixed chimerism. Transplantation. 2019; 103 ( 11 ): e334 ‐ e344.

  4. 4
    دورية أكاديمية

    المساهمون: Des Maladies Rénales Rares aux Maladies Fréquentes, Remodelage et Réparation, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Tenon AP-HP, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'anatomie pathologique CHU Necker, Hôpital Necker - Enfants Malades AP-HP, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de Néphrologie et Dialyses CHU Necker, Service Néphrologie et transplantation rénale Adultes CHU Necker, Université Paris Descartes - Paris 5 (UPD5), Labex_Transplantex (Labex_Transplantex), ANR-11-LABX-0070,TRANSPLANTEX,Nouveaux loci d'histocompatibilité/biomarqueurs en transplantation humaine: de la découverte à l'app(2011)

    المصدر: ISSN: 1600-6135.

  5. 5
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Adam, Benjamin A.; Kikic, Zeljko; Wagner, Siegfried; Bouatou, Yassine; Gueguen, Juliette; Drieux, Fanny; Reid, Graeme; Du, Katie; Bräsen, Jan H.; D’Agati, Vivette D.; Drachenberg, Cinthia B.; Farkash, Evan A.; Brad Farris, Alton; Geldenhuys, Laurette; Loupy, Alexandre; Nickeleit, Volker; Rabant, Marion; Randhawa, Parmjeet; Regele, Heinz; Mengel, Michael (2020). "Intragraft gene expression in native kidney BK virus nephropathy versus T cell–mediated rejection: Prospects for molecular diagnosis and risk prediction." American Journal of Transplantation 20(12): 3486-3501.; https://hdl.handle.net/2027.42/163890Test; American Journal of Transplantation; Hirsch HH, Randhawa P. BK polyomavirus in solid organ transplantation. Am J Transplant. 2013; 13 ( Suppl 4 ): 179 ‐ 188.; Hirsch HH, Brennan DC, Drachenberg CB, et al. Polyomavirus‐associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation. 2005; 79 ( 10 ): 1277 ‐ 1286.; Mueller TF, Einecke G, Reeve J, et al. Microarray analysis of rejection in human kidney transplants using pathogenesis‐based transcript sets. Am J Transplant. 2007; 7 ( 12 ): 2712 ‐ 2722.; Zeng G, Huang Y, Huang Y, Lyu Z, Lesniak D, Randhawa P. Antigen‐specificity of T cell infiltrates in biopsies with T cell‐mediated rejection and BK polyomavirus viremia: analysis by next generation sequencing. Am J Transplant. 2016; 16 ( 11 ): 3131 ‐ 3138.; Youden WJ. Index for rating diagnostic tests. Cancer. 1950; 3 ( 1 ): 32 ‐ 35.; Reeve J, Sellarés J, Mengel M, et al. Molecular diagnosis of T cell‐mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013; 13 ( 3 ): 645 ‐ 655.; Dromparis P, Aboelnazar NS, Wagner S, et al. Ex vivo perfusion induces a time‐ and perfusate‐dependent molecular repair response in explanted porcine lungs. Am J Transplant. 2019; 19 ( 4 ): 1024 ‐ 1036.; Adam BA, Smith RN, Rosales IA, et al. Chronic antibody‐mediated rejection in nonhuman primate renal allografts: validation of human histological and molecular phenotypes. Am J Transplant. 2017; 17 ( 11 ): 2841 ‐ 2850.; Haas M, Loupy A, Lefaucheur C, et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell‐mediated rejection, antibody‐mediated rejection, and prospects for integrative endpoints for next‐generation clinical trials. Am J Transplant. 2018; 18 ( 2 ): 293 ‐ 307.; Adam B, Afzali B, Dominy KM, et al. Multiplexed color‐coded probe‐based gene expression assessment for clinical molecular diagnostics in formalin‐fixed paraffin‐embedded human renal allograft tissue. Clin Transplant. 2016; 30 ( 3 ): 295 ‐ 305.; Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color‐coded probe pairs. Nat Biotechnol. 2008; 26 ( 3 ): 317 ‐ 325.; Zeng Y, Magil A, Hussaini T, et al. First confirmed case of native polyomavirus BK nephropathy in a liver transplant recipient seven years post‐transplant. Ann Hepatol. 2015; 14 ( 1 ): 137 ‐ 140.; Sharma SG, Nickeleit V, Herlitz LC, et al. BK polyoma virus nephropathy in the native kidney. Nephrol, Dialysis, Transplant. 2013; 28 ( 3 ): 620 ‐ 631.; Barber CE, Hewlett TJ, Geldenhuys L, Kiberd BA, Acott PD, Hatchette TF. BK virus nephropathy in a heart transplant recipient: case report and review of the literature. Transplant Infectious Dis. 2006; 8 ( 2 ): 113 ‐ 121.; Schwarz A, Mengel M, Haller H, Niedermeyer J. Polyoma virus nephropathy in native kidneys after lung transplantation. Am J Transplant. 2005; 5 ( 10 ): 2582 ‐ 2585.; Pan L, Lyu Z, Adam B, et al. Polyomavirus BK nephropathy‐associated transcriptomic signatures: a critical reevaluation. Transplant Direct. 2018; 4 ( 2 ): e339.; Sigdel TK, Bestard O, Salomonis N, et al. Intragraft antiviral‐specific gene expression as a distinctive transcriptional signature for studies in polyomavirus‐associated nephropathy. Transplantation. 2016; 100 ( 10 ): 2062 ‐ 2070.; Mannon RB, Hoffmann SC, Kampen RL, et al. Molecular evaluation of BK polyomavirus nephropathy. Am J Transplant. 2005; 5 ( 12 ): 2883 ‐ 2893.; Halloran PF, Venner JM, Madill‐Thomsen KS, et al. Review: the transcripts associated with organ allograft rejection. Am J Transplant. 2018; 18 ( 4 ): 785 ‐ 795.; Halloran PF, Famulski KS, Reeve J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol. 2016; 12 ( 9 ): 534 ‐ 548.; Mengel M. BK virus nephropathy revisited. Am J Transplant. 2017; 17 ( 8 ): 1972 ‐ 1973.; Menter T, Mayr M, Schaub S, Mihatsch MJ, Hirsch HH, Hopfer H. Pathology of resolving polyomavirus‐associated nephropathy. Am J Transplant. 2013; 13 ( 6 ): 1474 ‐ 1483.; Nickeleit V, Mihatsch MJ. Polyomavirus allograft nephropathy and concurrent acute rejection: a diagnostic and therapeutic challenge. Am J Transplant. 2004; 4 ( 5 ): 838 ‐ 839.; Drachenberg CB, Papadimitriou JC, Chaudhry MR, et al. Histological evolution of BK virus‐associated nephropathy: importance of integrating clinical and pathological findings. Am J Transplant. 2017; 17 ( 8 ): 2078 ‐ 2091.; Nankivell BJ, Renthawa J, Sharma RN, Kable K, O’Connell PJ, Chapman JR. BK virus nephropathy: histological evolution by sequential pathology. Am J Transplant. 2017; 17 ( 8 ): 2065 ‐ 2077.; Adam B, Randhawa P, Chan S, et al. Banff Initiative for Quality Assurance in Transplantation (BIFQUIT): reproducibility of polyomavirus immunohistochemistry in kidney allografts. Am J Transplant. 2014; 14 ( 9 ): 2137 ‐ 2147.; Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation‐Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019; 33 ( 9 ): e13528.; Nickeleit V, Singh HK, Randhawa P, et al. The Banff Working Group classification of definitive polyomavirus nephropathy: morphologic definitions and clinical correlations. J Am Soc Nephrol. 2018; 29 ( 2 ): 680 ‐ 693.

  6. 6
    دورية أكاديمية

    المصدر: Madill-Thomsen , K , Abouljoud , M , Bhatti , C , Ciszek , M , Durlik , M , Feng , S , Foroncewicz , B , Francis , I , Grąt , M , Jurczyk , K , Klintmalm , G , Krasnodębski , M , McCaughan , G , Miquel , R , Montano-Loza , A , Moonka , D , Mucha , K , Myślak , M , Pączek , L , Perkowska-Ptasińska , A , Piecha , G , Reichman , T , Sanchez-Fueyo , A , Tronina , O , Wawrzynowicz-Syczewska , M ....

  7. 7

    المساهمون: Promovendi CD, Cardiologie, RS: CARIM - R2.02 - Cardiomyopathy, MUMC+: MA Med Staf Spec Cardiologie (9)

    المصدر: American Journal of Transplantation
    American Journal of Transplantation, 16(1), 99-110. Wiley

    وصف الملف: Print-Electronic

  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Madill‐thomsen, K. S.; Wiggins, R. C.; Eskandary, F.; Böhmig, G. A.; Halloran, P. F. (2017). "The Effect of Cortex/Medulla Proportions on Molecular Diagnoses in Kidney Transplant Biopsies: Rejection and Injury Can Be Assessed in Medulla." American Journal of Transplantation 17(8): 2117-2128.; https://hdl.handle.net/2027.42/137720Test; American Journal of Transplantation; Yang Y, Hodgin JB, Afshinnia F, et al. The two kidney to one kidney transition and transplant glomerulopathy: A podocyte perspective. J Am Soc Nephrol 2015; 26: 1450 â 1465.; Halloran PF, Famulski KS, Reeve J. Molecular assessment of disease states in kidney transplant biopsies. Nat Rev Nephrol 2016; 12: 534 â 548.; Racusen LC, Solez K, Colvin RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55: 713 â 723.; Reeve J, Sellares J, Mengel M, et al. Molecular diagnosis of T cellâ mediated rejection in human kidney transplant biopsies. Am J Transplant 2013; 13: 645 â 655.; Sellares J, Reeve J, Loupy A, et al. Molecular diagnosis of antibodyâ mediated rejection in human kidney transplants. Am J Transplant 2013; 13: 971 â 983.; Halloran PF, Pereira AB, Chang J, et al. Microarray diagnosis of antibodyâ mediated rejection in kidney transplant biopsies: An international prospective study (INTERCOM). Am J Transplant 2013; 13: 2865 â 2874.; Reeve J, Einecke G, Mengel M, et al. Diagnosing rejection in renal transplants: A comparison of molecularâ and histopathologyâ based approaches. Am J Transplant 2009; 9: 1802 â 1810.; Famulski KS, de Freitas DG, Kreepala C, et al. Molecular phenotypes of acute kidney injury in human kidney transplants. J Am Soc Nephrol 2012; 23: 948 â 958.; Vivante A, Hildebrandt F. Exploring the genetic basis of earlyâ onset chronic kidney disease. Nat Rev Nephrol 2016; 12: 133 â 146.; Furness PN, Taub N, Assmann KJ, et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am J Surg Pathol 2003; 27: 805 â 810.; Furness PN, Taub N. International variation in the interpretation of renal transplant biopsies: Report of the CERTPAP Project. Kidney Int 2001; 60: 1998 â 2012.; Fukuda A, Wickman LT, Venkatareddy MP, et al. Urine podocin: Nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 2012; 27: 4079 â 4087.; Einecke G, Broderick G, Sis B, Halloran PF. Early loss of renal transcripts in kidney allografts: Relationship to the development of histologic lesions and alloimmune effector mechanisms. Am J Transplant 2007; 7: 1121 â 1130.; Einecke G, Kayser D, Vanslambrouck JM, et al. Loss of solute carriers in T cell mediated rejection in mouse and human kidneys: An active epithelial injuryâ repair response. Am J Transplant 2010; 10: 2241 â 2251.; Timmermans SA, Damoiseaux JG, Heeringsâ Rewinkel PT, et al. Evaluation of antiâ PLA2R1 as measured by a novel ELISA in patients with idiopathic membranous nephropathy: A cohort study. Am J Clin Pathol 2014; 142: 29 â 34.; Brunskill EW, Sequeiraâ Lopez ML, Pentz ES, et al. Genes that confer the identity of the renin cell. J Am Soc Nephrol 2011; 22: 2213 â 2225.; Kerjaschki D, Sharkey DJ, Farquhar MG. Identification and characterization of podocalyxinâ the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 1984; 98: 1591 â 1596.; Tavasoli M, Alâ Momany A, Wang X, Li L, Edwards JC, Ballerman BJ. Both CLIC4 and CLIC5A activate ERM proteins in glomerular endothelium. Am J Physiol Renal Physiol 2016; 311: F945 â F957.; Mueller TF, Einecke G, Reeve J, et al. Microarray analysis of rejection in human kidney transplants using pathogenesisâ based transcript sets. Am J Transplant 2007; 7: 2712 â 2722.; Madillâ Thomsen KS, Reeve J, Bohmig G, Eskandary F, Halloran PF. Molecular assessment of kidney transplant biopsies performs similarly in medulla and cortex. Abstract 28. Am J Transplant 2016; 16 ( S3 ): 214.

  9. 9

    المساهمون: Des Maladies Rénales Rares aux Maladies Fréquentes, Remodelage et Réparation, Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Urgences néphrologiques et transplantation rénale [CHU Tenon], Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Tenon [APHP], Institut Necker Enfants-Malades (INEM) ( INEM - UM 111 (UMR 8253 / U1151) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Service d'anatomie pathologique [CHU Tenon], Laboratoire d'anatomie pathologique [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Service de Néphrologie et Dialyses [CHU Necker], Service Néphrologie et transplantation rénale Adultes [CHU Necker], Université Paris Descartes - Paris 5 ( UPD5 ), Labex_Transplantex ( Labex_Transplantex ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Tenon [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris Descartes - Paris 5 (UPD5), Labex_Transplantex (Labex_Transplantex), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Tenon [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Tenon [APHP]

    المصدر: American Journal of Transplantation
    American Journal of Transplantation, Wiley, 2016, 〈10.1111/ajt.13891〉
    American Journal of Transplantation, 2016, ⟨10.1111/ajt.13891⟩
    American Journal of Transplantation, Wiley, 2016, ⟨10.1111/ajt.13891⟩

  10. 10