يعرض 1 - 10 نتائج من 166 نتيجة بحث عن '"miR-125a-5p"', وقت الاستعلام: 2.18s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المساهمون: This research was funded by the Russian Scientific Foundation (grant No. 22-15-00373), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-15-00373)

    المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 113-123 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 113-123 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/654/343Test; Raposo G., Stahl P.D. Extracellular vesicles – on the cusp of a new language in the biological sciences. Extracell Vesicles Circ Nucleic Acids 2023;4(2):240–54. DOI:10.20517/evcna.2023.18; Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020;367(6478):eaau6977. DOI:10.1126/science.aau6977; Liu Y.-J., Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023;21(1):77. DOI:10.1186/s12964-023-01103-6; Xu R., Rai A., Chen M. et al. Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol 2018;15(10):617–38. DOI:10.1038/s41571-018-0036-9; Logozzi M., Mizzoni D., Di Raimo R., Fais S. Exosomes: a source for new and old biomarkers in cancer. Cancers 2020;12(9):2566. DOI:10.3390/cancers12092566; Staicu C.E., Predescu D.V., Rusu C.M. et al. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: a short overview. Cells 2020;9(1):169. DOI:10.3390/cells9010169; Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016;7(13):16923–35. DOI:10.18632/oncotarget.7850; Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol 2018;12(11):1935–48. DOI:10.1002/1878-0261.12371; Théry C., Witwer K.W., Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1):1535750. DOI:10.1080/20013078.2018.1535750; Salmond N., Williams K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer – time for standardization? Nanoscale Adv 2021;3(7):1830–52. DOI:10.1039/d0na00676a; Skryabin G.O., Komelkov A.V., Zhordania K.I. et al. Extracellular vesicles from uterine aspirates represent a promising source for screening markers of gynecologic cancers. Cells 2022;11(7):1064. DOI:10.3390/cells11071064; Kramer F. Stem-Loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 2011;Chapter 15:Unit15.10. DOI:10.1002/0471142727.mb1510s95; Skryabin G.O., Komelkov A.V., Galetsky S.A. et al. Stomatin is highly expressed in exosomes of different origin and is a promising candi-date as an exosomal marker. J Cell Biochem 2021;122(1):100–15. DOI:10.1002/jcb.29834; Burdiel M., Jiménez J., Rodríguez-Antolín C. et al. MiR-151a: a robust endogenous control for normalizing small extracellular vesicle cargo in human cancer. Biomark Res 2023;11(1): 94. DOI:10.1186/s40364-023-00526-0; Xie F., Wang J., Zhang B. RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Funct Integr Genomics 2023;23(2):125. DOI:10.1007/s10142-023-01055-7; Wang X., Huang J., Chen W. et al. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med 2022;54(9):1390–400. DOI:10.1038/s12276-022-00855-4; Zhang J., Li S., Li L. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13(1):17–24. DOI:10.1016/j.gpb.2015.02.001; Liu Q.-W., He Y., Xu W.W. Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Exp Mol Med 2022;54(3):216–25. DOI:10.1038/s12276-022-00744-w; Skryabin G.O., Vinokurova S.V., Elkina N.V. et al. Comparison of methods for microRNA isolation from extracellular vesicles obtained from ascitic fluids. Biochemistry 2022;87(11):1354–66. DOI:10.1134/S0006297922110141; Koutsaki M., Libra M., Spandidos D.A., Zaravinos A. The miR-200 family in ovarian cancer. Oncotarget 2017;8(39):66629–40. DOI:10.18632/oncotarget.18343; Liu X., Li J., Qin F., Dai S. miR-152 as a tumor suppressor microRNA: target recognition and regulation in cancer. Oncol Lett 2016;11(6):3911–6. DOI:10.3892/ol.2016.4509; Xuan J., Liu Y., Zeng X., Wang H. Sequence requirements for miR-424-5p regulating and function in cancers Int J Mol Sci 2022;23(7):4037. DOI:10.3390/ijms23074037; Timofeeva A.V., Fedorov I.S., Asaturova A.V. et al. Blood plasma small non-coding RNAs as diagnostic molecules for the progesterone-receptor-negative phenotype of serous ovarian tumors. Int J Mol Sci 2023;24(15):12214. DOI:10.3390/ijms241512214; Gadducci A., Sergiampietri C., Lanfredini N., Guiggi I. MicroRNAs and ovarian cancer: the state of art and perspectives of clinical research. Gynecol Endocrinol 2014;30(4):266–71. DOI:10.3109/09513590.2013.871525; Jiang Y., Shi Y., Lyu T. et al. Identification and functional validation of differentially expressed microRNAs in ascites-derived ovarian cancer cells compared with primary tumour tissue. Cancer Manag Res 2021;13:6585–97. DOI:10.2147/CMAR.S320834; Wang J., Zhang R., Zhang B. et al. MiR-135b improves proliferation and regulates chemotherapy resistance in ovarian cancer. J Mol Histol 2022;53(4):699–712. DOI:10.1007/s10735-022-10080-y; Chen H., Mao M., Jiang J.D. et al. Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. OncoTargets Ther 2019;12:3869–79. DOI:10.2147/OTT.S207938; Yu S., Yu M., Chen J. et al. Circ_0000471 suppresses the progression of ovarian cancer through mediating mir-135b-5p/dusp5 axis. Am J Reprod Immunol 2023;89(4):e13651. DOI:10.1111/aji.13651; Cao Y., Shen T., Zhang C. et al. MiR-125a-5p inhibits EMT of ovarian cancer cells by regulating TAZ/EGFR signaling pathway. Eur Rev Med Pharmacol Sci 2019;23(19):8249–56. DOI:10.26355/eurrev_201910_19134; Lee M., Kim E.J., Jeon M.J. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2015;7(8):8726–42. DOI:10.18632/oncotarget.6474; Yang J., Li G., Zhang K. MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. Biomed Pharmacother 2016;80:381–7. DOI:10.1016/j.biopha.2015.12.027; Wang Y., Li N., Zhao J., Dai C. MiR-193a-5p serves as an inhibitor in ovarian cancer cells through RAB11A. Reprod Toxicol 2022;110:105–12. DOI:10.1016/j.reprotox.2022.04.003; Zhang S., Liu J., He J., Yi N. MicroRNA-193a-5p exerts a tumor suppressive role in epithelial ovarian cancer by modulating RBBP6. Mol Med Rep 2021;24(2):582. DOI:10.3892/mmr.2021.12221; Khordadmehr M., Shahbazi R., Sadreddini S., Baradaran B. miR-193: a new weapon against cancer. J Cell Physiol 2019;234(10): 6861–72. DOI:10.1002/jcp.28368; Eitan R., Kushnir M., Lithwick-Yanai G. et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 2009;114(2):253–9. DOI:10.1016/j.ygyno.2009.04.024; Wambecke A., Ahmad M., Morice P.M. et al. The lncRNA ‘UCA1’ modulates the response to chemotherapy of ovarian cancer through direct binding to miR-27a-5p and control of UBE2N levels. Mol Oncol 2021;15(12):3659–78. DOI:10.1002/1878-0261.13045; Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol 2020;64(1):1–12. DOI:10.1530/JME-19-0159; Regis S., Caliendo F., Dondero A. et al. TGF-β1 downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol 2017;8. Available at: https://www.frontiersin.org/articles/10.3389/fimmu.2017.00868Test; Huldani H., Malviya J., Rodrigues P. et al. miR-495–3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023;248:154610. DOI:10.1016/j.prp.2023.154610; Chen H., Wang X., Bai J., He A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol Lett 2017;13(4):2021–6. DOI:10.3892/ol.2017.5727; Liu S., Xi X. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem Biophys Res Commun 2020;533(4):1088–94. DOI:10.1016/j.bbrc.2020.09.074; Zhu J., Luo J.E., Chen Y., Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/ CBX2 axis in ovarian cancer. J Ovarian Res 2021;14(10):136. DOI:10.1186/s13048-021-00888-9; Zhao H., Liu S., Wang G. et al. Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol Rep 2015;33(2):591–8. DOI:10.3892/or.2014.3640; Ling S., Ruiqin M., Guohong Z., Ying W. Expression and prognostic significance of microRNA-451 in human epithelial ovarian cancer. Eur J Gynaecol Oncol 2015;36(4):463–8.; Zhu H., Wu H., Liu X. et al. Role of microRNA miR-27a and miR451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008;76(5):582–8. DOI:10.1016/j.bcp.2008.06.007; Bagnoli M., Canevari S., Califano D. et al. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncol 2016;17(8):1137–46. DOI:10.1016/S1470-2045(16)30108-5; De Cecco L., Bagnoli M., Chiodini P. et al. Prognostic evidence of the miRNA-based ovarian cancer signature MiROvaR in independent datasets. Cancers 2021;13(7):1544. DOI:10.3390/cancers13071544; Pucci M., Reclusa Asiáin P., Duréndez Sáez E. et al. Extracellular vesicles as miRNA nano-shuttles: dual role in tumor progression. Target Oncol 2018;13(2):175–87. DOI:10.1007/s11523-018-0551-8; Guduric-Fuchs J., O’Connor A., Camp B. et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012;13:357. DOI:10.1186/1471-2164-13-357; Ohshima K., Inoue K., Fujiwara A. et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010;5(10): DOI:10.1371/journal.pone.0013247; Bordanaba-Florit G., Madarieta I., Olalde B. et al. 3D cell cultures as prospective models to study extracellular vesicles in cancer. Cancers 2021;13(2):307. DOI:10.3390/cancers13020307; Kusuma G.D., Li A., Zhu D. et al. Effect of 2D and 3D culture microenvironments on mesenchymal stem cell-derived extracellular vesicles potencies. Front Cell Dev Biol 2022;10:819726. DOI:10.3389/fcell.2022.819726; Rocha S., Carvalho J., Oliveira P. et al. 3D cellular architecture affects microRNA and protein cargo of extracellular vesicles. Adv Sci Weinh Baden-Wurtt Ger 2019;6(4):1800948. DOI:10.1002/advs.201800948; Thippabhotla S., Zhong C., He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019;9(1):13012. DOI:10.1038/s41598-019-49671-3; https://umo.abvpress.ru/jour/article/view/654Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية