يعرض 1 - 10 نتائج من 185 نتيجة بحث عن '"metalurgia de polvos"', وقت الاستعلام: 1.90s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Centro de Investigaciones en Manufactura y Servicios - CIMSER

    وصف الملف: 9 páginas; application/pdf

    العلاقة: Volumen 9, Número 5, Septiembre - Octubre 2020; 11777; 11769; N/A; Journal of Materials Research and Technology; Hirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326Test(14)63305-7; Zhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001Test; Abdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001Test; Kirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3; Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136Test(96)02563-0; Gronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136Test(00)00634-8; Irfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141Test.; Seong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136Test(99)00469-0; Fuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981Test; Rojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028Test; Afshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064Test; Zhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16; Susila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3Test; Williamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160Test(53)90006-6; Baghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017Test; Tsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474Test; Bacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008Test; Schmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8Test.; Kapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006Test; Zhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10Test; Zhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326Test(17)60154-7.; Jimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12.; Boldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5; Kumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM Press; https://repositorio.escuelaing.edu.co/handle/001/1595Test; https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3DihubTest

  5. 5
    دورية أكاديمية
  6. 6
    رسالة جامعية

    المساهمون: Herrera Quintero, Liz Karen, Johanna Esguerra Arce, Grupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies), Tirado Gonzalez, Johanna Gisell 0009-0000-7224-4512, Tirado González, Johanna Gisell https://www.researchgate.net/profile/Johanna-Tirado-GonzalezTest, Tirado González, Johanna Gisell https://scholar.google.com/citations?user=N5EjpAgAAAAJ&hl=esTest

    وصف الملف: xxi, 93 páginas; application/pdf

    العلاقة: Naciones Unidas, “Consumo y producción sostenibles - Desarrollo Sostenible,” Objetivos de desarrollo sostenible. p. 1, 2020. Accessed: Apr. 19, 2022. [Online]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-consumption-productionTest/; Noticias Parlamento Europeo, “Economía circular: definición, importancia y beneficios,” Economía circular: definición, importancia y beneficios, May 24, 2023.; ISO/ASTM, “Additive Manufacturing - General Principles Terminology (ASTM52900),” 2013. doi:10.1520/F2792-12A.2.; S. Cacace and Q. Semeraro, “Influence of the atomization medium on the properties of stainless steel SLM parts,” Addit Manuf, vol. 36, p. 101509, Dec. 2020, doi:10.1016/J.ADDMA.2020.101509.; L. S. Santos, S. K. Gupta, and H. A. Bruck, “Simulation of buckling of internal features during selective laser sintering of metals,” Addit Manuf, vol. 23, pp. 235–245, Oct. 2018, doi:10.1016/J.ADDMA.2018.08.002.; A. Mostafaei, E. L. Stevens, J. J. Ference, D. E. Schmidt, and M. Chmielus, “Binder jetting of a complex-shaped metal partial denture framework,” Addit Manuf, vol. 21, pp. 63–68, May 2018, doi:10.1016/J.ADDMA.2018.02.014.; A. P. S. Cruz, “Estado del Arte de la Fabricación Aditiva.,” 2013.; “Chemical store Inc,” Iron powder. https://shop.chemicalstore.com/navigation/search.asp?keyword=iron%20powderTest (accessed Mar. 25, 2023).; Z. Lotfizarei, A. Mostafapour, A. Barari, A. Jalili, and A. E. Patterson, “Overview of debinding methods for parts manufactured using powder material extrusion,” Addit Manuf, vol. 61, p. 103335, Jan. 2023, doi:10.1016/J.ADDMA.2022.103335.; N. Birks and G. Meier, Introduction to High Temperature Oxidation of Metals. 1982.; L. Rojas and S. Restrepo, “Evaluación Del Uso De Cascarilla De Laminación Como Agregado Fino En La Elaboración De Concreto Convencional,” UNIVERSIDAD EAFIT, 2016. [Online]. Available: https://repository.eafit.edu.co/bitstream/handle/10784/12229/RojasHenao_LinaMaria_SierraRestrepo_Simon_2016.pdf?sequence=2Test; “Mill Scale, Sales and Information Such As Mill Scale Uses.” https://millscale.orgTest/ (accessed May 03, 2022).; J. G. Tirado González, B. T. Reyes Segura, J. Esguerra-Arce, A. Bermúdez Castañeda, Y. Aguilar, and A. Esguerra-Arce, “An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy,” J Clean Prod, vol. 268, no. 205, 2020, doi:10.1016/j.jclepro.2020.122362.; C. K. Blakely, S. R. Bruno, Z. J. Baum, and V. v. Poltavets, “Effects of ball milling and thermal annealing on size and strain of ASnO3 (A = Ba, Sr) ceramics,” Solid State Sci, vol. 15, pp. 110–114, 2013, doi:10.1016/j.solidstatesciences.2012.09.006.; M. Sherif El-Eskandarany et al., “Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials,” Nanomaterials, vol. 11, no. 10, 2021, doi:10.3390/nano11102484.; M. S. El-Eskandarany, “Controlling the powder milling process,” in Mechanical Alloying, 2015, pp. 48–83. doi:10.1016/b978-1-4557-7752-5.00003-6.; Z. H. Chin and T. P. Perng, “Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying,” Materials Science Forum, vol. 235–238, no. PART 1, pp. 121–126, 1997, doi:10.4028/www.scientific.net/msf.235-238.121.; M. K. Vargas and D. L. Beke, “Phase transitions in Cu-Sb systems induced by ball milling,” Trans Tech Publications, vol. 225, pp. 465–470, 1996, doi:10.1557/mrs2002.257.; C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, 2001, doi:10.1016/S0079-6425(99)00010-9.; P. Sharma, S. Sharma, and D. Khanduja, “On the Use of Ball Milling for the Production of Ceramic Powders,” Materials and Manufacturing Processes, vol. 30, no. 11, pp. 1370–1376, 2015, doi:10.1080/10426914.2015.1037904.; G. S. Upadhyaya, Powder Metallurgy Technology, no. 1. 1998.; K. Jabbour and N. el Hassan, “Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach,” Chem Eng Sci, vol. 252, p. 117297, 2022, doi:10.1016/j.ces.2021.117297.; W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,” Appl Catal A Gen, vol. 326, no. 1, 2007, doi:10.1016/j.apcata.2007.03.021.; M. N. Abu Tahari, F. Salleh, T. S. Tengku Saharuddin, A. Samsuri, S. Samidin, and M. A. Yarmo, “Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations,” Int J Hydrogen Energy, vol. 46, no. 48, pp. 24791–24805, Jul. 2021, doi:10.1016/J.IJHYDENE.2020.06.250.; M. Bystrzejewski, “Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles,” J Solid State Chem, vol. 184, no. 6, pp. 1492–1498, Jun. 2011, doi:10.1016/J.JSSC.2011.04.018.; S. H. Kim et al., “Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C,” Acta Mater, vol. 212, 2021, doi:10.1016/j.actamat.2021.116933.; F. Patisson and O. Mirgaux, “metals Hydrogen Ironmaking: How It Works”, doi:10.3390/met10070922.; A. Pineau, N. Kanari, and I. Gaballah, “Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite,” Thermochim Acta, vol. 456, no. 2, pp. 75–88, May 2007, doi:10.1016/J.TCA.2007.01.014.; A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, “A review on the kinetics of iron ore reduction by hydrogen,” Materials, vol. 14, no. 24, 2021, doi:10.3390/ma14247540.; A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, Apr. 2020, doi:10.1007/S11663-020-01790-3/METRICS.; L. Yi, Z. Huang, H. Peng, and T. Jiang, “Action rules of H2 and CO in gas-based direct reduction of iron ore pellets,” Journal of Central South University 2012 19:8, vol. 19, no. 8, pp. 2291–2296, Aug. 2012, doi:10.1007/S11771-012-1274-0.; J. Szekely, J. Evans, and H. Sohn, Gas-Solid Reactions , 1st ed. New York: Academic Press Inc, 1976.; O. Benchiheub, S. Mechachti, S. Serrai, and M. G. Khalifa, “Elaboration of iron powder from mill scale,” J. Mater. Environ. Sci, vol. 1, no. 4, pp. 267–276, 2010.; A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, 2020, doi:10.1007/s11663-020-01790-3.; F. Chen, Y. Mohassab, T. Jiang, and H. Y. Sohn, “Hydrogen Reduction Kinetics of Hematite Concentrate Particles Relevant to a Novel Flash Ironmaking Process,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 46, no. 3, pp. 1133–1145, 2015, doi:10.1007/s11663-015-0332-z.; J. Chen, R. Zhang, T. Simmonds, and P. C. Hayes, “Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 50, no. 6, 2019, doi:10.1007/s11663-019-01659-0.; C. Scharm et al., “Direct reduction of iron ore pellets by H2 and CO: In-situ investigation of the structural transformation and reduction progression caused by atmosphere and temperature,” Miner Eng, vol. 180, p. 107459, Apr. 2022, doi:10.1016/J.MINENG.2022.107459.; M. I. A. Barustan and S. M. Jung, “Morphology of Iron and Agglomeration Behaviour During Reduction of Iron Oxide Fines,” Metals and Materials International, vol. 25, no. 4, 2019, doi:10.1007/s12540-019-00259-6.; A. A. Barde, J. F. Klausner, and R. Mei, “Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent,” Int J Hydrogen Energy, vol. 41, no. 24, pp. 10103–10119, 2016, doi:10.1016/j.ijhydene.2015.12.129.; M. S. Valipour, M. Y. Motamed Hashemi, and Y. Saboohi, “Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study,” Advanced Powder Technology, vol. 17, no. 3, pp. 277–295, 2006, doi:10.1163/156855206777213375.; A. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian Journal of Engineering and Materials Sciences, vol. 27, no. 2, pp. 179–192, 2020.; T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi:10.1016/j.compositesb.2018.02.012.; A. I. Nurhudan, S. Supriadi, Y. Whulanza, and A. S. Saragih, “Additive manufacturing of metallic based on extrusion process: A review,” J Manuf Process, vol. 66, pp. 228–237, Jun. 2021, doi:10.1016/J.JMAPRO.2021.04.018.; M. K. Agarwala, R. van Weeren, A. Bandyopadhyayl, P. J. Whalen, A. Safari, and S. C. Danforth, “Fused Deposition of Ceramics and Metals : An Overview,” Proceedings of Solid Freeform Fabrication Symposium, pp. 385–392, 1996, [Online]. Available: http://hdl.handle.net/2152/70261Test; G. Wu, N. A. Langrana, R. Sadanji, and S. Danforth, “Solid freeform fabrication of metal components using fused deposition of metals,” Mater Des, vol. 23, no. 1, pp. 97–105, Feb. 2002, doi:10.1016/S0261-3069(01)00079-6.; S. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, and N. S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” J Electron Mater, vol. 44, no. 3, pp. 771–777, 2015, doi:10.1007/s11664-014-3425-6.; S. Riecker, S. B. Hein, T. Studnitzky, O. Andersen, and B. Kieback, “3D printing of metal parts by means of fused filament fabrication - A non beam-based approach,” Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, no. October, 2017.; C. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, and C. Holzer, “Effect of particle size on the properties of highly-filled polymers for fused filament fabrication,” AIP Conf Proc, vol. 1914, no. July, pp. 2–6, 2017, doi:10.1063/1.5016795.; J. Gonzalez-Gutierrez, R. Guráň, M. Spoerk, C. Holzer, D. Godec, and C. Kukla, “3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts,” in Metalurgija, 2018, pp. 117–120.; M. A. Ryder, D. A. Lados, G. S. Iannacchione, and A. M. Peterson, “Fabrication and properties of novel polymer-metal composites using fused deposition modeling,” Compos Sci Technol, vol. 158, pp. 43–50, Apr. 2018, doi:10.1016/J.COMPSCITECH.2018.01.049.; Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit Manuf, vol. 30, p. 100861, Dec. 2019, doi:10.1016/J.ADDMA.2019.100861.; W. Lengauer, I. Duretek, M. Fürst, J. Gonzalez-Gutierrez, S. Schuschnigg, and C. Kukla, “Fused-filament printing of hardmetals and cermets with feedstock from RTP powders,” in Euro PM 2019 Congress and Exhibition, 2019, pp. 1–8.; S. Roshchupkin, A. Kolesov, A. Tarakhovskiy, and I. Tishchenko, “A brief review of main ideas of metal fused filament fabrication,” Mater Today Proc, vol. 38, pp. 2063–2067, Jan. 2021, doi:10.1016/J.MATPR.2020.10.142.; M. Bek, J. Gonzalez-Gutierrez, C. Kukla, K. P. Črešnar, B. Maroh, and L. S. Perše, “Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: Effect of particle material and loading,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–23, 2020, doi:10.3390/app10227993.; P. Singh, V. K. Balla, A. Tofangchi, S. v. Atre, and K. H. Kate, “Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3),” Int J Refract Metals Hard Mater, vol. 91, p. 105249, Sep. 2020, doi:10.1016/J.IJRMHM.2020.105249.; D. Godec, S. Cano, C. Holzer, and J. Gonzalez-Gutierrez, “Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel,” Materials, vol. 13, no. 3, 2020, doi:10.3390/ma13030774.; C. Gloeckle, T. Konkol, O. Jacobs, W. Limberg, T. Ebel, and U. A. Handge, “Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants,” Materials, vol. 13, no. 19, pp. 1–16, 2020, doi:10.3390/ma13194413.; J. Slapnik, I. Pulko, R. Rudolf, I. Anžel, and M. Brunčko, “Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices,” Addit Manuf, vol. 38, p. 101745, Feb. 2021, doi:10.1016/J.ADDMA.2020.101745.; Y. Zhang, L. Poli, E. Garratt, S. Foster, and A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Print Addit Manuf, vol. 7, no. 6, pp. 279–287, 2020, doi:10.1089/3dp.2020.0136.; A. G. Hasib et al., “Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing,” Addit Manuf, vol. 41, p. 101967, May 2021, doi:10.1016/J.ADDMA.2021.101967.; A.-F. Gil-Plazas et al., “Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication,” Revista Facultad de Ingeniería, vol. 31, no. 60, p. e13913, May 2022, doi:10.19053/01211129.V31.N60.2022.13913.; “Flexa Grey %7C Flexible material for 3D printing.” https://sinterit.com/materials/flexa-greyTest/ (accessed Oct. 07, 2022).; J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, 2018, doi:10.3390/ma11050840.; G. George et al., “Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties,” RSC Adv, vol. 8, no. 53, pp. 30412–30428, Aug. 2018, doi:10.1039/C8RA05007D.; X. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation,” J Mater Sci, vol. 52, no. 4, pp. 2169–2179, Feb. 2017, doi:10.1007/S10853-016-0505-4/METRICS.; K. Polat, “Low-Cost and High-Capacity Dye Remover: a Study of Methylene Blue Adsorption by a Thermoplastic-Elastomer Blend System,” Water Air Soil Pollut, vol. 228, no. 9, pp. 1–10, Sep. 2017, doi:10.1007/S11270-017-3510-6/METRICS.; C. Zhang, S. Zhang, D. Sun, J. Lin, F. Meng, and H. Liu, “Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy – fabrication, characterization, degradation and cytocompatibility with BMSCs,” Journal of Magnesium and Alloys, vol. 9, no. 4, pp. 1246–1260, Jul. 2021, doi:10.1016/J.JMA.2020.05.017.; L. Tong et al., “Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor,” Nanoscale Res Lett, vol. 13, no. 1, pp. 1–8, Mar. 2018, doi:10.1186/S11671-018-2499-0/FIGURES/10.; A. Stefan et al., “Multi-walled carbon nanotubes effect in polypropylene nanocomposites ,” Materials and technology, pp. 11–16, 2016, doi:10.17222/mit.2014.142.; A. Haryńska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, “Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology,” Polymers 2018, Vol. 10, Page 1304, vol. 10, no. 12, p. 1304, Nov. 2018, doi:10.3390/POLYM10121304.; O. D. Maynez-Navarro, M. A. Mendez-Rojas, D. X. Flores-Cervantes, and J. L. Sanchez-Salas, “Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection,” Air, Soil and Water Research, vol. 13, 2020, doi:10.1177/1178622120970954.; N. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 20, 2020, doi:10.1007/s10854-020-04375-7.; M. A. Wagner et al., “Fused filament fabrication of stainless steel structures - from binder development to sintered properties,” Addit Manuf, vol. 49, p. 102472, Jan. 2022, doi:10.1016/j.addma.2021.102472.; H. Lgaz and H. seung Lee, “First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study,” J Mol Liq, vol. 348, 2022, doi:10.1016/j.molliq.2021.118071.; H. Öström, Chemical Bonding of Hydrocarbons to Metal Surfaces. Stockholm, 2004.; P. O. Bedolla et al., “Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces,” Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17608–17615, Aug. 2014, doi:10.1021/JP503829C/ASSET/IMAGES/LARGE/JP-2014-03829C_0008.JPEG.; A. A. Tafti, V. Demers, S. M. Majdi, G. Vachon, and V. Brailovski, “Effect of thermal debinding conditions on the sintered density of low-pressure powder injection molded iron parts,” Metals (Basel), vol. 11, no. 2, 2021, doi:10.3390/met11020264.; “Impresora 3D Creality Ender 3 PRO - impresoras3d.com.” https://www.impresoras3d.com/producto/impresora-3d-creality-ender-3-proTest/ (accessed Oct. 07, 2022).; B. Liu, Y. Wang, Z. Lin, and T. Zhang, “Creating metal parts by Fused Deposition Modeling and Sintering,” Mater Lett, vol. 263, p. 127252, Mar. 2020, doi:10.1016/J.MATLET.2019.127252.; K. S. Hwang and Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts,” Metall Mater Trans A Phys Metall Mater Sci, vol. 27, no. 2, 1996, doi:10.1007/BF02648403.; M. Sadaf, M. Bragaglia, and F. Nanni, “A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication,” J Manuf Process, vol. 67, 2021, doi:10.1016/j.jmapro.2021.04.055.; J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater Lett, vol. 248, 2019, doi:10.1016/j.matlet.2019.04.024.; Y. Zhang, S. Bai, M. Riede, E. Garratt, and A. Roch, “A comprehensive study on fused filament fabrication of Ti-6Al-4V structures,” Addit Manuf, vol. 34, 2020, doi:10.1016/j.addma.2020.101256.; J. H. H. Ter Maat, J. Ebenhöch, and H.-J. Sterzel, “Fast Catalytic Debinding of Injection Moulded Parts,” 4th International Symposium on Ceramic Materials and Components for Engines, pp. 544–551, 1992, doi:10.1007/978-94-011-2882-7_58.; I. Todd and A. T. Sidambe Dr, “Developments in metal injection moulding (MIM),” Advances in Powder Metallurgy: Properties, Processing and Applications, pp. 109–146, Jan. 2013, doi:10.1533/9780857098900.1.109.; M. F. F. A. Hamidi, W. S. W. Harun, N. Z. Khalil, S. A. C. Ghani, and M. Z. Azir, “Study of solvent debinding parameters for metal injection moulded 316L stainless steel,” in IOP Conference Series: Materials Science and Engineering, 2017. doi:10.1088/1757-899X/257/1/012035.; N. A. N. Dandang, W. S. W. Harun, N. Z. Khalil, A. H. Ahmad, F. R. M. Romlay, and N. A. Johari, “Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process,” IOP Conf Ser Mater Sci Eng, vol. 257, no. 1, p. 012020, Oct. 2017, doi:10.1088/1757-899X/257/1/012020.; G. R. M. and B. A., “Injection Moulding of Metals and Ceramics.” Metal Powder Industries Federation, Princeton, New Jersey, USA, 1997.; T. Kurose et al., “Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals,” Materials, vol. 13, no. 11, 2020, doi:10.3390/ma13112493.; D. F. Heaney, Handbook of Metal Injection Molding. 2019. doi:10.1016/B978-0-08-102152-1.09991-8.; S. Banerjee and C. J. Joens, “Debinding and sintering of metal injection molding (MIM) components,” Handbook of Metal Injection Molding, pp. 129–171, Jan. 2019, doi:10.1016/B978-0-08-102152-1.00009-X.; M. Quarto, M. Carminati, and G. D’Urso, “Density and shrinkage evaluation of AISI 316L parts printed via FDM process,” Materials and Manufacturing Processes, vol. 36, no. 13, 2021, doi:10.1080/10426914.2021.1905830.; C. Suwanpreecha and A. Manonukul, “A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding,” Metals, vol. 12, no. 3. 2022. doi:10.3390/met12030429.; P. Singh, V. K. Balla, S. v. Atre, R. M. German, and K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technol, vol. 386, 2021, doi:10.1016/j.powtec.2021.03.026.; D. R. Askeland and W. J. Wright, The Science and Engineering of Materials 7th Edition. 2016.; J. Gonzalez-Gutierrez et al., “Powder content in powder extrusion moulding of tool steel: Dimensional stability, shrinkage and hardness,” Mater Lett, vol. 283, 2021, doi:10.1016/j.matlet.2020.128909.; J. Gonzalez-Gutierrez et al., “Shaping, Debinding and Sintering of Steel Components via Fused Filament Fabrication,” in 16 th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING, 2017, pp. 8–10.; M. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari, P. J. Whalen, and S. C. Danforth, “Structural quality of parts processed by fused deposition,” Rapid Prototyp J, vol. 2, no. 4, 1996, doi:10.1108/13552549610732034.; M. Mousapour, M. Salmi, L. Klemettinen, and J. Partanen, “Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique,” J Manuf Process, vol. 67, 2021, doi:10.1016/j.jmapro.2021.05.021.; D. C. Pang, Z. J. Shi, P. X. Xie, H. C. Huang, and G. T. Bui, “Investigation of an Inset Micro Permanent Magnet Synchronous Motor Using Soft Magnetic Composite Material,” Energies 2020, Vol. 13, Page 4445, vol. 13, no. 17, p. 4445, Aug. 2020, doi:10.3390/EN13174445.; M. U. Naseer, A. Kallaste, B. Asad, T. Vaimann, and A. Rassõlkin, “A Review on Additive Manufacturing Possibilities for Electrical Machines,” Energies 2021, Vol. 14, Page 1940, vol. 14, no. 7, p. 1940, Mar. 2021, doi:10.3390/EN14071940.; https://repositorio.unal.edu.co/handle/unal/84723Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  7. 7
    كتاب

    وصف الملف: 163 páginas; application/pdf

    العلاقة: Barrera, H. M. (2017). Construction of a True Compaction Curve: critical review of the closed die compaction test for powdered materials. Programa Editorial Universidad Autónoma de Occidente.; Alderborn, G., Nystrom, C. (1996). Pharmaceutical Powder Compaction Technology.; Marcel Dekker, New York.Ashby, M. et al. (2000). Metal Foams: a Design Guide. Butterworht-Heinemann.; Belytschko, T. et al. (2000). Nonlinear Finite Element Analysis of Continua and Structures. Wiley.; Bolton, M., et al. (2008). Micro-and macro-mechanical beha- viour of DEM crushable materials. Geotechnique (58, 6), 471-480.; Bridgeman, P. (1944). The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Metals (32), 553.; Cante, J., et al. (2005). On numerical simulation of powder compaction process: powder transfer modelling and characterizA- tion. Powder metallurgy (48), 85-92.; Fanelli, M. (2005).Understanding Agglomerate Dispersion: Experiments and Simulations .Case Western Reserve University, USA, p. 47.; García, J., Cortes, D. (2006). A nonlinear biphasic viscohyperelastic model for articular cartilage. Journal of Biomechanics (39), 2991-2998.; Guo, Y., et al. (2005). An internal state variable plasticity- based approach to determine dynamic loading history effects on material property in manufacturing processes. International Jour- nal of Mechanical Sciences (47), 1423-1441.; Henrich, B, et al. (2006). Particle Methods in Powder Techno- logy. Computational Science and High Performance Computing II, Springer, Berlin.; Hu, C, et al. (2007). Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials. Mode- lling and Simul. In Mat. Sci. Eng. (15), 377-392.; Lewis, R., et al. (2005). A combined finite discrete element method for simulating pharmaceutical powder tableting. Int J. Numerical Methods in Engineering, (62).; Martin, C.L. et al. (2002).Study of particle rearrangement du- ring powder compaction by the discrete element method. Journal of the mechanics and physics of solids (51), 667-693.; Odeku, O.A. et al. (2005). Compression and mechanical proper- ties of tablet formulations. Pharmaceutical Technology (29, 4), 82-90.; Samimi, A. et al. (2005). Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chemical En- gineering Science (60, 14), 3993-4004.; Schneider L. & Cocks, A. (2002). Experimental investigation of yield behavior of metal powder compacts. Powder Metallurgy (45, 3), 237-245.; Zavaliangos, A., Cunningham, J., Sinka, I. (2004). Analysis of Tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction J. of Pharm. Sci., (93, 8).; Walpole et al. (1978). Probability and Statistics for Engineers. Macmillan Publishers.; https://hdl.handle.net/10614/13934Test; Universidad Autónoma de Occidente; Repositorio Educativo Digital; https://red.uao.edu.coTest/

  8. 8
    دورية أكاديمية
  9. 9
  10. 10