يعرض 1 - 10 نتائج من 53 نتيجة بحث عن '"mejoramiento vegetal"', وقت الاستعلام: 1.66s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Ciencia y Tecnología Agropecuaria; Vol. 22 No. 2 (2021): Ciencia & Tecnología Agropecuaria-Publicación continua ; Ciencia & Tecnología Agropecuaria; Vol. 22 Núm. 2 (2021): Ciencia & Tecnología Agropecuaria-Publicación continua ; revista Corpoica Ciência e Tecnologia Agropecuária; v. 22 n. 2 (2021): Ciencia & Tecnología Agropecuaria-Publicación continua ; 2500-5308 ; 0122-8706 ; 10.21930/rcta.vol22-num2

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    كتاب

    المساهمون: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, European Commission, Ministerio de Economía y Competitividad

    العلاقة: info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/; The Eggplant Genome; info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/; https://link.springer.com/chapter/10.1007/978-3-319-99208-2_9Test; urn:isbn:978-3-319-99207-5; http://hdl.handle.net/10251/181875Test

  9. 9
    دورية أكاديمية

    المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 73 No. 1 (2020); 9047-9056 ; Revista Facultad Nacional de Agronomía Medellín; v. 73 n. 1 (2020); 9047-9056 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 73 Núm. 1 (2020); 9047-9056 ; 2248-7026 ; 0304-2847

    وصف الملف: application/pdf; application/xml

    العلاقة: https://revistas.unal.edu.co/index.php/refame/article/view/76044/73613Test; https://revistas.unal.edu.co/index.php/refame/article/view/76044/74039Test; Achar PN. 2002. A study of factors affecting embryo yields from anther culture of cabbage. Plant Cell, Tissue and Organ Culture 69(2): 183-188. doi:10.1023/A:1015232008585; AGRONET. 2010. Análisis-Estadísticas, Producción Nacional Por Producto. En: https://www.agronet.gov.co/Paginas/ProduccionNacionalProducto.aspxTest; consulta: octubre 2018.; Badu M, Tripathy B, Sahu GS and Jena AK. 2017. Role of doubled haploids in vegetable crop improvement. Journal of Pharmacognosy and Phytochemistry 6(6): 384-389.; Bajaj YPS. 1990. In vitro production of haploids and their use in cell genetics and plant breeding. pp 1–44. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Part I. Haploids in crop improvement. Vol. 12. Springer, Berlin.; Bal U and Abak K. 2007. Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158(1-2): 1-9. doi:10.1007/s10681-007-9427-1; Barro F, Fernandez-Escobar J, De La Vega M and Martin A. 2001. Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breeding 120(3): 262-264. doi:10.1046/j.1439-0523.2001.00602.x; Bhojwani SS and Razdan MK. 1996. Plant Tissue Culture: Theory and practice, a revised edition. Vol. 5. First Edition. Elsevier, Amsterdam. 776 p.; Campos FF and Morgan DT. 1958. Haploid pepper from a sperm, an androgenetic of Capsicum frutescens. Journal of Heredity 49(4): 134-137. doi:10.1093/oxfordjournals.jhered.a106786; Chen Z. 1986. Induction of androgenesis in woody plants. pp 42– 66. In: Han H and Hongyuan Y (eds). Haploids in Higher Plants in vitro. China Academic Publishers, Springer-Verlag.; Cheng Y, Ma RL, Jiao YS, Qiao N and Li TT. 2013. Impact of genotype, plant growth regulators and activated charcoal on embryogenesis induction in microspore culture of pepper (Capsicum annuum L.). South African Journal of Botany 88: 306-309. doi:10.1016/j.sajb.2013.08.012; Christensen H and Bamford R. 1943. Haploids in twin seedlings of pepper Capsicum annuum L. Journal of Heredity. 34: 99-104.; Cravero VP, López Anido FS, Espósito MA y Cointry EL. 2011. Mejoramiento convencional y no convencional de especies hortícolas. BAG Journal of Basic and Applied Genetics 22(1): 1-4.; Das A, Kumar K, Tribhuvan K, Das SS and Mishra M. 2018. Development of Haploid and Double Haploid in Fruit Crops-A Review. International Journal of Current Microbiology and Applied Sciences 7(5): 2119-2132. doi:10.20546/ijcmas.2018.705.247; Dhooghe E, Van Laere K, Eeckhaut T, Leus L and Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture 104(3): 359-373. doi:10.1007/s11240-010-9786-5; do Rêgo MM, do Rêgo ER, Otoni WC and Bruckner CH. 2009. Epigenetic Effects in Induced in vitro Tetraploids Passion Fruit (Passiflora edulis Sims.). Acta Horticulturae 829: 167-175. doi:10.17660/ActaHortic.2009.829.24; Dolcet-Sanjuan R, Claveria E and Huerta A. 1997. Androgenesis in Capsicum annuum L. effects of carbohydrate and carbon dioxide enrichment. Journal of the American Society for Horticultural Science 122(4): 468-475.; Dumas de Vaulx R and Pochard E. 1974. Essai d’introduction de la parthénogenèse haploïde par action du protoxyde d’azote sur les fleurs de piments (Capsicum annuum). Annales de l'amelioration des plantes 24: 283-305.; Dumas de Vaulx R, Chambonnet D and Pochard E. 1981. In vitro culture of pepper (Capsicum annuum L.) anthers: High rate plant production from different genotypes by +35 °C treatment. Agronomie 1: 859-864.; Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD and Ortiz R. 2015. Haploids: constraints and opportunities in plant breeding. Biotechnology Advances 33(6): 812-829. doi:10.1016/j.biotechadv.2015.07.001; Ercan N and Ayar Şensoy F. 2011. Androgenic responses of different pepper (Capsicum annuum L.) cultivars. Biyoloji Bilimleri Araştırma Dergisi 4(2): 59-61.; Ferrie AMR. 2007. Doubled haploid production in nutraceutical species: a review. Euphytica 158(3): 347-357. doi:10.1007/s10681-006-9242-0; Forster BP, Herberle-Bors E, Kasha KJ and Touraev A. 2007. The resurgence of haploids in higher plants. Trends in Plant Science. 12(8):368–375. doi:10.1016/j.tplants.2007.06.007; Gémesné Juhász A, Petus M, Venczel G, Zatykó L, Gyulai G and Cséplö M. 2001a. Genetic variability of anther donor versus spontaneous doubled haploid descendants and colchicine induced doubled haploid sweet pepper (Capsicum annuum L.) lines. Acta Horticulturae 560: 149-152. doi:10.17660/ActaHortic.2001.560.24; Gémesné Juhász J, Petu M, Venczel G, Sagi Z and Zatyko L. 2001b. Colchicine, an efficient genome doubling agent for anther derived haploid paprika (Capsicum annuum L.) plants. In: 11th EUCARPIA Meeting Genetics and Breeding of Capsicum and Eggplant. Antalya, Turkey. 146 p.; George L and Narayanaswamy S. 1973. Haploid Capsicum through experimental androgenesis. Protoplasma 78(4): 467-470. doi:10.1007/BF01275781; Germanà MA. 2011. Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture 104(3): 283-300. doi:10.1007/s11240-010-9852-z; Guzy-Wrobelska J and Szarejko I. 2003. Molecular and agronomic evaluation of wheat doubled haploid lines obtained through maize pollination and anther culture methods. Plant Breeding 122(4): 305-313. doi:10.1046/j.1439-0523.2003.00858.x; Hannweg K, Visser G, de Jager K and Bertling I. 2016. In vitro- induced polyploidy and its effect on horticultural characteristics, essential oil composition and bioactivity of Tetradenia riparia. South African Journal of Botany 106: 186-191. doi:10.1016/j.sajb.2016.07.013; Harn C, Kim MZ, Choi KT and Lee YI. 1975. Production of haploid callus and embryoid from the cultured anther of Capsicum annuum. Sabrao Journal 7: 71-77.; Heidari-Zefreh A, Shariatpanahi M, Mousavi A and Kalatejari S. 2018. Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256(1): 13-24. doi:10.1007/s00709-018-1268-3; Irikova T, Grozeva S and Rodeva V. 2011. Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiologiae Plantarum 33(5): 1559-1570. doi:10.1007/s11738-011-0736-6; Irikova T, Kintzios S, Grozeva S and Rodeva V. 2016. Pepper (Capsicum annuum L.) anther culture: fundamental research and practical applications. Turkish Journal of Biology 40(4): 719-726. doi:10.3906/biy-1506-79; Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutlilier K, Baillieul F and Clément C. 2009. Microspore embryogenesis in barley: anther pretreatment stimulates plant defence gene expression. Planta 229(2): 393-402. doi:10.1007/s00425-008-0838-6; Kasha KJ and Maluszynski M. 2003. Production of doubled haploids in crop plants. An introduction. pp. 1-4. In: Maluszynski M, Kasha KJ, Forster BP and Szarejko I (eds). Doubled haploid production in crop plants: A Manual. Springer, Dordrecht. 428 p. doi:10.1007/978-94-017-1293-4_1.; Kim M, Kim J, Yoon M, Choi DI and Lee KM. 2004. Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell, Tissue and Organ Culture 77(1): 63-72. doi:10.1023/B:TICU.0000016506.02796.6a; Koleva-Gudeva LR, Spasenoski M and Trajkova F. 2007. Somatic embryogenesis in pepper anther culture: The effect of incubation treatments and different media. Scientia Horticulturae. 111(2): 114-119. doi:10.1016/j.scienta.2006.10.013; Kott LS, Polsoni L, Ellis B and Beversdorf WD. 1988. Autotoxicity in isolated microspore cultures of Brassica napus. Canadian Journal of Botany 66(8): 1665-1670. doi:10.1139/b88-227; Lantos C, Juhász AG, Somogyi G, Ötvös K, Vági P, Mihály R, Kristóf Z, Somogyi N and Pauk J. 2009. Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell, Tissue and Organ Culture 97(3): 285-293. doi:10.1007/s11240-009-9527-9; López-España RG, Hernández-Verdugo S, Parra-Terraza S, Porras F, Pacheco-Olvera A, Valdez-Ortiz A and Muy-Rangel MD. 2016. Diferenciación geográfica de poblaciones de chile silvestre (Capsicum annuum L. var. glabriusculum) del noroeste de México. Phyton 85(1): 131-141.; Luitel BP and Kang WH. 2013. In vitro androgenic response of minipaprika (Capsicum annuum L.) genotypes in different culture media. Horticulture, Environment, and Biotechnology 54(2): 162-171. doi:10.1007/s13580-013-0110-2; Maraschin SF, de Priester W, Spaink HP and Wang M. 2005. Androgenic switch: an example of plant embryogenesis from male gametophyte perspective. Journal of Experimental Botany 56(417): 1711-1726. doi:10.1093/jxb/eri190; Medina CI, Lobo M y Gómez A. 2006. Variabilidad fenotípica en poblaciones de ají y pimentón de la colección colombiana del género Capsicum. Corpoica Ciencia y Tecnología Agropecuaria 7(2): 25-39.; Mishra VK and Goswami R. 2014. Haploid production in higher plant. International Journal of Biological and Chemical Sciences 1(1): 26-45.; Mitykó J and Gémes Juhász A. 2006. Improvement in the haploid technique routinely used for breeding sweet and spice peppers in Hungary. Acta Agronomica Hungarica 54(2): 203-219. doi:10.1556/AAgr.54.2006.2.8; Morrison RA, Koning RE and Evans DA. 1986. Anther culture of an interspecific hybrid of Capsicum. Journal of Plant Physiology 126(1): 1-9. doi:10.1016/S0176-1617(86)80210-3; Murashige T and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x; Nuez Viñals F, Gil Ortega R and Costa García JC. 1996. El cultivo de pimientos, chiles y ajíes. Mundiprensa Libros SA, Madrid. 607 p.; Olszewska D, Kisiala A, Niklas-Nowak A and Nowaczyk P. 2014. Study of in vitro anther culture in selected genotypes of genus Capsicum. Turkish Journal of Biology 38(1): 118-124. doi:10.3906/biy-1307-50; Popova T, Grozeva S, Todorova V, Stankova G, Anachkov N and Rodeva V. 2016. Effects of low temperature, genotype and culture media on in vitro androgenic answer of pepper (Capsicum annuum L.). Acta Physiologiae Plantarum 38(11): 1-11. doi:10.1007/s11738-016-2294-4; Powell W. 1990. Environmental and genetic aspects of pollen embryogenesis. pp. 44–65. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Part I. Haploids in crop improvement. Vol. 12. Springer, Berlin.; Regner F. 1996. Anther and microspore culture in Capsicum. pp. 77-89. In: Jain SM, Sopory SK and Veilleux RE (eds). In vitro haploid production in higher plants. Springer, Dordrecht. 414 p. doi:10.1007/978-94-017-1858-5_5; Reinert J. 1977. Chapter II. Haploid. pp. 249-340. In: Reinert J and Bajaj YPS (eds.). Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin-Heidelberg-New York. 803 p.; Reynolds TL and Crawford RL. 1997. Effects of light on the accumulation of abscisic acid and expression of an early cysteine-labeled metallothionein gene in microspores of Triticum aestivum during induced embryogenic development. Plant Cell Reports 16(7): 458–463. doi:10.1007/BF01092766; Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E and Touraev A. 2006. Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pre-treatment. Plant Cell Reports 25(12): 1294–1299. doi:10.1007/s00299-006-0205-7; Sibi M, Dumas de Vaulx R and Chambonnet D. 1979. Obtention de plantes haploïdes par androgenése in vitro chez le Piment (Capsicum annuum L.). Annales de l'amélioration des plantes 29(5): 583-606.; Steinitz B, Küsek M, Tabib Y, Paran I and Zelcer A. 2003. Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cellular & Developmental Biology-Plant 39(3): 296-303. doi:10.1079/IVP2002405; Supena EDJ, Muswita W, Suharsono S and Custers JBM. 2006a. Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Scientia Horticulturae 107(3): 226-232. doi:10.1016/j.scienta.2005.08.006; Supena EDJ, Suharsono S, Jacobsen E and Custers JBM. 2006b. Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Reports 25(1): 1-10. doi:10.1007/s00299-005-0028-y; Taşkin H, Büyükalaca S, Keleş D and Ekbiç E. 2011. Induction of microspore-derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology 10(75):17116-17121. doi:10.5897/AJB11.2023; Thomas WTB, Forster BP and Gertsson B. 2003. Doubled haploids in breeding. pp 337-349. In: Maluszynski M, Kasha KJ, Forster BP and Szarejko I (eds). Doubled haploid pro- duction in crop plants, a manual. Kluwer Academic Publishers, Dordrecht.; Thompson MR, Douglas TJ, Obata-Sasamoto H and Thorpe TA. 1986. Mannitol metabolism in cultured plant cells. Physiologia Plantarum 67(3): 365-369. doi:10.1111/j.1399-3054.1986.tb05749.x; Toole M and Bamford R. 1945. The formation of diploid plants from haploid peppers. Journal of Heredity 36: 67-70.; Toquica SP, Rodríguez F, Martínez E, Duque MC and Tohme J. 2003. Molecular characterization by AFLPs of Capsicum germplasm from the Amazon departament in Colombia. Genetic Resources and Crop Evolution 50(6): 639-647. doi:10.1023/A:1024429320771; Tuvesson S, Ljungberg A, Johansson N, Karlsson KE, Suijs LW and Josset JP. 2000. Large-scale production of wheat and triticale doubled haploids through the use of a single anther culture method. Plant Breeding 119(6): 455-4594. doi:10.1046/j.1439-0523.2000.00536.x; Urwin NAR. 2014. Generation and characterisation of colchicine-induced polyploid Lavandula × intermedia. Euphytica 197(3): 331-339. doi:10.1007/s10681-014-1069-5; Vélez Torres M, Robledo Paz A, Corona Torres T, Aguilar Rincón V, Ramírez Vallejo P and Suárez Espinosa J. 2010. Obtención de plantas haploides en chile miahuateco (Capsicum annuum L.). Revista Mexicana de Ciencias Agrícola 1(2): 187-199.; Wang YY, Sun CS, Wang CC and Chien NF. 1973. The induction of the pollen plants of Triticale and Capsicum annuum from anther culture. Scientia Sinica 16: 147-151. doi:10.1360/ya1973-16-1-147; Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E and Gotębiowska G. 2009. Progress in doubled haploid technology in higher plants. pp. 1-33. In: Touraev A, Forster BP and Jain SM (eds.). Advances in Haploid production in Higher Plants. Springer, Dordrecht. 348 p. doi:10.1007/978-1-4020-8854-4_1; Yin T, Tian S, Luo S, Chen X, Wang Y and Shen S. 2010. Studies on isolated microspore embryoid induction of C. annuum L. Frontiers of Agriculture in China 4(4): 438-442. doi:10.1007/s11703-010-1028-4; https://revistas.unal.edu.co/index.php/refame/article/view/76044Test

  10. 10
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 1 (2020); 3-8 ; Agronomía Colombiana; Vol. 38 No. 1 (2020); 3-8 ; Agronomía Colombiana; v. 38 n. 1 (2020); 3-8 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/80462/74913Test; Aliferis, C.F., A. Statnikov, I. Tsamardinos, S. Mani, and X.D. Koutsoukos. 2010. Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation. J. Mach. Learn. Res. 11(2010), 171-234.; Amaral, C.B., G.H.F. Oliveira, and G.V. Môro. 2019. Bayesian network: a simplified approach for environmental similarity studies in maize. Crop Breed. Appl. Biot. 19(1), 70-76. Doi:10.1590/1984-70332019v19n1a10; Cabral, P.D.S., A.T. de Amaral Junior, I.L. de J. Freitas, R.M. Ribeiro, and T.R. da C. Silva. 2016. Relação de causa e efeito de caracteres quantitativos sobre a capacidade de expansão do grão em milho-pipoca. Rev. Ciênc. Agron. 47(1), 108-117. Doi:10.5935/1806-6690.20160013; Carpentieri-Pípolo, V., H.W. Takahashi, R.M. Endo, M.R. Petek, and A.L. Seifert. 2002. Correlações entre caracteres quantitativos em milho pipoca. Hortic. Bras. 20(4), 551-554. Doi:10.1590/ S0102-05362002000400008; Coimbra, J.L.M., G. Benin, E.A. Vieira, A.C. de Oliveira, F.I.F. Carvalho, A.F. Guidolin, and A.P. Soares. 2005. Conseqüências da multicolinearidade sobre a análise de trilha em canola. Ciênc. Rural 35(2), 347-352. Doi:10.1590/S0103-84782005000200015; Cruz, C.D. 2013. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scient. Agron. 35(3), 271-276. Doi:10.4025/actasciagron.v35i3.21251; Cruz, C.D. and A.J. Regazzi. 1997. Modelos biométricos aplicados ao melhoramento genético. UFV, Viçosa, Brazil.; Cruz, C.D., A.J. Regazzi, and P.C.S. Carneiro. 2012. Modelos biométricos aplicados ao melhoramento genético. UFV, Viçosa, Brazil.; Cruz, J.C. (ed.). 2010. Cultivo do milho. Embrapa Milho e Sorgo. (Sistema de produção 1). Sete Lagoas - MG. URL: https://www.spo.cnptia.embrapa.br/listasptema?p_p_id=listaspportemaportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1p_r_p_619796851_temaId=1712&_listaspportemaportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet_redirect=%2Ftemas-publicadosTest (accessed 16 March 2020).; Daros, M., A.T. do Amaral Júnior, M.G. Pereira, F.S. Santos, C.A. Scapim, S. de P. Freitas Júnior, R.F. Daher, and M.R. Ávila. 2004. Correlations among agronomic traits in two recurrent selection cycles in popcorn. Ciênc. Rural 34(5), 1389-1394. Doi:10.1590/S0103-84782004000500010; Embrapa. 2006. Sistema brasileiro de classificação de solos. Embrapa, Brasilia.; Felipe, V.P., M.A. Silva, B.D. Valente, and G.J. Rosa. 2015. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poult. Scien. 94(4), 772-780. Doi:10.3382/ps/pev031; Lyerly, P.J. 1942. Some genetic and morphologic characters affecting the popping expansion of popcorn. J. Amer. Soc. Agron. 34, 986-995. Doi:10.2134/agronj1942.00021962003400110003x; Margaritis, D. 2003. Learning Bayesian network model structure from data. PhD thesis, Carnegie Mellon University, Pittsburgh, USA.; Marques, R.L. and I. Dutra, 2002. Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Coppe Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.; Mohsenin, N.N. 1970. Physical properties of plant and animal materials: structure, physical characteristics and mechanical properties. Gordon and Breach, New York, USA. Doi:10.1002/food.19870310724; Pearl, J. 2000. Causality: models, reasoning and inference. Cambridge University Press, New York, USA. Doi:10.1017/S0266466603004109; Pordesimo, L.O., R.C. Anantheswaran, A.M. Fleiscaman, Y.E. Lin, and M.A. Hanna. 1990. Physical properties as indicators of popping characteristics of microwave popcorn. J. Food Sci. 55(5), 1352-1355. Doi:10.1111/j.1365-2621.1990.tb03934.x; Ribeiro, R.M., A.T. do Amaral Júnior, G.F. Pena, M. Vivas, R.N. Kurosawa, and L.S.A. Gonçalves. 2016. Effect of recurrent selection on the variability of the UENF-14 popcorn population. Crop Breed. Appl. Biotechnol. 16(2), 123-131. Doi:10.1590/1984-70332016v16n2a19; Scutari, M. 2009. Learning Bayesian networks with the bnlearn R package. CRC Press, Florida, USA. Doi:10.18637/jss.v035.i03; Souza, T.V. 2003. Aspectos estatísticos da análise de trilha (Path analysis) aplicada em experimentos agrícolas. MSc thesis, Universidade Federal de Lavras, Lavras, Brazil.; Soylu, S. and A. Tekkanat. 2006. Interactions amongst kernel properties and expansion volume in various popcorn genotypes. J. Food Eng. 80(1), 336-341. Doi:10.1016/j.jfoodeng.2006.06.001; Vencovsky, R. and P. Barriga. 1992. Genética biométrica no fitomelhoramento. Sociedade Brasileira de Genética, Ribeirão Preto, Brazil.; Yu, J., V.A. Smith, P.P. Wang, A.J. Hartemink, and E.D. Jarvis. 2004. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594-3603. Doi:10.1093/bioinformatics/bth448; https://revistas.unal.edu.co/index.php/agrocol/article/view/80462Test