دورية أكاديمية

Multiband FMCW Radar LSS-target Detection Dataset (LSS-FMCWR-1.0) and High-resolution Micromotion Feature Extraction Method

التفاصيل البيبلوغرافية
العنوان: Multiband FMCW Radar LSS-target Detection Dataset (LSS-FMCWR-1.0) and High-resolution Micromotion Feature Extraction Method
المؤلفون: Xiaolong CHEN, Wang Yuan, Xiaolin Du, Gang Yu, Xiaoyang He, Jian Guan, Xinghai Wang
المصدر: Leida xuebao, Vol 13, Iss 3, Pp 539-553 (2024)
بيانات النشر: China Science Publishing & Media Ltd. (CSPM), 2024.
سنة النشر: 2024
المجموعة: LCC:Electricity and magnetism
مصطلحات موضوعية: low slow small (lss) tagert, frequency modulate continuous wave (fmcw) radar, micromotion characteristics, local maximum synchroextracting transform (lset), public dataset., Electricity and magnetism, QC501-766
الوصف: Detection of small, slow-moving targets, such as drones using Unmanned Aerial Vehicles (UAVs) poses considerable challenges to radar target detection and recognition technology. There is an urgent need to establish relevant datasets to support the development and application of techniques for detecting small, slow-moving targets. This paper presents a dataset for detecting low-speed and small-size targets using a multiband Frequency Modulated Continuous Wave (FMCW) radar. The dataset utilizes Ku-band and L-band FMCW radar to collect echo data from six UAV types and exhibits diverse temporal and frequency domain resolutions and measurement capabilities by modulating radar cycles and bandwidth, generating an LSS-FMCWR-1.0 dataset (Low Slow Small, LSS). To further enhance the capability for extracting micro-Doppler features from UAVs, this paper proposes a method for UAV micro-Doppler extraction and parameter estimation based on the local maximum synchroextracting transform. Based on the Short Time Fourier Transform (STFT), this method extracts values at the maximum energy point in the time-frequency domain to retain useful signals and refine the time-frequency energy representation. Validation and analysis using the LSS-FMCWR-1.0 dataset demonstrate that this approach reduces entropy on an average by 5.3 dB and decreases estimation errors in rotor blade length by 27.7% compared with traditional time-frequency methods. Moreover, the proposed method provides the foundation for subsequent target recognition efforts because it balances high time-frequency resolution and parameter estimation capabilities.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
Chinese
تدمد: 2095-283X
العلاقة: https://doaj.org/toc/2095-283XTest
DOI: 10.12000/JR23142
الوصول الحر: https://doaj.org/article/f56f761e7e6f45469b2434da361251f1Test
رقم الانضمام: edsdoj.f56f761e7e6f45469b2434da361251f1
قاعدة البيانات: Directory of Open Access Journals