يعرض 1 - 10 نتائج من 76 نتيجة بحث عن '"hojarasca forestal"', وقت الاستعلام: 0.99s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    رسالة جامعية

    المؤلفون: Franco Londoño, Catalina

    المساهمون: Salazar Villegas, Alejandro, Salgado Negret, Beatriz, orcid:0000-0002-3483-6792, https://www.researchgate.net/profile/Catalina-Franco-2Test

    وصف الملف: 35 páginas; application/pdf

    العلاقة: Acuña, A. (2013). Potencial de regeneracion de rastrojos y bosques secundarios en la Sabana de Bogotá. PhD thesis, Pontificia Universidad Javeriana.; Aerts, R. (1997). Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79(3):439.; Ahmed, I. U., Assefa, D., and Godbold, D. L. (2022). Land-Use Change Depletes Quantity and Quality of Soil Organic Matter Fractions in Ethiopian Highlands. Forests, 13(1):1–20.; Amoakwah, E., Lucas, S. T., Didenko, N. A., Rahman, M. A., and Islam, K. R. (2022). Impact of deforestation and temporal landuse change on soil organic carbon storage, quality, and lability. PLoS ONE, 17(8 August):1–25.; Anselm, N., Brokamp, G., and Schütt, B. (2018). Assessment of land cover change in peri-urban high Andean environments south of Bogotá, Colombia. Land, 7(2):1–28.; Armenteras, D., Gast, F., and Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes , Colombia. Biological Conservation, 113:245–256.; Armenteras, D., Rodríguez, N., Retana, J., and Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 11(3):693–705; Arroyo-Rodríguez, V., Melo, F. P., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., and Tabarelli, M. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92(1):326–340.; Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L., and Mendoza-Vega, J. (2014). Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture, Ecosystems and Environment, 195:220–230; Bakker, M. A., Carreño-Rocabado, G., and Poorter, L. (2011). Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25(3):473–483.; Bautista-Cruz, A. and del Castillo, R. F. (2005). Soil Changes During Secondary Succession in a Tropical Montane Cloud Forest Area. Soil Science Society of America Journal, 69(3):906–914.; Bekku, Y., Koizumi, H., Nakadai, T., and Iwaki, H. (1995). Measurement of soil respiration using closed chamber method: An IRGA technique. Ecological Research, 10(3):369–373.; Berg, B. and Meentemeyer, V. (2002). Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242(1):83–92.; Bongers, F., Chazdon, R. L., and Poorter, L. (2015). The potential of secondary forests. Science, 348(6235):642–643.; Cavelier, J., Estevez, J., Arjona, B., Cavelier, J., Estevez, J., and Arjona, B. (2015). Fine-root Biomass in Three Successional Stages of an Andean Cloud Forest in Colombia. Biotropica, 28(4):728–736.; Chapin, F. S., Matson, P. A., and Vitousek, P. M. (2011). Decomposition and Ecosystem Carbon Budgets. In Principles of Terrestrial Ecosystem, pages 183–228. Springer, second edi edition.; Chazdon, R. L., Letcher, S. G., Van Breugel, M., Martínez-Ramos, M., Bongers, F., and Finegan, B. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1478):273–289; Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., and Deng, C. (2018). Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine foresttundra ecotone. Scientific Reports, 8:e14998.; Chokkalingam, U. and De Jong, W. (2001). Secondary forest: A working definition and typology. International Forestry Review, 3(1):19–26; Connell, J. H. and Slatyer, R. (1977). Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. The American naturalist, 111(982):1119 – 1144.; Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10):1065–1071.; De Deyn, G. B., Cornelissen, J. H. C., and Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5):516–531; de Godoy Fernandes, P. H., de Souza, A. L. T., Tanaka, M. O., and Sebastiani, R. (2021). Decomposition and stabilization of organic matter in an old-growth tropical riparian forest: effects of soil properties and vegetation structure. Forest Ecosystems, 8(1).; Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P., and Sweeney, S. (2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110:1–7.; Díaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., and Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104(52):20684–20689; Duan, B., Man, X., Cai, T., Xiao, R., and Ge, Z. (2020). Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an mountains, northeast China. Global Ecology and Conservation, 24:e01258.; Duque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., CalderónLoor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., Myers, J. A., Osinaga-Acosta, O., Peralvo, M., Pinto, E., Saatchi, S., Silman, M., Tello, J. S., Terán-Valdez, A., and Feeley, K. J. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12(1):1–10.; Eichenberg, D., Trogisch, S., Huang, Y., He, J. S., and Bruelheide, H. (2013). Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. Journal of Plant Ecology, 8(4):401–410.; Etter R., A. and Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7):432–439; Fang, X., Zhao, L., Zhou, G., Huang, W., and Liu, J. (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392(1-2):139–153.; Flores-Rentería, D., Rincón, A., Morán-López, T., Hereş, A. M., Pérez-Izquierdo, L., Valladares, F., and Yuste, J. C. (2018). Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak-forests. PeerJ, 2018(10); Gromova, M. S., Matvienko, A. I., Makarov, M. I., Cheng, C. H., and Menyailo, O. V. (2020). Temperature Sensitivity (Q10) of Soil Basal Respiration as a Function of Available Carbon Substrate, Temperature, and Moisture. Eurasian Soil Science, 53(3):377–382.; Guariguata, M. R. and Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3):185–206; Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201:187–195.; Hastwell, G. T. and Morris, E. C. (2013). Structural features of fragmented woodland communities affect leaf litter decomposition rates. Basic and Applied Ecology, 14(4):298–308.; Hertel, D., Hölscher, D., Köhler, L., and Leuschner, C. (2006). Changes in Fine Root System Size and Structure During Secondary Succession in a Costa Rican Montane Oak Forest. In Kappelle, M., editor, Ecology and Conservation of Neotropical Montane Oak Forests, volume 185 of Ecological Studies, pages 283–297. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.; Huang, W., Han, T., Liu, J., Wang, G., and Zhou, G. (2016). Changes in soil respiration components and their specific respiration along three successional forests in the subtropics. Functional Ecology, 30(8):1466–1474.; Huang, Y., Zhou, G., Tang, X., Jiang, H., Zhang, D., and Zhang, Q. (2011). Estimated soil respiration rates decreased with long-term soil microclimate changes in successional forests in Southern China. Environmental Management, 48(6):1189–1197; Hurtado-M, A. B., Echeverry-Galvis, M. Á., Salgado-Negret, B., Muñoz, J. C., Posada, J. M., and Norden, N. (2020). Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 0:1–11.; Hurtado-M, A. B., Muñoz, J. C., Ángela Echeverry-Galvis, M., and Norden, N. (2022). Bosques sucesionales en Colombia: una oportunidad para la recuperación de paisajes transformados Successional forests in Colombia: an opportunity for recovery of transformed landscapes. Caldasia, 44(2):332–344; Jewell, M. D., Shipley, B., Low-Décarie, E., Tobner, C. M., Paquette, A., Messier, C., and Reich, P. B. (2017). Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 126(7):959–971.; Jiang, L., Ma, S., Zhou, Z., Zheng, T., Jiang, X., Cai, Q., Li, P., Zhu, J., Li, Y., and Fang, J. (2016). Soil respiration and its partitioning in different components in tropical primary and secondary mountain rain forests in Hainan Island, China. Journal of Plant Ecology, 10(5):791– 799.; Keuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M. (2013). Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11):1070–1075.; Kovács, B., Tinya, F., and Ódor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agricultural and Forest Meteorology, 234-235:11–21.; Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123:1–22.; Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Ivar Korsbakken, J., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C.,Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M., Munro, D. R., Nabel, J. E., Nakaoka, S. I., O’Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Zaehle, S., Quéré, C. L., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., and Barbero, L. (2016). Global Carbon Budget 2016. Earth System Science Data, 8:605–649.; Lebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-García, E. A., and Bongers, F. (2010). Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12(4):267–275.; Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5):573–579.; Lewis, D. B., Castellano, M. J., and Kaye, J. P. (2014). Forest succession, soil carbon accumulation, and rapid nitrogen storage in poorly remineralized soil organic matter. Ecology, 95(10):2687–2693; Li, Y., Yang, F., Ou, Y., Zhang, D., Liu, J., Chu, G., Zhang, Y., Otieno, D., and Zhou, G. (2013). Changes in forest soil properties in different successional stages in lower tropical China. PLoS ONE, 8(11):1–10; Lin, L. C., Huang, P. H., and Weng, L. J. (2017). Selecting Path Models in SEM: A Comparison of Model Selection Criteria. Structural Equation Modeling, 24(6):855–869.; Lohbeck, M., Poorter, L., Martínez-Ramos, M., Bongers, F., and Craft, N. J. B. (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96(5):1242–1252.; Lohbeck, M., Poorter, L., Martínez-Ramos, M., Rodriguez-Velázquez, J., van Breugel, M., and Bongers, F. (2014). Changing drivers of species dominance during tropical forest succession. Functional Ecology, 28(4):1052–1058.; Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E. J., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13:2509–2537.; Markesteijn, L., Poorter, L., Bongers, F., Paz, H., and Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2):480–495; Mayer, M., Sandén, H., Rewald, B., Godbold, D. L., and Katzensteiner, K. (2017). Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 31(5):1163–1172; McCook, L. J. (1994). Understanding ecological community succession: Causal models and theories, a review. Vegetatio, 110(2):115–147.; Méndez-Alonzo, R., Paz, H., Zuluaga, R. C., Rosell, J. A., and Olson, M. E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93(11):2397–2406.; Mendoza S., J. E. and Etter R., A. (2002). Multitemporal analysis (1940-1996) of land cover changes in the southwestern Bogotá highplain (Colombia). Landscape and Urban Planning, 59(3):147–158; Metzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C., Lehmann, R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel, K., Totsche, K. U., Trumbore, S., and Hildebrandt, A. (2017). Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 31(22):3783–3795.; Muñoz, J. C., Hurtado-M, A. B., and Norden, N. (2017). COMPOSICIÓN FLORÍSTICA DE TRES FRAGMENTOS DE BOSQUE ALTOANDINO EN LOS ALREDEDORES DE LA SABANA DE BOGOTÁ. Technical report, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C.; Nakai, T., Sumida, A., Kodama, Y., Hara, T., and Ohta, T. (2010). A comparison between various definitions of forest stand height and aerodynamic canopy height. Agricultural and Forest Meteorology, 150:1225–1233.; Orrego, M., Ugawa, S., Inoue, A., Laplace, S., Kume, T., Koga, S., Hishi, T., and Enoki, T. (2022). Climate, Soil, and Plant Controls on Early-Stage Litter Decomposition in Moso Bamboo Stands at a Regional Scale. Frontiers in Forests and Global Change, 5(July):1–11; Pan, Y., Birdsey, R. A., Fang, J., Houghton, R. A., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333:988–993.; Petraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano, D., Abeli, T., Orsenigo, S., and Carbognani, M. (2019). Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435(1-2):187–200.; Pfeifer, M. (2015). Manual to measure and model leaf area index and its spatial variability on local and landscape scale.; Poorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., Chazdon, R. L., Farrior, C. E., Kambach, S., Meave, J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Zambrano, A. M. A., Amani, B., Andrade, J. L., Brancalion, P. H., Broadbent, E. N., de Foresta, H., Dent, D. H., Derroire, G., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Fantini, A. C., Finegan, B., Hernández-Jaramillo, A., Hernández-Stefanoni, J. L., Hietz, P., Junqueira, A. B., N’dja, J. K., Letcher, S. G., Lohbeck, M., López-Camacho, R., Martínez-Ramos, M., Melo, F. P., Mora, F., Müller, S. C., N’Guessan, A. E., Oberleitner, F., Ortiz-Malavassi, E., Pérez-García, E. A., Pinho, B. X., Piotto, D., Powers, J. S., Rodríguez-Buriticá, S., Rozendaal, D. M., Ruíz, J., Tabarelli, M., Teixeira, H. M., De Sá Barretto Sampaio, E. V., van der Wal,H., Villa, P. M., Fernandes, G. W., Santos, B. A., Aguilar-Cano, J., de Almeida-Cortez, J. S., Alvarez-Davila, E., Arreola-Villa, F., Balvanera, P., Becknell, J. M., Cabral, G. A., CastellanosCastro, C., de Jong, B. H., Nieto, J. E., Espírito-Santo, M. M., Fandino, M. C., García, H., García-Villalobos, D., Hall, J. S., Idárraga, A., Jiménez-Montoya, J., Kennard, D., MarínSpiotta, E., Mesquita, R., Nunes, Y. R., Ochoa-Gaona, S., Peña-Claros, M., Pérez-Cárdenas, N., Rodríguez-Velázquez, J., Villanueva, L. S., Schwartz, N. B., Steininger, M. K., Veloso, M. D., Vester, H. F., Vieira, I. C., Williamson, G. B., Zanini, K., and Hérault, B. (2021). Multidimensional tropical forest recovery. Science, 374(6573):1370–1376.; Prescott, C. E. and Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498(July):119522.; Quested, H., Eriksson, O., Fortunel, C., and Garnier, E. (2007). Plant traits relate to wholecommunity litter quality and decomposition following land use change. Functional Ecology, 21(6):1016–1026.; Raich, J. W. and Tufekcioglu, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1):71–90.; Rawat, M., Arunachalam, K., and Arunachalam, A. (2015). Plant functional traits and carbon accumulation in forest. Climate Change and Environmental Sustainability, 3(1):1–12.; Rodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., Brockelman, W. Y., and Tor-ngern, P. (2021). Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecology and Evolution, 11(21):15430–15443; Salazar-Villegas, A., Blagodatskaya, E., and Dukes, J. S. (2016). Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Frontiers in Microbiology, 7(APR):1–10.; Salazar-Villegas, A., Sulman, B. N., and Dukes, J. S. (2018). Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biology and Biochemistry, 116(October 2017):237–244.; Salgado-Negret, B., Pulido Rodriguez, E. N., Cabrera, M., Ruiz Osorio, C., and Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In Salgado-Negret, B., editor, Ecología Funcional como apróxmación al estudo, conservación, manejo y conservación de la biodiversidad, chapter 2, pages 36–79. Editorial Alexander von Humboldt, Bogotá D.C.; Sarneel, J. M., Sundqvist, M. K., Molau, U., Björkman, M. P., and Alatalo, J. M. (2020). Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming. Science of the Total Environment, 724:1–8.; Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1):1–31.; Schedlbauer, J. L. and Kavanagh, K. L. (2008). Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. Forest Ecology and Management, 255(3-4):1326– 1335.; Sedjo, R. and Sohngen, B. (2012). Carbon sequestration in forests and soils. Annual Review of Resource Economics, 4:127–144; Seidelmann, K. N., Scherer-Lorenzen, M., and Niklaus, P. A. (2016). Direct vs. Microclimatedriven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 11(8):1–17.; Six, J., Frey, S. D., Thiet, R. K., and Batten, K. M. (2006). Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70(2):555– 569.; Søe, A. R. and Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25(11):1427–1436.; Stoy, P. C., Lin, H., Novick, K. A., Siqueira, M. B. S., and Juang, J. Y. (2014). The role of vegetation on the ecosystem radiative entropy budget and trends along ecological succession. Entropy, 16(7):3710–3731.; Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18(1):336–348.; Trivedi, P., Wallenstein, M. D., Delgado-Baquerizo, M., and Singh, B. K. (2018). Microbial modulators and mechanisms of soil carbon storage. In Soil Carbon Storage: Modulators, Mechanisms and Modeling, pages 73–115. Elsevier; Valentini, C. M. A., Sanches, L., De Paula, S. R., Vourlitis, G. L., De Nogueira, J. S., Pinto, O. B., and De Lobo, F. A. (2009). Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest mato grosso, brazil. Journal of Geophysical Research: Biogeosciences, 114(1):1–11.; Vargas-Terminel, M. L., Flores-Rentería, D., Sánchez-Mejía, Z. M., Rojas-Robles, N. E., Sandoval-Aguilar, M., Chávez-Vergara, B., Robles-Morua, A., Garatuza-Payan, J., and Yépez, E. A. (2022). Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Systems, 6(4):75; Wang, C., Ma, Y., Trogisch, S., Huang, Y., Geng, Y., Scherer-Lorenzen, M., and He, J. S. (2017). Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. Journal of Plant Ecology, 10(1):36–46; Wardle, D. A., Bardgett, R. D., Walker, L. R., and Bonner, K. I. (2009). Among- and withinspecies variation in plant litter decomposition in contrasting long-term chronosequences. Functional Ecology, 23(2):442–453; Weiss, M. and Baret, F. (2017). CAN _ EYE V6.4.91 user manual. INRA SCIENCE & IMPACT; Wen, Z., Zheng, H., Smith, J. R., and Ouyang, Z. (2021). Plant functional diversity mediates indirect effects of land-use intensity on soil water conservation in the dry season of tropical areas. Forest Ecology and Management, 480(18):118646.; Wright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195:1–27.; Xiao, W., Ge, X., Zeng, L., Huang, Z., Lei, J., Zhou, B., and Li, M. (2014). Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China. PLoS ONE, 9(7):1–12.; You, S. J., Yin, Y., and Allen, H. E. (1999). Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Science of the Total Environment, 227(2-3):155–160.; https://repositorio.unal.edu.co/handle/unal/83980Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  3. 3
    دورية أكاديمية
  4. 4
    كتاب

    وصف الملف: p. 447-466

    العلاقة: Mwangi, M.; Mugendi, Daniel N.; KungŽu, James B.; Swift, M.J.; Albrecht, Alain. 2003. Soil invertebrate macrofauna composition within agroforestry and forested ecosystems and their role in litter decomposition in Embu, Kenya. In: Bationo, André (ed.). Managing nutrient cycles to sustain soil fertility in sub-Saharan Africa. Academy Science Publishers (ASP); Centro Internacional de Agricultura Tropical (CIAT), Nairobi, KE. p. 447-466.; https://hdl.handle.net/10568/55349Test; http://ciat-library.ciat.cgiar.org/Articulos_CIAT/Managing_Nutrient_Cycles.pdf#page=447Test

  5. 5
    رسالة جامعية
  6. 6
  7. 7
  8. 8

    المساهمون: Hernández Legnazzi, Jorge, Baietto Álvarez Sergio Andrés

    المصدر: REDI
    Agencia Nacional de Investigación e Innovación
    instacron:Agencia Nacional de Investigación e Innovación
    COLIBRI
    Universidad de la República
    instacron:Universidad de la República

    وصف الملف: application/pdf

  9. 9
  10. 10
    دورية أكاديمية