دورية أكاديمية

Neuroprotective potential of incretinomimetics ; Нейропротективный потенциал агонистов рецепторов глюкагоноподобного пептида 1-го типа

التفاصيل البيبلوغرافية
العنوان: Neuroprotective potential of incretinomimetics ; Нейропротективный потенциал агонистов рецепторов глюкагоноподобного пептида 1-го типа
المؤلفون: A. S. Kokin, L. A. Suplotova, T. S. Dushina, O. B. Makarova, А. С. Кокин, Л. А. Суплотова, Т. С. Душина, О. Б. Макарова
المصدر: Meditsinskiy sovet = Medical Council; № 9 (2023); 40-46 ; Медицинский Совет; № 9 (2023); 40-46 ; 2658-5790 ; 2079-701X
بيانات النشر: REMEDIUM GROUP Ltd.
سنة النشر: 2023
المجموعة: Medical Council (E-Journal) / Медицинский Совет
مصطلحات موضوعية: инкретиномиметики, neurodegenerative diseases, Parkinson’s disease, Alzheimer’s disease, glucagon-like peptide type 1 agonists, incretins, нейродегенеративные заболевания, болезнь Паркинсона, болезнь Альцгеймера, агонисты глюкагоноподобного пептида-1, инкретины
الوصف: In the prescriptions of an endocrinologist to patients with diabetes mellitus, glucagon-like peptide agonists, belonging to the group that affects the incretin system of the body, have recently been increasingly appearing. In addition to the pronounced hypoglycemic effect and high safety, these drugs also have many pleiotropic properties due to the presence of glucagon-like peptide receptors in the vascular endothelium, kidneys, heart and nervous tissue. The purpose of this work is to describe the most studied neuroprotective effects of this class of drugs. As materials in the course of the work, studies of domestic and foreign colleagues published in the period from 2008 to 2022 were used. Our work has shown that the neuroprotective effect of GLP-1 is associated with the activation of the corresponding receptor systems in the central nervous system, which leads to increased cellular survival in ischemic conditions by reducing reactive oxygen species, stimulating beta-oxidation by mitochondria, and reducing pro-inflammatory cytokines. In addition, the analysis of the literature also established the positive role of GLP-1 in neurodegenerative diseases – drugs reduce the amount of unnormal proteins (alphasynuclein, microtubular T-peptide, etc.), reduce the activity of non-enzymatic glycation of proteins in hyperglycemia, as well as reduce insulin resistance. The effects described above were analyzed during preclinical trials of GLP-1, and also demonstrated their validity in human models during some clinical trials. However, the data obtained is not yet sufficient to form clear indications for this class of drugs in neurology, so the topic requires further study and large clinical trials. ; В назначениях врача-эндокринолога пациентам с сахарным диабетом 2 типа (СД2) в последнее время все чаще фигурируют агонисты рецепторов глюкагоноподобного пептида-1 (арГПП-1), относящиеся к группе, воздействующей на инкретиновую систему организма. Помимо выраженного сахароснижающего эффекта и безопасности, эти препараты также ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
العلاقة: https://www.med-sovet.pro/jour/article/view/7604/6753Test; Цыганкова О.В., Веретюк В.В., Аметов А.С. Инкретины сегодня: множественные эффекты и терапевтический потенциал. Сахарный диабет. 2019;22(1):70–78. https://doi.org/10.14341/DM9841Test. Tsygankova O.V., Veretyuk V.V., Ametov A.S. Incretins today: multiple effects and therapeutic potential. Diabetes Mellitus. 2019;22(1):70–78. (In Russ.) https://doi.org/10.14341/DM9841Test.; Тюренков И.Н., Бакулин Д.А., Куркин Д.В., Волотова Е.В. Нейропротективные свойства инкретиномиметиков при ишемии головного мозга и нейродегенеративных заболеваниях. Проблемы эндокринологии. 2017;63(1):58–67. https://doi.org/10.14341/probl201763158-67Test. Tyurenkov I.N., Bakulin D.A., Kurkin D.V., Volotova E.V. Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases. Problemy Endokrinologii. 2017;63(1):58–67. (In Russ.) https://doi.org/10.14341/probl201763158-67Test.; Cork S.C., Richards J.E., Holt M.K., Gribble F.M., Reimann F., Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4(10):718–731. https://doi.org/10.1016/j.molmet.2015.07.008Test.; Shirazi R., Palsdottir V., Collander J., Anesten F., Vogel H., Langlet F. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci. 2013;110(40):16199–16204. https://doi.org/10.1073/pnas.1306799110Test.; Grieco M., Giorgi A., Gentile M.C., d’Erme M., Morano S., Maras B., Filardi T. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front Neurosci. 2019;13:1112. Available at: https://pubmed.ncbi.nlm.nih.govTest/ 31680842/.; Романцова Т.И. Аналог глюкагоноподобного пептида-1 лираглутид (Саксенда®): механизм действия, эффективность в лечении ожирения. Ожирение и метаболизм. 2018;15(1):3–11. https://doi.org/10.14341Test/ omet201813-11. Romantsova T.I. Gglucagon-like peptide-1 analogue liraglutide (Saxenda®): mechanism of action, efficacy for the treatment of obesity. Obesity and Metabolism. 2018;15(1):3–11. (In Russ.) https://doi.org/10.14341Test/ omet201813-11.; Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 2018;108:952–962. https://doi.org/10.1016/j.biopha.2018.08.088Test.; El Tabaa M.M., El Tabaa M.M., Anis A., Elgharabawy R.M., Borai El-Borai N. GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/ TLR4- NF-κB pathway. Int Immunopharmacol. 2022;110:108995. https://doi.org/10.1016/j.intimp.2022.108995Test.; Yan W., Pang M., Yu Y., Gou X., Si P., Zhawatibai A. et al. The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis. Life Sci. 2019;231:116566. https://doi.org/10.1016/j.lfs.2019.116566Test.; Finan B., Ma T., Ottaway N., Müller T.D., Habegger K.M., Heppner K.M. et al. Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Sci Transl Med. 2013;5(209):209ra151. https://doi.org/10.1126/scitranslmed.3007218Test.; Flanagan M., Sonnen J.A., Keene C.D., Hevner R.F., Montine T.J. Molecular Basis of Diseases of the Nervous System. Molecular Pathology. Elsevier. 2018:651–690. https://doi.org/10.1016/B978-0-12-802761-5.00029-8Test.; Quillinan N., Herson P.S., Traystman R.J. Neuropathophysiology of Brain Injury. Anesthesiol Clin. 2016;34(3):453–464. https://doi.org/10.1016/jTest. anclin.2016.04.011.; Власов Т.Д., Симаненкова А.В., Дора С.В., Шляхто Е.В. Механизмы нейропротективного действия инкретиномиметиков. Сахарный диабет. 2016;19(1):16–23. https://doi.org/10.14341/DM7192Test. Vlasov T.D., Simanenkova A.V., Dora S.V., Shlyakhto E.V. Mechanisms of neuroprotective action of incretin mimetics. Diabetes Mellitus. 2016;19(1):16–23. (In Russ.) https://doi.org/10.14341/DM7192Test.; Deng C., Cao J., Han J., Li J., Li Z., Shi N., He J. Liraglutide Activates the Nrf2/HO-1 Antioxidant Pathway and Protects Brain Nerve Cells against Cerebral Ischemia in Diabetic Rats. Comput Intell Neurosci. 2018; 2018:3094504. https://doi.org/10.1155/2018/3094504Test.; Yang X., Qiang Q., Li N., Feng P., Wei W., Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol. 2022;13:844697. https://doi.org/10.3389/fneur.2022.844697Test.; Zhang H., Meng J., Zhou S., Liu Y., Qu D., Wang L. et al. Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect Against Cerebral Ischemia in Mice. AAPS J. 2016;18(2):385–394. https://doi.org/10.1208/s12248-015-9854-1Test.; Timper K., Del Río-Martín A., Cremer A.L., Bremser S., Alber J., Giavalisco P. et al. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metab. 2020;31(6):1189–1205.e13. https://doi.org/10.1016/j.cmet.2020.05.001Test.; Shandilya A., Mehan S., Kumar S., Sethi P., Narula A.S., Alshammari A. et al. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules. 2022;27(12):3878. https://doi.org/10.3390/molecules27123878Test.; Nizari S., Basalay M., Chapman P., Korte N., Korsak A., Christie I.N. et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol. 2021;116(1):32. https://doi.org/10.1007/s00395-021-00873-9Test.; Bai B., Li D., Xue G., Feng P., Wang M., Han Y. et al. The novel GLP-1/GIP dual agonist DA3-CH is more effective than liraglutide in reducing endoplasmic reticulum stress in diabetic rats with cerebral ischemia-reperfusion injury. Nutri Metab Cardiovasc Dis. 2021;31(1):333–343. https://doi.org/10.1016/jTest. numecd.2020.09.002.; Li Y., Gong M. Analysis of the neuroprotective effect of GLP‐1 receptor agonist peptide on cerebral ischemia‐reperfusion injury by Quantitative Proteomics Mass Spectrometry. Brain Behav. 2021;11(6):е02190. https://doi.org/10.1002/brb3.2190Test.; Augestad I.L., Dekens D., Karampatsi D., Elabi O., Zabala A., Pintana H. et al. Normalisation of glucose metabolism by exendin‐4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol. 2022;179(4):677–694. https://doi.org/10.1111/bph.15524Test.; Shan Y., Tan S., Lin Y., Liao S., Zhang B., Chen X. et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019;16(1):242. https://doi.org/10.1186/s12974-019-1638-6Test.; Xie Z., Enkhjargal B., Wu L., Zhou K., Sun C., Hu X. et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–151. https://doi.org/10.1016/j.neuropharm.2017.09.040Test.; Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A. et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045Test.; Irvine G.B., El-Agnaf O.M., Shankar G.M., Walsh D.M. Protein Aggregation in the Brain: The Molecular Basis for Alzheimer’s and Parkinson’s Diseases. Mol Med. 2008;14(7–8):451–464. https://doi.org/10.2119/2007-00100.IrvineTest.; Hong C.T., Chen K.Y., Wang W., Chiu J.Y., Wu D., Chao T.Y. et al. Insulin Resistance Promotes Parkinson’s Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells. 2020;9(3):740. https://doi.org/10.3390/cells9030740Test.; Aghanoori M.-R., Smith D.R., Roy Chowdhury S., Sabbir M.G., Calcutt N.A., Fernyhough P. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol. 2017;297:148–157. https://doi.org/10.1016/j.expneurol.2017.08.005Test.; Porniece Kumar M., Cremer L., Klemm P., Steuernagel L., Sundaram S., Jais A. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab. 2021;3(12):1662–1679. https://doi.org/10.1038/s42255-021-00499-0Test.; García-Cáceres C., Quarta C., Varela L., Gao Y., Gruber T., Legutko B. et al. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell. 2016;166(4):867–880. https://doi.org/10.1016/j.cell.2016.07.028Test.; Kim D.S., Choi H.I., Wang Y., Luo Y., Hoffer B.J., Greig N.H. A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The GlucagonLike Peptide-1 Receptor Pathway. Cell Transplant. 2017;26(9):1560–1571. https://doi.org/10.1177/0963689717721234Test.; Fiory F., Perruolo G., Cimmino I., Cabaro S., Pignalosa F.C., Miele C. et al. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci. 2019;13:868. https://doi.org/10.3389/fnins.2019.00868Test.; Yang L., Wang H., Liu L., Xie A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front Neurosci. 2018;12:73. https://doi.org/10.3389/fnins.2018.00073Test.; Li Y., Perry T., Kindy M.S., Harvey B.K., Tweedie D., Holloway H.W. et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci. 2009;106(4):1285–1290. https://doi.org/10.1073/pnas.0806720106Test.; Mahapatra M.K., Karuppasamy M., Sahoo B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, NonAlcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm Res. 2022;39(6):1233–1248. https://doi.org/10.1007Test/ s11095-022-03302-1.; Zhang L., Zhang L., Li L., Hölscher C. Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson’s Disease. J Parkinsons Dis. 2019;9(1):157–171. https://doi.org/10.3233Test/ JPD-181503.; Harkavyi A., Abuirmeileh A., Lever R., Kingsbury A.E., Biggs C.S., Whitton P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5(1):19. https://doi.org/10.1186/1742-2094-5-19Test.; Oh Y., Jun H.S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci. 2017;19(1):26. https://doi.org/10.3390/ijms19010026Test.; Salameh T.S., Rhea E.M., Talbot K., Banks W.A. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol. 2020;180:114187. https://doi.org/10.1016/j.bcp.2020.114187Test.; Wiciński M., Socha M., Malinowski B., Wódkiewicz E., Walczak M., Górski K. et al. Liraglutide and its Neuroprotective Properties–Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int J Mol Sci. 2019;20(5):1050. https://doi.org/10.3390/ijms20051050Test.; Hunter K., Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13(1):33. https://doi.org/10.1186/1471-2202-13-33Test.; Zeng S.S., Bai J.J., Jiang H., Zhu J.J., Fu C.C., He M.Z. et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic–Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2020;13:585. https://doi.org/10.3389/fncel.2019.00585Test.; Boehme A.K., Esenwa C., Elkind M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ Res. 2017;120(3):472–495. https://doi.org/10.1161Test/ CIRCRESAHA.116.308398.; Zhu H., Zhang Y., Shi Z., Lu D., Li T., Ding Y. et al. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci Rep. 2016;6(1):26859. https://doi.org/10.1038/srep26859Test.; Abdel-latif R.G., Heeba G.H., Taye A., Khalifa M.M.A. Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/ independent pathways. Eur J Pharmacol. 2018;833:145–154. https://doi.org/10.1016/j.ejphar.2018.05.045Test.; Zhang Q., Liu C., Shi R., Zhou S., Shan H., Deng L. et al. Blocking C3d+ / GFAP+ A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis. 2022;13(3):943–959. https://doi.org/10.14336/AD.2021.1029Test.; Basalay M., Davidson S.M., Yellon D.M. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues–Liraglutide and Semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–667. https://doi.org/10.1007/s10557-019-06915-8Test.; Strain W.D., Frenkel O., James M.A., Leiter L.A., Rasmussen S., Rothwell P.M. et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–2757. https://doi.org/10.1161/STROKEAHA.121.037775Test.; Riddle M.C., Gerstein H.C., Xavier D., Cushman W.C., Leiter L.A., Raubenheimer P.J. et al. Efficacy and Safety of Dulaglutide in Older Patients: A post hoc Analysis of the REWIND trial. J Clin Endocrinol Metab. 2021;106(5):1345–1351. https://doi.org/10.1210/clinem/dgab065Test.; Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056Test/ NEJMoa1603827.; De Pablo-Fernandez E., Goldacre R., Pakpoor J., Noyce A.J., Warner T.T. Association between diabetes and subsequent Parkinson disease. Neurology. 2018;91(2):e139–e142. https://doi.org/10.1212/WNL.0000000000005771Test.; Athauda D., Maclagan K., Skene S.S., Bajwa-Joseph M., Letchford D., Chowdhury K. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. https://doi.org/10.1016/S0140-6736Test(17) 31585-4.; Aviles-Olmos I., Dickson J., Kefalopoulou Z., Djamshidian A., Ell P., Soderlund T. et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–2736. https://doi.org/10.1172/JCI68295Test.; Femminella G.D., Frangou E., Love S.B., Busza G., Holmes C., Ritchie C. et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20(1):191. https://doi.org/10.1186/s13063Test- 019-3259-x.; https://www.med-sovet.pro/jour/article/view/7604Test
DOI: 10.21518/ms2023-159
الإتاحة: https://doi.org/10.21518/ms2023-159Test
https://doi.org/10.14341/DM9841Test
https://doi.org/10.14341/probl201763158-67Test
https://doi.org/10.1016/j.molmet.2015.07.008Test
https://doi.org/10.1073/pnas.1306799110Test
https://doi.org/10.1016/j.intimp.2022.108995Test
https://doi.org/10.1016/j.lfs.2019.116566Test
https://doi.org/10.1126/scitranslmed.3007218Test
https://doi.org/10.1016/B978-0-12-802761-5.00029-8Test
https://doi.org/10.1016/jTest
حقوق: Authors publishing their articles in this journal shall agree to the following:Authors reserve the copyright to the work and grant the journal a license to publish the work for the first time Creative Commons Attribution License (CC BY- NC-ND), which allows other persons to distribute this work with the obligatory preservation of references to the authors of the original work and the original publication in this journal.Authors reserve the right to conclude separate contractual arrangements regarding the non-exclusive distribution of the work version in the form published here (for example, posting it in the institute’s repository, publication in a book), with reference to its original publication in this journal.Authors have the right to post work on the Internet (for example, in the institute’s repository or personal website) before and during the process of considering it by this journal, as this can result in a productive discussion and more references to this work. ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License (CC BY- NC-ND), которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию.Авторы имеют право размещать работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).
رقم الانضمام: edsbas.2F8534BD
قاعدة البيانات: BASE