يعرض 1 - 10 نتائج من 2,915 نتيجة بحث عن '"genes, erbb-2"', وقت الاستعلام: 1.45s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492 2. Diaz Casas S, Lancheros García E, Sanchéz Campo A, Sanchez Pedraza R, Roman Vasquez V, Mendoza SD, et al. Clinical Behavior of Triple Negative Breast Cancer in a Cohort of Latin American Women. Cureus. 2019;11(6):e4963. doi:10.7759/cureus.4963 3. World Health Organization. Colombia Source: Globocan 2018 The global cancer observatory [Internet]. 2018 [Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfTest. 4. Behravan H, Hartikainen JM, Tengström M, Kosma VM, Mannermaa A. Predicting breast cancer risk using interacting genetic and demographic factors and machine learning. Sci Rep. 2020;10(1):11044. doi:10.1038/s41598-020-66907-9 5. Godone RLN, Leitão GM, Araújo NB, Castelletti CHM, Lima-Filho JL, Martins DBG. Clinical and molecular aspects of breast cancer: Targets and therapies. Biomed Pharmacother. Biomed Pharmacother. 2018;106:14-34. doi:10.1016/j.biopha.2018.06.066 6. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. doi:10.1038/35021093. 7. Serrano Gómez S. Perfil molecular del cáncer de mama en la población colombiana: Pontificia Universidad Javeriana; 2016. 8. Kalinowski L, Saunus JM, McCart Reed AE, Lakhani SR. Breast Cancer Heterogeneity in Primary and Metastatic Disease. Adv Exp Med Biol. 2019;1152:75-104. doi:10.1007/978-3-030-20301-6_6 9. Vinatzer U, Dampier B, Streubel B, Pacher M, Seewald MJ, Stratowa C, et al. Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res. 2005;11(23):8348-57. doi:10.1158/1078-0432.CCR-05-0841 10. Nadler Y, González AM, Camp RL, Rimm DL, Kluger HM, Kluger Y. Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann Oncol. 2010;21(3):466-73. doi:10.1093/annonc/mdp346 11. Luoh SW, Wagoner W, Wang X, Hu Z, Lai X, Chin K, et al. GRB7 dependent proliferation of basal-like, HER-2 positive human breast cancer cell lines is mediated in part by HER-1 signaling. Mol Carcinog. 2019;58(5):699-707. doi:10.1002/mc.22963 12. Kpetemey M, Chaudhary P, Van Treuren T, Vishwanatha JK. MIEN1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics. Oncotarget. 2016;7(34):54913-24. 13. Yin K, Ba Z, Li C, Xu C, Zhao G, Zhu S, et al. Overexpression of C35 in breast carcinomas is associated with tumor progression and lymphnode metastasis. Biosci Trends. 2015;9(6):386-92. doi:10.5582/bst.2015.01161 14. Zhao HB, Zhang XF, Wang HB, Zhang MZ. Migration and invasion enhancer 1 (MIEN1) is overexpressed in breast cancer and is a potential new therapeutic molecular target. Genet Mol Res. 2017;16(1). doi:10.4238/gmr16019380 15. Van Treuren T, Vishwanatha JK. CRISPR deletion of MIEN1 in breast cancer cells. PLoS One. 2018;13(10):e0204976. doi:10.1371/journal.pone.0204976 16. Kushwaha PP, Gupta S, Singh AK, Kumar S. Emerging Role of Migration and Invasion Enhancer 1 (MIEN1) in Cancer Progression and Metastasis. Front Oncol. 2019;9:868. doi:10.3389/fonc.2019.00868 17. Chu PY, Tai YL, Shen TL. Grb7, a Critical Mediator of EGFR/ErbB Signaling, in Cancer Development and as a Potential Therapeutic Target. Cells. 2019;8(5):435. doi:10.3390/cells8050435 18. Bivin WW, Yergiyev O, Bunker ML, Silverman JF, Krishnamurti U. GRB7 Expression and Correlation With HER2 Amplification in Invasive Breast Carcinoma. Appl Immunohistochem Mol Morphol. 2017;25(8):553-558. doi:10.1097/PAI.0000000000000349 19. Sparano JA, Goldstein LJ, Childs BH, Shak S, Brassard D, Badve S, et al. Relationship between quantitative GRB7 RNA expression and recurrence after adjuvant anthracycline chemotherapy in triple-negative breast cancer. Clinical Cancer Research. 2011;17(22):7194-203. doi:10.1158/1078-0432.CCR-10-3357 20. Lucas-Fernández E, García-Palmero I, Villalobo A. Genomic organization and control of the grb7 gene family. Curr Genomics. 2008;9(1):60-68. doi:10.2174/138920208783884847 21. Tang Y, Yang S, Wang M, Liu D, Liu Y, Zhang Y, et al. Epigenetically altered miR‑193a‑3p promotes HER2 positive breast cancer aggressiveness by targeting GRB7. Int J Mol Med. 2019;43(6):2352-60. doi:10.3892/ijmm.2019.4167 22. Sang J, Kulkarni K, Watson GM, Ma X, Craik DJ, Henriques ST, et al. Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules. 2019;24(20):3739. doi:10.3390/molecules24203739. 23. Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, et al. A novel variant of human Grb7 is associated with invasive esophageal carcinoma. J Clin Invest. 1998;102(4):821-7. doi:10.1172/JCI2921 24. Gotovac JR, Liu DS, Yates MJ, Milne JV, Macpherson AA, Simpson KJ, et al. GRB7 is an oncogenic driver and potential therapeutic target in oesophageal adenocarcinoma. J Pathol. 2020;252(3):317-329. doi:10.1002/path.5528 25. Watson GM, Lucas WAH, Gunzburg MJ, Wilce JA. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target. Front Mol Biosci. 2017;4:64. doi:10.3389/fmolb.2017.00064 26. Han DC, Shen TL, Guan JL. The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene. 2001;20(44):6315-21. doi:10.1038/sj.onc.120477 27. Watson GM, Wilce JA. Direct Interaction between Calmodulin and the Grb7 RA-PH Domain. Int J Mol Sci. 2020;21(4):1336. doi:10.3390/ijms21041336. 28. Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells. 2020;9(1):192. doi:10.3390/cells9010192 29. Alcalde J, González-Muñoz M, Villalobo A. Grb7-derived calmodulin-binding peptides inhibit proliferation, migration and invasiveness of tumor cells while they enhance attachment to the substrate. Heliyon. 2020;6(5):e03922. https://doi.org/10.1016/j.heliyon.2020.e03922Test 30. Watson GM, Kulkarni K, Brandt R, Del Borgo MP, Aguilar MI, Wilce JA. Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide. ACS Omega. 2017;2(2):670-677. doi:10.1021/acsomega.6b00561 31. Frantz JD, Giorgetti-Peraldi S, Ottinger EA, Shoelson SE. Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J Biol Chem. 1997;272(5):2659-67. doi:10.1074/jbc.272.5.2659 32. García-Palmero I, Shah N, Ali NA, Daly RJ, Wilce JA, Villalobo A. Partners of wild type Grb7 and a mutant lacking its calmodulin-binding domain. Arch Biochem Biophys. 2020;687:108386. doi:10.1016/j.abb.2020.108386 33. Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochim Biophys Acta Mol Cell Res. 2018;1865(3):507-21. doi:10.1016/j.bbamcr.2017.12.004 34. Bradford AM, Koirala R, Park CK, Lyons BA. Characterization of the full-length human Grb7 protein and a phosphorylation representative mutant. J Mol Recognit. 2019;32(11):e2803. doi:10.1002/jmr.2803 35. Bai T, Luoh SW. GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis. 2008;29(3):473-9. doi:10.1093/carcin/bgm221 36. Pradip D, Bouzyk M, Dey N, Leyland-Jones B. Dissecting GRB7-mediated signals for proliferation and migration in HER2 overexpressing breast tumor cells: GTP-ase rules. Am J Cancer Res. 2013;3(2):173-95. 37. Shen TL, Guan JL. Grb7 in intracellular signaling and its role in cell regulation. Front Biosci. 2004;9:192-200. doi:10.2741/1229 38. Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol. 2000;14(11):1750-75. doi:10.1210/mend.14.11.0553 39. Watson GM, Kulkarni K, Sang J, Ma X, Gunzburg MJ, Perlmutter P, et al. Discovery, Development, and Cellular Delivery of Potent and Selective Bicyclic Peptide Inhibitors of Grb7 Cancer Target. J Med Chem. 2017;60(22):9349-59. https://doi.org/10.1021/acs.jmedchem.7b01320Test 40. Tai YL, Tung LH, Lin YC, Lu PJ, Chu PY, Wang MY, et al. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS One. 2016;11(9):e0163617. doi:10.1371/journal.pone.0163617 41. Giricz O, Calvo V, Pero SC, Krag DN, Sparano JA, Kenny PA. GRB7 is required for triple-negative breast cancer cell invasion and survival. Breast Cancer Res Treat. 2012;133(2):607-15. doi:10.1007/s10549-011-1822-6 42. Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, et al. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 1994;13(6):1331-40. 43. Vermehren-Schmaedick A, Mhawech-Fauceglia P, Park BS, Pejovic T, Luoh SW. The prognostic significance of GRB7 protein expression and localization in human breast and ovarian cancers. Oncotarget. 2020;11(24):2273-2289. doi:10.18632/oncotarget.27593 44. Luoh SW, Ramsey B, Hanlon Newell A, Troxell M, Hu Z, Chin K, et al. HER-2 gene amplification in human breast cancer without concurrent HER-2 over-expression. Springerplus. 2013;2:386. doi:10.1186/2193-1801-2-386 45. Watson GM, Gunzburg MJ, Ambaye ND, Lucas WAH, Traore DA, Kulkarni K, et al. Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target. J Med Chem. 2015;58(19):7707-18. doi:10.1021/acs.jmedchem.5b00609; https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1119/1863Test; Pre-Print; Revista Repertorio de Medicina y Cirugía; https://repositorio.fucsalud.edu.co/handle/001/3020Test; https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1119Test

  6. 6
  7. 7
    دورية أكاديمية

    المساهمون: Cruz-López,O, Ner,M, Campos,JM, Conejo-García,A Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain. Cruz-López,O, Jiménez-Martínez,Y, Marchal,JA, Boulaiz,H, Conejo-García,A Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain. Nerín-Fonz,F, Araripe,D, Gutiérrez-de-Terán,H Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweeden. Jiménez-Martínez,Y, Boulaiz,H Biopathology and Medicine Regenerative Institute, University of Granada, Granada, Spain. Jiménez-Martínez,Y, Boulaiz,H Excellence Research Unit “Modeling Nature” (MNat), Department of Human Anatomy and Embryology, University of Granada, Granada, Spain., A. C. -G. is thankful to Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (Excellence Research Project P18-RT-1679) and the Oficina de Transferencia de Resultados de Investigación of the University of Granada (PR/17/006 project) for financial support. J. A. M. and H. B. thanks Instituto de Salud Carlos III (RTI2018-101309-B-C22), Fundación Mutua Madrileña (project FMM-AP16683-2017), Consejería de Salud Junta de Andalucía (PI-0089-2017) for financial support.

    مصطلحات موضوعية: Antitumour, Pyroptosis, HER2, Receptor, Molecular modelling, Benzoxazepines, Cancer cell line, Antineoplásicos, Piroptosis, Genes erbB-2, Modelos moleculares, Línea celular tumoral, Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Therapeutic Uses::Antineoplastic Agents, Medical Subject Headings::Anatomy::Cells::Cells, Cultured::Cell Line::Cell Line, Tumor, Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation, Medical Subject Headings::Phenomena and Processes::Physiological Phenomena::Pharmacological Phenomena::Dose-Response Relationship, Drug, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Cytological Techniques::Drug Screening Assays, Antitumor, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models, Theoretical::Models, Molecular, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Molecular Structure, Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Enzyme Inhibitors::Protein Kinase Inhibitors, Medical Subject Headings::Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::Phosphotransferases::Phosphotransferases (Alcohol Group Acceptor)::Protein Kinases::Protein-Tyrosine Kinases::Receptor Protein-Tyrosine Kinases::Receptor, erbB-2

    وصف الملف: application/pdf

    العلاقة: Cruz-López O, Ner M, Nerín-Fonz F, Jiménez-Martínez Y, Araripe D, Marchal JA, et al. Design, synthesis, HER2 inhibition and anticancer evaluation of new substituted 1,5-dihydro-4,1-benzoxazepines. J Enzyme Inhib Med Chem. 2021 Dec;36(1):1553-1563; http://hdl.handle.net/10668/4437Test; PMC8279156

  8. 8
  9. 9
  10. 10