يعرض 1 - 10 نتائج من 211 نتيجة بحث عن '"food fiber"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The article is prepared as part of the research under the State Assignment No. FGUS-2022–0013 of Gorbatov Federal State Research Center for Food Systems of Russian Academy of Sciences., Статья подготовлена в рамках выполнения исследований по государственному заданию № FGUS-2022–0013 Федерального научного центра пищевых систем им. В. М. Горбатова Российской академии наук.

    المصدر: Food systems; Vol 6, No 2 (2023); 261-268 ; Пищевые системы; Vol 6, No 2 (2023); 261-268 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-2

    وصف الملف: application/pdf

    العلاقة: https://www.fsjour.com/jour/article/view/276/237Test; Pirsa, S., Hafezi, K. (2023). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 399, Article 133967. https://doi.org/10.1016/j.foodchem.2022.133967Test; Himashree, P., Sengar, A. S., Sunil, C. K. (2022). Food thickening agents: Sources, chemistry, properties and applications — A review. International Journal of Gastronomy and Food Science, 27, Article 100468. https://doi.org/10.1016/j.ijgfs.2022.100468Test; Творогова, А. А. Мороженое в России и СССР: теория, практика. Развитие технологий. Спб: Профессия, 2021.; Goff, H. D. (2019). The Structure and Properties of Ice Cream and Frozen Desserts. Chapter in a book: Encyclopedia of Food Chemistry (Vol.3). Elsevier Inc., 2019. https://doi.org/10.1016/B978Test–0–08–100596–5.21703–4; Cheng, J., Dudu, O. E., Li, X., Yan, T. (2020). Effect of emulsifier-fat interactions and interfacial competitive adsorption of emulsifiers with proteins on fat crystallization and stability of whipped-frozen emulsions. Food Hydrocolloids, 101, Article 105491. https://doi.org/10.1016/j.foodhyd.2019.105491Test; Goff, H. D., Hartel, R. W. (2013) Ice cream. Springer, 2013. https://doi.org/10.1007/978Test–1–4614–6096–1; Loffredi, E., Moriano, M. E., Masseroni, L., Alamprese, C. (2021). Effects of different emulsifier substitutes on artisanal ice cream quality. LWT, 137, Article 110499. https://doi.org/10.1016/j.lwt.2020.110499Test; Blankart, M., Oellig, C., Averweg, S., Schwack, W., Hinrichs, J. (2020). Effect of storage at high temperature on chemical (composition) and techno-functional characteristics of E471 food emulsifiers applied to aerosol whipping cream. Journal of Food Engineering, 277, Article 109882. https://doi.org/10.1016/j.jfoodeng.2019.109882Test; Гурский, И. А., Творогова, А. А. (2022). Влияние количества желатина на показатели консистенции размороженного кисломолочного десерта. Холодильная техника, 2, 123–130. https://doi.org/10.17816/RF108504Test; Sari, D., Nuraini, H., Suryati, T. (September 20–21, 2022). Application of gelatin from chicken leg skin as a stabilizer in ice cream. IOP Conference Series: Earth and Environmental Science, 1097(1), Article 012036. Malang, Indonesia. https://doi.org/10.1088/1755Test–1315/1097/1/012036; Alipal, J., Mohd Pu’ad, N. A. S., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H. et al. (2021). A review of gelatin: Properties, sources, process, applications, and commercialization. Materials Today: Proceedings, 42(Part 1), 240–250. https://doi.org/10.1016/j.matpr.2020.12.922Test; Zhang, T., Xu, J., Zhang, Y., Wang, X., Lorenzo, J. M., Zhong, J. (2020). Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends in Food Science & Technology, 106, 113–131. https://doi.org/10.1016/j.tifs.2020.10.005Test; Творогова, А. А., Коновалова, Т. В. (2015). Обоснование технологической функциональности нативных крахмалов в производстве мороженого без пищевых добавок. Холодильная техника, 6, 39–42.; Yun, D., Wang, Z., Li, C., Chen, D., Liu, J. (2023). Antioxidant and antimicrobial packaging films developed based on the peel powder of different citrus fruits: A comparative study. Food Bioscience, 51, Article 102319. https://doi.org/10.1016/j.fbio.2022.102319Test; Ademosun, A. O. (2002). Citrus peels odyssey: From the waste bin to the lab bench to the dining table. Applied Food Research, 2(1), Article 100083. https://doi.org/10.1016/j.afres.2022.100083Test; Lee, G. J., Lee, S. Y., Kang, N.-G., Jin, M. H. (2022). A multi-faceted comparison of phytochemicals in seven citrus peels and improvement of chemical composition and antioxidant activity by steaming. LWT, 160, Article 113297. https://doi.org/10.1016/j.lwt.2022.113297Test; Wedamulla, N. E., Fan, M., Choi, Y.-J., Kim, E.-K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. Journal of Functional Foods, 95, Article 105163. https://doi.org/10.1016/j.jff.2022.105163Test; Qi, J.-R., Song, L.-W., Zeng, W.-Q., Liao, J.-S. (2020). Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chemistry, 343, Article 128523. https://doi.org/10.1016/j.foodchem.2020.128523Test; Caggia, C., Palmeri, R., Russo, N., Timpone, R., Randazzo, C. L., Todaro, A. et al. (2020). Employ of citrus by-product as fat replacer ingredient for bakery confectionery products. Frontiers in Nutrition, 7, Article 46. https://doi.org/10.3389/fnut.2020.00046Test; Spina, A., Brighina, S., Muccilli, S., Mazzaglia, A., Fabroni, S., Fallico, B. et al. (2019). Wholegrain durum wheat bread fortified with citrus fibers: Evaluation of quality parameters during long storage. Frontiers in Nutrition, 6, Article 13. https://doi.org/10.3389/fnut.2019.00013Test; Jiang, Z., Mu, S., Ma, C., Liu, Y., Ma, Y., Zhang, M. et al. (2022). Consequences of ball milling combined with high-pressure homogenization on structure, physicochemical and rheological properties of citrus fiber. Food Hydrocolloids, 127, Article 107515. https://doi.org/10.1016/j.foodhyd.2022.107515Test; Serial, M. R., Velichko, E., Nikolaeva, T., den Adel, R., Terenzi, C., Bouwman, W. G. et al. (2021). High-pressure homogenized citrus fiber cellulose dispersions: Structural characterization and flow behavior. Food Structure, 30, Article 100237. https://doi.org/10.1016/j.foostr.2021.100237Test; Agoda-Tandjawa, G., Mazoyer, J., Wallecan, J., Langendorff, V. (2020). Effects of sucrose addition on the rheological properties of citrus peel fiber suspensions before and after drying. Food Hydrocolloids, 101, Article 105473. https://doi.org/10.1016/j.foodhyd.2019.105473Test; Su, D., Zhu, X., Adhikari, B., Li., D., Wang, L. (2020). Effect of high-pressure homogenization on the rheology, microstructure and fractal dimension of citrus fiber-oil dispersions. Journal of Food Engineering, 277, Article 109899. https://doi.org/10.1016/j.jfoodeng.2019.109899Test; Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4(2), 250–258. https://doi.org/10.1016/j.bcab.2015.02.003Test; Liu, X., Sala, G., Scholten, E. (2022) Effect of fat aggregate size and percentage on the melting properties of ice cream. Food Research International, 160, Article 111709. https://doi.org/10.1016/j.foodres.2022.111709Test; Zhao, Y., Khalesi, H., He, J., Fang, Y. (2023). Application of different hydrocolloids as fat replacer in low-fat dairy products: Ice cream, yogurt and cheese. Food Hydrocolloids, 138, Article 108493. https://doi.org/10.1016/j.foodhyd.2023.108493Test; Dervisoglu, M., Yazici, F. (2006). Note. The effect of citrus fibre on the physical, chemical and sensory properties of ice cream. Food Science and Technology International, 12(2), 159–164. https://doi.org/10.1177/1082013206064005Test; X, E., Pei, Z. J., Schmidt, K. A. (2010). Ice Cream: Foam formation and stabilization- A Review. Food Reviews International, 26(2), 122–137. https://doi.org/10.1080/87559120903564472Test; Baer, R. J., Wolkow, M. D., Kasperson, K. M. (1997). Effect of emulsifiers on the body and texture of low fat ice cream. Journal of Dairy Science, 80(12), 3123–3132. https://doi.org/10.3168/jds.s0022Test–0302(97)76283–0; Inoue, K., Ochi, H., Habara, K., Taketsuka, M., Saito, H., Ichihashi, N. et al. (2009). Modeling of the effect of freezer conditions on the hardness of ice cream using response surface methodology. Journal of Dairy Science, 92(12), 5834–5842. https://doi.org/10.3168/jds.2009Test–2228; Muse, M. R., Hartel, R. W. (2004). Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022Test–0302(04)73135–5; Yu, B., Zeng, X., Wang, L., Regenstein, J. M. (2020). Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydrate Polymers, 254, Article 117415. https://doi.org/10.1016/j.carbpol.2020.117415Test; https://www.fsjour.com/jour/article/view/276Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المساهمون: 1

    المصدر: Almanac of Clinical Medicine; Vol 50, No 4 (2022); 264-273 ; Альманах клинической медицины; Vol 50, No 4 (2022); 264-273 ; 2587-9294 ; 2072-0505

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المساهمون: Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)

    المصدر: International Journal of Engineering and Advanced Technology (IJEAT) 10(2) 81-87

    مصطلحات موضوعية: Seaweed, Caulerpasp., film strips, food fiber, ISSN, Retrieval Number