يعرض 1 - 10 نتائج من 95 نتيجة بحث عن '"finite difference time domain method (FDTD)"', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Remote Sensing; Volume 14; Issue 10; Pages: 2397

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Remote Sensing in Agriculture and Vegetation; https://dx.doi.org/10.3390/rs14102397Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: TecnoLógicas; Vol. 22 No. 45 (2019); 155-171 ; TecnoLógicas; Vol. 22 Núm. 45 (2019); 155-171 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; text/xml; text/html

    العلاقة: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1161/1194Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1161/1292Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1161/1393Test; M. Paolone, F. Rachidi-Haeri, and C. A. Nucci, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines,” IEEE Std 1410-2004 (Revision IEEE Std 1410-1997), 2010.; A. Borghetti, C. A. Nucci, and M. Paolone, “An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 684–692, Jan. 2007. https://doi.org/10.1109/TPWRD.2006.881463Test.; C. A. Nucci, F. Rachidi, M. V. Ianoz, and C. Mazzetti, “Lightning-induced voltages on overhead lines,” IEEE Trans. Electromagn. Compat., vol. 35, no. 1, pp. 75–86, 1993. https://doi.org/10.1109/15.249398Test.; E. Pérez and H. Torres, “Advances on modeling and experimentation of lightning induced voltages on distribution lines,” 2006.; M. Paolone et al., “Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 532–547, Aug. 2009. https://doi.org/10.1109/TEMC.2009.2025958Test.; E. Soto and E. Pérez, “Implementation of an analytical formulation for LEMP to assess the lightning performance of a distribution line,” TecnoLógicas, vol. 21, no. 42, pp. 51–62, May. 2018. https://doi.org/10.22430/22565337.778Test.; E. Soto, E. Perez, and J. Herrera, “Electromagnetic Field Due to Lightning Striking on Top of a Cone-Shaped Mountain Using the FDTD,” IEEE Trans. Electromagn. Compat., vol. 56, no. 5, pp. 1112–1120, Oct. 2014. https://doi.org/10.1109/TEMC.2014.2301138Test.; D. Li et al., “On Lightning Electromagnetic Field Propagation Along an Irregular Terrain,” IEEE Trans. Electromagn. Compat., vol. 58, no. 1, pp. 161–171, Feb. 2016. https://doi.org/10.1109/TEMC.2015.2483018Test.; E. Soto, E. Perez, and C. Younes, “Influence of non-flat terrain on lightning induced voltages on distribution networks,” Electr. Power Syst. Res., vol. 113, pp. 115–120, Aug. 2014. https://doi.org/10.1016/j.epsr.2014.02.034Test.; E. Soto, “Lightning induced voltages study on overhead distribution networks placed over non-flat at terrains,” Universidad Nacional de Colombia, 2014.; R. E. J. Mejía, “Lightning induced voltages on overhead lines above non-uniform and non- homogeneous ground,” Universidad Nacional de Colombia, 2014.; S. Yokoyama, “Distribution Surge Arrester Behavior Due to Lightning Induced Voltages,” IEEE Trans. Power Deliv., vol. 1, no. 1, pp. 171–178, 1986. https://doi.org/10.1109/TPWRD.1986.4307904Test.; M. Paolone, C. A. Nucci, E. Petrache, and F. Rachidi, “Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 423–431, Jan. 2004. https://doi.org/10.1109/TPWRD.2003.820196Test.; M. A. Uman, D. K. McLain, and E. P. Krider, “The electromagnetic radiation from a finite antenna,” Am. J. Phys., vol. 43, no. 1, pp. 33–38, Jan. 1975. https://doi.org/10.1119/1.10027Test.; K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 354–363, Mar. 1997. https://doi.org/10.1109/8.558651Test.; A. Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain in Electromagnetics, Har/Cdr. Institution of Engineering and Technology, 2015. https://doi.org/10.1049/SBEW514ETest.; F. Heidler, J. M. Cvetic, and B. V. Stanic, “Calculation of lightning current parameters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 399–404, Apr. 1999. https://doi.org/10.1109/61.754080Test.; T. Noda and S. Yokoyama, “Thin wire representation in finite difference time domain surge simulation,” IEEE Trans. Power Deliv., vol. 17, no. 3, pp. 840–847, Jul.2002. https://doi.org/10.1109/TPWRD.2002.1022813Test.; G. Lin, S. Lu, and J. Liu, “Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response,” Soil Dyn. Earthq. Eng., vol. 90, no. 10, pp. 494–509, Nov. 2016. https://doi.org/10.1016/j.soildyn.2016.09.021Test.; A. Tatematsu and T. Noda, “Three-Dimensional FDTD Calculation of Lightning-Induced Voltages on a Multiphase Distribution Line With the Lightning Arresters and an Overhead Shielding Wire,” IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 159–167, Feb. 2014. https://doi.org/10.1109/TEMC.2013.2272652Test.; SIEMENS, “Descargadores de sobretensión de media tensión 3EK4 con envolvente de Silicona,” Siemens AG, Erlangen, Alemania, 2010.; G. E. publicas de Medellín, “Especificaciones técnicas para descargadores de sobretensiones DPS en media tensión,” 2015.; E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos,” pp. 1–8, 2010.; E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos. Avances en Ingeniería Eléctrica,” Av. en Ing. Eléctrica, vol. 4, no. 1, pp. 1–8, 2013.; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1161Test

  8. 8
    دورية أكاديمية

    المساهمون: Institut Pprime UPR 3346 (PPrime Poitiers ), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS), Physique et Propriétés des Nanostructures Institut Pprime (PPNa), Département Physique et Mécanique des Matériaux Institut Pprime (Département PMM), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime UPR 3346 (PPrime Poitiers ), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS), ANR-09-NANO-0031,QMAX,Analyse quantitative de la microstructure de couches minces nanostructurées. Couplage diffraction des rayons X en haute résolution et diffusion centrale des rayons X sous incidence rasante(2009)

    المصدر: ISSN: 1557-1955.

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية