يعرض 1 - 10 نتائج من 133 نتيجة بحث عن '"ferroceno"', وقت الاستعلام: 0.96s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Caniparoli, Ulysse

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    مرشدي الرسالة: Echavarren Pablos, Antonio Maria

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية

    المؤلفون: Magriñá Lobato, Ivan

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Química

    مرشدي الرسالة: Ortíz Rodríguez, Mayreli, O'Sullivan, Ciara Kathleen

    المصدر: TDX (Tesis Doctorals en Xarxa)

    مصطلحات موضوعية: Biosensor, ADN, Ferrocè, Ferroceno, Bio, DNA, Ferrocene, Ciències

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية
  4. 4
    رسالة جامعية

    المؤلفون: Caamaño Roa, Marcelo

    مرشدي الرسالة: Gayoso Andrade, Eduardo (dir.), Pereira Lorenzo, Mª Teresa (dir.), Vila Abad, José Manuel (dir.), Universidade de Santiago de Compostela. Facultade de Química. Departamento de Química Inorgánica

    الوصول الحر: http://hdl.handle.net/10347/12067Test

  5. 5
    رسالة جامعية
  6. 6
    دورية أكاديمية

    المؤلفون: Roman Bothia, Julieth Tatiana

    المساهمون: García Castañeda, Javier Eduardo, Farfan García, Norberto, Síntesis y aplicación de moléculas peptídicas

    وصف الملف: application/pdf

    العلاقة: 1.International Agency for Research on Cancer- WHO. The global cancer observatory. Organización mundial de la salud. 2019; Organización Panamericana de la Salud. OPS. Cancer de mama en las Américas [Internet]. OPS. 2018 [cited 2020 Jun 20]. p. 1–2. Available from: https://www.paho.org/hq/index.php?option=com_docman&view=download&categoryTest _slug=hojas-informativas-3677&alias=46713-hoja-informativa-cancer-de-mama-en-las-americas-2018-1&Itemid=270&lang=es; Solidoro Santisteban Andrés. Pobreza, inequidad y cáncer. Acta Médica Peru [Internet]. 2010;27(3):204–6. Available from: http://www.redalyc.org/articulo.oa?id=96618997009Test; Ministerio de Salud y Protección Social de Colombia. Plan Nacional contra el Cancer 2012-2020 [Internet]. Ministerio de salud y protección social de colombia. 2018 [cited 2019 May 15]. p. 1–124. Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfTest; Centro para el control y la prevención de enfermedades. Cómo se trata el cancer de mama. CDC. 2019.; Instituto Nacional del cancer. Tratamiento del cáncer [Internet]. Instituto Nacional de cancer. 2018 [cited 2020 Jun 24]. Available from: https://www.cancer.gov/espanol/cancer/tratamientoTest; Piñeros M, Sánchez R, Perry F, García OA, Ocampo R, Cendales R. Demoras en el diagnóstico y tratamiento de mujeres con cáncer de mama en Bogotá, Colombia. Salud Publica Mex. 2011;53(6):478–85.; Velásquez-De Charry LC, Carrasquilla G, Roca-Garavito S. Equidad en el acceso al tratamiento para el cáncer de mama en colombia. Salud Publica Mex. 2009;51(SUPPL.2).; Goss PE, Lee BL, Badovinac-crnjevic T, Strasser-weippl K, Chavarri-guerra Y, Louis JS, et al. The Lancet Oncology Commission JJ / AC Planning cancer control in Latin America and the Caribbean. 2013;2045(13).; The National Center for Biotechonology Information. Search “Peptide” [Internet]. NCBI. 2019. Available from: https://www.ncbi.nlm.nih.gov/pubmedTest; Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic Med Chem [Internet]. 2018;26(10):2700–7. Available from: https://doi.org/10.1016/j.bmc.2017.06.052Test; Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today [Internet]. 2015;20(1):122–8. Available from: http://dx.doi.org/10.1016/j.drudis.2014.10.003Test; Vale N, Correia-Branco A, Patrício B, Duarte D, Martel F. In vitro studies on the inhibition of colon cancer by amino acid derivatives of bromothiazole. Bioorganic Med Chem Lett [Internet]. 2017;27(15):3507–10. Available from: http://dx.doi.org/10.1016/j.bmcl.2017.05.073Test; Lemke J, Pinto A, Niehoff P, Vasylyeva V, Metzler-Nolte N. Synthesis, structural characterisation and anti-proliferative activity of NHC gold amino acid and peptide conjugates. Dalt Trans. 2009;(35):7063–70.; Van Staveren DR, Weyhermüller T, Metzler-Nolte N. Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. Dalt Trans. 2003;(2):210–20. 17. Kraatz HB. Ferrocene-conjugates of amino acids, peptides and nucleic acids. J Inorg Organomet Polym. 2005;15(1):83–106.; A Juaristi E, Soloshonok VA, editors. Enantioselective Synthesis of Beta-Amino Acids [Internet]. Second edi. Wiley; 2005. 600 p. Available from: https://books.google.com.co/books?id=WpgRvHGa0zICTest 19. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62(22):2588–98.; Corrêa JAF, Evangelista AG, Nazareth T de M, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia. 2019;8(September).; Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol [Internet]. 2017;133:117–38. Available from: http://dx.doi.org/10.1016/j.bcp.2016.09.018Test; Marquette A, Bechinger B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules. 2018;8(2). 23. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6(DEC):1–12.; Ptaszyńska N, Olkiewicz K, Okońska J, Gucwa K, Łęgowska A, Gitlin-Domagalska A, et al. Peptide conjugates of lactoferricin analogues and antimicrobials—Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides. 2019;117(May).; Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of milk-derived antibacterial peptides in modern food biotechnology: Their synthesis, applications and future perspectives. Biomolecules. 2018;8(4).; Thundimadathil J. Cancer Treatment Using Peptides: Current Therapies and Future Prospects. J Amino Acids. 2012;2012:1–13. 27. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1–2):40–56.; Albericio F, Kruger HG. Therapeutic peptides. Future Med Chem. 2012;4(12):1527–31. 29. Camilio KA, Rekdal Ø, Sveinbjörnsson B. LTX-315 (OncoporeTM): A short synthetic anticancer peptide and novel immunotherapeutic agent. Oncoimmunology. 2014;3(6):7–9.; Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N‐terminal region of bovine lactoferrin. J Appl Bacteriol. 1992;73(6):472–9.; Mader JS, Salsman J, Conrad DM, Hoskin DW. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther. 2005;4(4):612–24; Arias M, Piga KB, Hyndman ME, Vogel HJ. Improving the activity of trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules. 2018;8(2).; Eliassen LT, Haug BE, Berge G, Rekdal Ø. Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications. J Pept Sci. 2003;9(8):510–7.; Solarte VA. Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral. 2016;127. 35. Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.; Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.; Cutone A, Rosa L, Ianiro G, Lepanto MS, Di Patti MCB, Valenti P, et al. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules. 2020;10(3):1–26.; Barragán-Cárdenas A, Urrea-Pelayo M, Niño-Ramírez VA, Umaña-Pérez A, Vernot JP, Parra-Giraldo CM, et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv. 2020;10(30):17593–601.; Huertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules. 2017;22(6).; Solarte VA, Conget P, Vernot JP, Rosas JE, Rivera ZJ, García JE, et al. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One. 2017;12(3):1–17; Solarte VA, Rosas JE, Rivera ZJ, Arango-Rodríguez ML, García JE, Vernot JP. A tetrameric peptide derived from bovine lactoferricin exhibits specific cytotoxic effects against oral squamous-cell carcinoma cell lines. Biomed Res Int. 2015;2015.; Román JT, Fuenmayor CA, Dominguez CMZ, Clavijo-Grimaldo Di, Acosta M, García-Castañeda JE, et al. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21-25)Pal obtained: Via electrospinning. RSC Adv. 2019;9(35):20432–8.; Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules. 2017;22(3):1–10.; León-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015.; Vargas Casanova Y. Evaluación De La Actividad Antibacteriana De Péptidos Diméricos Y Tetraméricos Derivados De Lactoferricina Bovina Contra Bacterias Gram Positivas Y Gram Negativas. 2018;100.; Vargas-Casanova Y, Poveda JCV, Rivera-Monroy ZJ, Andrés CeballosGarzón, Ricardo Fierro-Medina, Patrice Le Pape JE-C, Giraldo and CMP. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. ChemistrySelect. 2020;5:7236–42.; Navarrete EL. Síntesis de péptidos. In: Universidad nacional autonoma de méxico, Instituto de Biotecnología. 2007. p. 1–53. 48. Torres García C. Desarrollo de nuevas estrategias en fase sólida para la obtención de péptidos modificados : Aplicación a la síntesis de análogos de peptinas. 2015. 49. Soria Gila ML. Síntesis Y Evaluación De Péptidos Y Derivados Desarrollo De Fármacos , Biotecnología Y [Internet]. universidad de Granada; 2016. Available from: htttp://hdl.handle.net/10481/48166; Gómez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluderović GN. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl. 2012;2012:15–7; Instituto Nacional del cancer. Terapia de primera linea [Internet]. Cancer Org. 2020 [cited 2020 Jun 20]. Available from: https://www.cancer.gov/espanol/publicaciones/diccionario/def/terapia-de-primera-lineaTest; American cancer society. Quimioterapia paara cancer de pulmón no microcítico. [Internet]. Cancer org. 2020 [cited 2020 Jun 16]. Available from: https://www.cancer.org/es/cancer/cancer-de-pulmon/tratamiento-no-microcitico/quimioterapia.htmlTest; instituto nacional de vigilancia de medicamentos y Alimentos. Consulte su registro sanitario Cisplatino [Internet]. INVIMA. 2020 [cited 2020 May 20]. Available from: http://consultaregistro.invima.gov.co:8082/Consultas/consultas/consreg_encabcum.jspTest; Vasconcellos VF, Marta GN, da Silva EMK, Gois AFT, de Castria TB RR. Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2020;(1):009256. 56. Amir MK, Khan S, Zia-Ur-Rehman, Shah A, Butler IS. Anticancer activity of organotin(IV) carboxylates. Inorganica Chim Acta [Internet]. 2014;423(PB):14–25. Available from: http://dx.doi.org/10.1016/j.ica.2014.07.053Test; Shaheen F, Sirajuddin M, Ali S, Zia-ur-Rehman, Dyson PJ, Shah NA, et al. Organotin(IV) 4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbodithioates: Synthesis, characterization and biological activities. J Organomet Chem [Internet]. 2018;856(Iv):13–22. Available from: https://doi.org/10.1016/j.jorganchem.2017.12.010Test; Pellerito L, Prinzivalli C, Casella G, Fiore T, Pellerito O, Giuliano M, et al. Diorganotin(IV) N-acetyl-l-cysteinate complexes: Synthesis, solid state, solution phase, DFT and biological investigations. J Inorg Biochem [Internet]. 2010;104(7):750–8. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2010.03.008Test; Banti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J Inorg Biochem [Internet]. 2019;194(November 2018):114–52. Available from: https://doi.org/10.1016/j.jinorgbio.2019.02.003Test; Basu Baul TS, Basu S, De Vos D, Linden A. Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: Synthesis, structural characterization, and in vitro cytotoxicity studies. Invest New Drugs. 2009;27(5):419–31. 62. Devi J, Yadav J. Recent Advancements in Organotin(IV) Complexes as Potential Anticancer Agents. Anticancer Agents Med Chem. 2018;18(3):335–53.; Ordóñez-Hernández J, Arcos-Ramos R, García-Ortega H, Munguía-Viveros E, Romero-Ávila M, Flores-Alamo M, et al. Synthesis and structural analysis of bioactive Schiff-base pentacoordinated diorganotin(IV) complexes. J Mol Struct. 2019;1180:462–71. 65. Davies A. Organotin Chemistry. Second Edi. Wiley-VCH Weinheim, editor. 2004.; Kobakhidze N, Farfán N, Romero M, Méndez-Stivalet JM, Gabriela Ballinas-López M, García-Ortega H, et al. New pentacoordinated Schiff-base diorganotin(IV) complexes derived from nonpolar side chain α-amino acids. J Organomet Chem [Internet]. 2010;695(8):1189–99. Available from: http://dx.doi.org/10.1016/j.jorganchem.2010.01.024Test; Beltrán HI, Zamudio-Rivera LS, Mancilla T, Santillan R, Farfán N. One-step preparation, structural assignment, and x-ray study of 2,2-di-n-butyl- and 2,2-diphenyl-6-aza-1,3-dioxa-2-stannabenzocyclononen-4-ones derived from amino acids. Chem - A Eur J. 2003;9(10):2291–306.; Cordes EH, Jencks WP. On the Mechanism of Schiff Base Formation and Hydrolysis. J Am Chem Soc. 1962;84(5):832–7. 69. Katsoulakou E, Tiliakos M, Papaefstathiou G, Terzis A, Raptopoulou C, Geromichalos G, et al. Diorganotin(IV) complexes of dipeptides containing the α-aminoisobutyryl residue (Aib): Preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu) 2 Sn(H -1 L)] (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J Inorg Biochem. 2008;102(7):1397–405.; Ordóñez-Hernández J, Jiménez-Sánchez A, García-Ortega H, Sánchez-Puig N, Flores-Álamo M, Santillan R, et al. A series of dual-responsive Coumarin-Bodipy probes for local microviscosity monitoring. Dye Pigment [Internet]. 2018;157(May):305–13. Available from: https://doi.org/10.1016/j.dyepig.2018.05.009Test; Nath M. Toxicity and the cardiovascular activity of organotin compounds: A review. Appl Organomet Chem. 2008;22(10):598–612. 73. Nath M, Saini PK, Kumar A. Synthesis, structural characterization, biological activity and thermal study of triand diorganotin(IV) complexes of Schiff base derived from 2-aminomethylbenzimidazole. Appl Organomet Chem. 2009;23(11):434–45.; Antonenko TA, Shpakovsky DB, Berseneva D, Gracheva YA, Dubova LG, Shevtsov PN, et al. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J Organomet Chem [Internet]. 2020;909:121089. Available from: https://doi.org/10.1016/j.jorganchem.2019.121089Test; Pellerito C, Emanuele S, Ferrante F, Celesia A, Giuliano M, Fiore T. Tributyltin(IV) ferulate, a novel synthetic ferulic acid-derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects. J Inorg Biochem [Internet]. 2020;(Iv):110999. Available from: https://www.sciencedirect.com/science/article/pii/S0162013419307147?dgcid=rss_sd_all&utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inboundTest; Nath M, Yadav R, Eng G, Musingarimi P. Characteristic Spectral Studies and in vitro Antimicrobial and in vivo Multi-Infection Antifungal Activities in Mice of New Organotin(IV) Derivatives of Heterocyclic Amino Acids. Appl Organomet Chem [Internet]. 1999;13:29–37. Available from: https://doi.org/10.1002Test/(SICI)1099-0739(199901)13:1%3C29::AID-AOC809%3E3.0.CO;2-D; Dylg M, Pruchnik H, Pruchnik F, Majkowska-Skrobek G, Ułaszewski S. Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med Mycol. 2010;48(2):373–83.; Albada B, Metzler-Nolte N. Highly Potent Antibacterial Organometallic Peptide Conjugates. Acc Chem Res. 2017;50(10):2510–8. 79. Kumari A, Tandon JP, Singh R V. Antimicorbial effects of newly synthesized organotin(IV) and organolead(IV) derivatives. Appl Organomet Chem. 1993;7(8):655–60.; Bhanuka S, Singh HL. Spectral, DFT and antibacterial studies of TIN(II) complexes of schiff bases derived from aromatic aldehyde and amino acids. Rasayan J Chem. 2017;10(2):673–81.; Basu Baul TS, Kehie P, Höpfl H, Duthie A, Eng G, Linden A. Organotin(IV) complexes derived from proteinogenic amino acid: synthesis, structure and evaluation of larvicidal efficacy on Anopheles stephensi mosquito larvae. Appl Organomet Chem. 2017;31(1):e3547.; Shujha S, Shah A, Zia-Ur-Rehman, Muhammad N, Ali S, Qureshi R, et al. Diorganotin(IV) derivatives of ONO tridentate Schiff base: Synthesis, crystal structure, in vitro antimicrobial, anti-leishmanial and DNA binding studies. Eur J Med Chem [Internet]. 2010;45(7):2902–11. Available from: http://dx.doi.org/10.1016/j.ejmech.2010.03.015Test; Attanzio A, Ippolito M, Girasolo MA, Saiano F, Rotondo A, Rubino S, et al. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells. J Inorg Biochem [Internet]. 2018;188(December 2017):102–12. Available from: https://doi.org/10.1016/j.jinorgbio.2018.04.006Test; Nath M, Yadav R, Gielen M, Dalil H, De Vos D, Eng G. Synthesis, Characteristic Spectral Studies and in vitro Antimicrobial and Antitumour Activities of Organotin(IV) Complexes of Schiff Bases Derived from Amino-acids. Appl Organomet Chem. 1997;11(9):727–36.; Nath M, Jairath R, Eng G, Song X, Kumar A. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of l-proline, trans-hydroxy-l-proline and l-glutamine. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2005;62(4–5):1179–87.; Nath M, Goyal S, Goyal S. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry Synthesis , Spectral and Biological Studies of Organosilicon ( IV ) Complexes of Schiff Bases Derived from Amino Acids. 2000;(March 2013):37–41.; Yan C, Zhang J, Liang T, Li Q. Diorganotin (IV) complexes with 4-nitro-N-phthaloyl-glycine: Synthesis, characterization, antitumor activity and DNA-binding studies. Biomed Pharmacother [Internet]. 2015;71:119–27. Available from: http://dx.doi.org/10.1016/j.biopha.2015.02.027Test; Wilkinson G, Rosenblum M, Whiting MC, Woodward RB. The structure of iron bis-cyclopentadienyl. J Am Chem Soc. 1952;74(8):2125–6. 90. Fischer EO, Pfab W. Cyclopentadien-Metallkomplexe ein neuer Typ metallorganischer Verbindungen. Zeitschrift fur Naturforsch - Sect B J Chem Sci. 1952;7(7):377–9. 91. Mojžišová G, Mojžiš J, Vašková J. Organometallic iron complexes as potential cancer therapeutics. Acta Biochim Pol. 2014;61(4):651–4.; Abd-El-Aziz AS, Manners I. Neutral and cationic macromolecules based on iron sandwich complexes. J Inorg Organomet Polym. 2005;15(1):157–95. 93. Fouda, M.F.R., Abd‐Elzaher, M.M., Abdelsamaia, R.A. and Labib AA. On the medicinal chemistry of ferrocene. Appl Organometal Chem. 2007;21:613–25. 94. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ. Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem. 2005;19(1):1–10. 95. Neuse EW. Macromolecular ferrocene compounds as cancer drug models. J Inorg Organomet Polym. 2005;15(1):3–32. 96. van Staveren DR, and Metzler-Nolte N. Bioorganometallic Chemistry of Ferrocene. Chem Rev. 2004;104(12):5931–86.; Chantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N. Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. ChemMedChem. 2006;1(11):1268–74.; Astruc D. Why is Ferrocene so Exceptional? Eur J Inorg Chem. 2017;2017(1):6–29.; Barik T, Ghosh A, Mishra A, Dhiman R, Sasamori T, Chatterjee S. Bioactive 1,1′-unsymmetrical bi-functional ferrocenyl compounds using a novel solvent free one pot multicomponent reaction method. J Organomet Chem [Internet]. 2020;908:121095. Available from: https://doi.org/10.1016/j.jorganchem.2019.121095Test; Chowdhury S, Sanders DAR, Schatte G, Kraatz HB. Discovery of a pseudo β barrel: Synthesis and formation by tiling of ferrocene cyclopeptides. Angew Chemie - Int Ed. 2006;45(5):751–4.; Schlögl K. Über Ferrocen-Aminosäuren und verwandte Verbindungen. Monatshefte für Chemie. 1957;88(4):601–21.; Herrick RS, Jarret RM, Curran TP, Dragoli DR, Flaherty MB, Lindyberg SE, et al. Ordered conformations in bis(amino acid) derivatives of 1,1’-ferrocenedicarboxylic acid. Tetrahedron Lett. 1996;37(30):5289–92.; Kraatz HB, Lusztyk J, Enright GD. Ferrocenoyl Amino Acids: A Synthetic and Structural Study 1. Inorg Chem. 1997;36(11):2400–5.; Lataifeh A. Ferrocenoyl conjugates of hydroxyl group containing side chain amino acids: Synthesis, electrochemical study and reactivity toward electrophiles. J Organomet Chem [Internet]. 2019;121056. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022328X19304991Test; Gimeno MC, Goitia H, Laguna A, Luque ME, Villacampa MD, Sepúlveda C, et al. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties. J Inorg Biochem [Internet]. 2011;105(11):1373–82. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2011.07.015Test; Sudhir VS, Phani Kumar NY, Chandrasekaran S. Click chemistry inspired synthesis of ferrocene amino acids and other derivatives. Tetrahedron [Internet]. 2010;66(6):1327–34. Available from: http://dx.doi.org/10.1016/j.tet.2009.12.011Test; Mari C, Mosberger S, Llorente N, Spreckelmeyer S, Gasser G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “click” strategies. Inorg Chem Front. 2016;3(3):397–405.; Appoh FE, Sutherland TC, Kraatz HB. Changes in the hydrogen bonding pattern in ferrocene peptides. J Organomet Chem. 2004;689(25 SPEC. ISS.):4669–77. 109. Hirao T. Control of chirality-organized structures of ferrocene-dipeptide bioconjugates. J Organomet Chem [Internet]. 2009;694(6):806–11. Available from: http://dx.doi.org/10.1016/j.jorganchem.2008.09.074Test; Hirao T. Control of chirality-organized structures of ferrocene-dipeptide bioconjugates. J Organomet Chem [Internet]. 2009;694(6):806–11. Available from: http://dx.doi.org/10.1016/j.jorganchem.2008.09.074Test; Moriuchi T, Nagai T, Hirao T. Chirality organization of ferrocenes bearing dipeptide chains of heterochiral sequence. Org Lett. 2005;7(23):5265–8.; Ong, C.; Jeng, J.; Juang, S.; Chen C. A ferrocene-Intercalator conjugate with a potente cytotoxicity. Bioorg Med Chem Lett [Internet]. 1992;2(9):929–32. Available from: https://doi.org/10.1016/S0960-894XTest(00)80590-9; Jaouen, Gérard, Metzler-Nolte N (Eds., editor. Medicinal Organometallic Chemistry. 32nd ed. Springer International Publishing; 2010. 113. Adhikari B, Singh C, Shah A, Lough AJ, Raatz HB. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates. Chem - A Eur J. 2015;21(32):11560–72; Adhikari B, Lough AJ, Barker B, Shah A, Xiang C, Kraatz HB. Bis-amino acid derivatives of 1,1′-ferrocenedicarboxylic acid: Structural, electrochemical, and metal ion binding studies. Organometallics. 2014;33(18):4873–87.; Adhikari B, Kraatz H-B. Redox-triggered changes in the self-assembly of a ferrocene–peptide conjugate. chem commun [Internet]. 2014;50(42):5551–3. Available from: http://dx.doi.org/10.1039/C3CC49268KTest; Kovač V, Čakić Semencic M, Kodrin I, Roca S, Rapić V. Ferrocene-dipeptide conjugates derived from aminoferrocene and 1-acetyl-1′-aminoferrocene: Synthesis and conformational studies. Tetrahedron. 2013;69(48):10497–506.; Lara Carrillo JA, Fierro Medina R, Manríquez Rocha J, Bustos Bustos E, Insuasty Cepeda DS, García Castañeda JE, et al. Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers. Molecules. 2017;22(11).; Ardila N. Síntesis y evaluación de la actividad antibacteriana de potenciales fármacos basados en péptidos derivados de Buforina y Lactoferricina Bovina funcionalizados con moléculas antimicrobianas. Universidad Nacional de Colombia; 2019.; Valencia DP, Dantas LMF, Lara A, García J, Rivera Z, Rosas J, et al. Development of a bio-electrochemical immunosensor based on the immobilization of SPINNTKPHEAR peptide derived from HPV-L1 protein on a gold electrode surface. J Electroanal Chem [Internet]. 2016;770:50–5. Available from: http://dx.doi.org/10.1016/j.jelechem.2016.03.040Test; Insuasty Cepeda DS, Pineda Castañeda HM, Rodríguez Mayor AV, García Castañeda JE, Maldonado Villamil M, Fierro Medina R, et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules. 2019;24(7).; Escoda TP. Diseño y síntesis de péptideos para el siagnostico de la infección por el virus de la hepatitis G (GBV-C/HGV). 2007.; Isidro-Llobet A, Álvarez M, Albericio F. Amino Acid-Protecting Groups. Chem. Rev. 2009, 109, 6, 2455–2504; Garay H. Síntesis de péptidos modificados químicamente con posibles aplicaciones farmacéuticas. 2012. Tesis. Universidad Distrital Francisco Jose de Caldas.; Binner M. Can you explain a +44 mass difference in peptide synthesis? [Internet]. Researchgate net. 2019 [cited 2020 May 7]. Available from: https://www.researchgate.netTest/.; Chan W, White P. Fmoc solid Phase peptide synthesis: A practical Approach. ilustrada. OUP oxford, editor. 2000. 346 p.; Ladner CL, Turner RJ, Edwards RA. Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility. Protein Sci. 2007;16(6):1204–1; Román Bothia, J. T. (2020). Implementación y optimización del proceso sintético de i) complejos aminoácido - estaño IV y ii) péptidos conjugados con Ferroceno, como contribución al desarrollo de fármacos basados en moléculas organometálicas [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79171Test

  7. 7
    دورية أكاديمية

    المصدر: Revista Tendencias en Docencia e Investigación en Química. Año 5, número 5 (enero-diciembre de 2019). ISSN: 2448-6663

    وصف الملف: pdf; Born digital; application/pdf

    العلاقة: https://revistatediq.azc.uam.mx/Docs/revista_tendencias_2019.pdfTest; Aguilar-Sánchez, R., Cabrera-Hilerio, S.L., Gárate-Morales, J.L. & Cerna-Cortez, J.R. (2019). Propiedades electroquímicas y de interrupción en monocapas moleculares de ferroceno en líquido iónico. Revista Tendencias en Docencia e Investigación en Química, 5(5), 432-436. http://hdl.handle.net/11191/7857Test; http://hdl.handle.net/11191/7857Test

  8. 8
    رسالة جامعية
  9. 9

    المؤلفون: Martins, Nelson C.

    المساهمون: Fernandes, A., Xiao, Jianliang, Sapientia

    وصف الملف: application/pdf

  10. 10
    دورية أكاديمية