يعرض 1 - 10 نتائج من 122 نتيجة بحث عن '"fermiones"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Pino García, Manuel

    مرشدي الرسالة: Ortuño Ortín, Miguel, Somoza Gimeno, Andrés M, Universidad de Murcia. Departamento de Física

    المصدر: TDR (Tesis Doctorales en Red)

    الوقت: 538.9

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية

    مرشدي الرسالة: Águila Giménez, Francisco del, Santiago Pérez, José, Universidad de Granada. Departamento de Física Teórica y del Cosmos

    المصدر: Carmona Bermúdez, A. Collider implications of heavy fermions in models with extra dimensions. Granada: Universidad de Granada, 2013. 149 p. [http://hdl.handle.net/10481/23733Test]

    مصطلحات موضوعية: Ciencias físicas, Colisiones (Física), Fermiones, Dimensiones

    الوقت: 538.9, 530.1

    الوصول الحر: http://hdl.handle.net/10481/23733Test

  3. 3
    رسالة جامعية

    المؤلفون: Carmona Bermúdez, Adrián

    مرشدي الرسالة: Universidad de Granada. Departamento de Física Teórica y del Cosmos, Águila Giménez, Francisco del, Santiago Pérez, José

    مصطلحات موضوعية: Ciencias físicas, Colisiones (Física), Fermiones, Dimensiones

    الوقت: 538.9, 530.1

    الوصول الحر: http://hdl.handle.net/10481/23733Test

  4. 4
    رسالة جامعية

    المؤلفون: Carmona Bermúdez, Adrián

    مرشدي الرسالة: Águila Giménez, Francisco del, Santiago Pérez, José, Universidad de Granada. Departamento de Física Teórica y del Cosmos

    مصطلحات موضوعية: Ciencias físicas, Colisiones (Física), Fermiones, Dimensiones

    الوقت: 538.9, 530.1

    الوصول الحر: http://hdl.handle.net/10481/23733Test

  5. 5
    رسالة جامعية

    المؤلفون: Carmona Bermúdez, Adrián

    مرشدي الرسالة: Águila Giménez, Francisco del, Santiago Pérez, José, Universidad de Granada. Departamento de Física Teórica y del Cosmos

    مصطلحات موضوعية: Ciencias físicas, Colisiones (Física), Fermiones, Dimensiones

    الوقت: 538.9, 530.1

    الوصول الحر: http://hdl.handle.net/10481/23733Test

  6. 6
  7. 7
  8. 8
    دورية أكاديمية

    المؤلفون: Castellanos Caro, Rodrigo

    المساهمون: Silva Valencia, Jereson, GRUPO DE SISTEMAS CORRELACIONADOS

    وصف الملف: application/pdf

    العلاقة: [1] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, "Two-orbital su(n) magnetism with ultracold alkalineearth atoms," Nature Physics, vol. 6, pp. 289 EP -, Feb 2010.; [2] G. P. et al, "A one-dimensional liquid of fermions with tunable spin," Nature Physics, vol. 10, pp. 198-201, 2014.; [3] M. E. Foglio and M. S. Figueira Phys. Rev. B, vol. 62, no. 12, p. 7882, 2000.; [4] M. S. Figueira and R. E. Franco The European Physical Journal B, vol. 58, pp. 1-10, 2007.; [5] F. Steglitch, J. Aarts, C. D. Breld, W. Lieke, D. Meschede, W. Franz, and H. Schafer Phys. Rev. Lett., vol. 43, no. 25, p. 1892, 1979.; [6] G. Baym and C. Pethick, Landau Fermi-liquid theory. New York: Wiley, 1991.; [7] P. Coleman, Introduction to Many-Body Physics. Cambridge University Press, 2015.; [8] A. S. Edelstein J. Appl. Phys., vol. 61, p. 8, 1987.; [9] M. Greiner and S. Folling, "Condensed-matter physics: Optical lattices," Nature, vol. 453, pp. 736-738, 2008.; [10] I. Bloch, J. Dalibard, and W. Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys., vol. 80, pp. 885-964, 2008.; [11] I. Bloch, "Ultracold quantum gases in optical lattices," Nature Physics, vol. 1, pp. 23-30, 2005.; [12] M. Kohl, H. Moritz, T. Stoferle, K. Gunter, and T. Esslinger, "Fermionic atoms in a 3d optical lattice: Observing fermi-surfaces, dynamics and interactions.," Phys. Rev. Lett., vol. 94, p. 080403, 2005.; [13] H. Nonne, E. Boutlat, S. Capponi, and P. Lecheminant, "Phase diagram of onedimensional alkaline-earth cold fermionic atoms," Mod. Phys. Lett. B, vol. 25, pp. 955-962, 2011.; [14] N. Grewe and F. Steglitch, "Handbook on the Physics and Chemistry of Rare Earths", vol. 14. Amsterdam: North-Holland, 1991.; [15] P. Wachter, "Handbook on the Physics and Chemistry of Rare Earths", vol. 19. Amsterdam: North-Holland, 1994.; [16] P. Coleman, "Heavy Fermions: Electrons at the Edge of Magnetism", Handbook of Magnetism and Advanced Magnetic Material. New York: John Wiley Sons Ltd., 2007.; [17] P. Gegenwart, Q. Si, and F. Steglitch, "Quantum criticality in heavy-fermion metals," Nature Physics, vol. 4, pp. 186-197, 2008.; [18] G. Stewart Rev. Mod. Phys., vol. 73, p. 797, 2001.; [19] F. Steglitch, C. Geibel, F. Kromer, M. Lang, G. Sparn, A. Link, and G. R. Stewart J. Phys. Chem. Solids, vol. 59, no. 10-12, p. 2190, 1998.; [20] J. Flouquet arXiv:cond-mat/0501602 [cond-mat.str-el], 2005.; [21] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of bose-einstein condensation in a dilute atomic vapor," Science, vol. 269, no. 5221, pp. 198-201, 1995.; [22] F. Scazza, C. Hofrichter, M. Hofer, P. C. D. Groot, I. Bloch, and S. Folling, "Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions," Nature Physics, vol. 10, pp. 779-784, 2014.; [23] J. Silva-Valencia and A. M. C. Souza, "Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices," The European Physical Journal B, vol. 85, jan 2012.; [24] A. Gonis, N. Kioussis, and M. Ciftan, Electron Correlations and Material Properties. New York: Springer, 1999.; [25] P. Fulde, "Correlated Electrons in Quantum Matter". London: World Scientific, 2012.; [26] N. Ashcroft and N. Mermin, "Solid State Physics". Philadelphia: Saunders College, 1976.; [27] W. E. Lawrence and J. W. Wilkins, "Umklapp electron-phonon scattering in the lowtemperature resistivity of polyvalent metals," Phys. Rev. B, vol. 6, pp. 4466-4482, Dec 1972.; [28] P. Nozieres and D. Pines., "Theory Of Quantum Liquids". Westview Press, 1999.; [29] H. Pal, "Resistivity of non-galilean-invariant fermi- and non-fermi liquids," Lith. J. Phys, vol. 52, pp. 142-164, 2012.; [30] P. Misra, Heavy-Fermion Systems. Oxford,UK: Elsevier, 2008.; [31] A. Schroder, G. Aeppli, and e. a. R. Coldea, "Onset of antiferromagnetism in heavyfermion metals," Nature, vol. 407, pp. 351-355, 2000.; [32] S. Raymond, J. Flouquet, R. Calemczuk, L. Regnault, B. Fak, P. Haen, S. Kambe, P. Lejay, and T. Fukuhara, "Neutron scattering of fragile antiferromagnetic phases in heavy fermion compounds," Physica B: Condensed Matter, vol. 280, pp. 354-355, 2000.; [33] J. Kondo, "Resistance Minimum in Dilute Magnetic Alloys," Progress of Theoretical Physics, vol. 32, pp. 37-49, 07 1964.; [34] M. A. Ruderman and C. Kittel, "Indirect exchange coupling of nuclear magnetic moments by conduction electrons," Phys. Rev., vol. 96, pp. 99-102, Oct 1954.; [35] T. Kasuya, "A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model," Progress of Theoretical Physics, vol. 16, pp. 45-57, 07 1956.; [36] K. Yosida, "Magnetic properties of cu-mn alloys," Phys. Rev., vol. 106, pp. 893-898, Jun 1957.; [37] P. W. Anderson, "Localized magnetic states in metals," Phys. Rev., vol. 124, pp. 41-53, Oct 1961.; [38] P. R. Bertussi, M. B. S. Neto, T. G. Rappoport, A. L. Malvezzi, and R. R. dos Santos, "Incommensurate spin-density-wave and metal-insulator transition in the onedimensional periodic Anderson model," Phys. Rev. B, vol. 84, p. 075156, Aug 2011.; [39] K. Ueda, H. Tsunetsugu, and M. Sigrist, "Singlet ground state of the periodic Anderson model at half filling: A rigorous result," Phys. Rev. Lett., vol. 68, pp. 1030-1033, Feb 1992.; [40] H. Tsunetsugu Rev. Mod. Phys., vol. 69, p. 809, 1997.; [41] Hubsch, A. and Becker, K. W., "Valence transition in the periodic anderson model," Eur. Phys. J. B, vol. 52, no. 3, pp. 345-353, 2006.; [42] D. J. Garcia Phys. Rev. Lett., vol. 93, p. 177204, 2004.; [43] J. C. Xavier Phys. Rev. Lett., vol. 90, p. 247204, 2003.; [44] R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Advances In Atomic, Molecular, and Optical Physics, vol. 42, pp. 95-170, 2000.; [45] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms," Nature, vol. 415, pp. 39-44, 2002.; [46] S. Inouye, M. R. Andrews, J. Stenger, H. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of feshbach resonances in a bose-einstein condensate," Nature, vol. 4392, pp. 151-154, 1998.; [47] A. Simoni, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, "Magnetic control of the interacion in ultracold k-rb mixtures," Phys. Rev. Lett., vol. 90, p. 163202, 2003.; [48] J. Quintanilla and C. Hooley, "The strong-correlations puzzle," Physics World, vol. 22(6), pp. 32-37, 2009.; [49] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, "Degenerate fermi gases of ytterbium," Phys. Rev. Lett., vol. 98, p. 030401, 2007.; [50] B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, "Degenerate fermi gas of 87Sr," Phys. Rev. Lett., vol. 105, p. 030402, 2010.; [51] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, "Quantum computing with alkalineearth-metal atoms," Phys. Rev. Lett., vol. 101, p. 170504, 2008.; [52] M. Boyd, "Nuclear spin effects in optical lattice clocks," Phys. Rev. A., vol. 76, p. 022510, 2007.; [53] G. Campbell, "Probing interactions between ultracold fermions," Science, vol. 324, pp. 360-363, 2009.; [54] P. Coleman, Handbook of Magnetism and Advanced Magnetic Materials Vol 1. London: John Wiley and Sons, 2007.; [55] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, "An SU(6) mott insulator of an atomic fermi gas realized by large-spin pomeranchuk cooling," Nature Physics, vol. 8, pp. 825-830, 2012.; [56] M. Foss-Feig, M. Hermele, and A. M. Rey, "Probing the Kondo lattice model with alkaline-earth-metal atoms," Phys. Rev. A, vol. 81, p. 051603, 2010.; [57] M. Foss-Feig, M. Hermele, V. Gurarie, and A. M. Rey, "Heavy fermions in an optical lattice," Phys. Rev. A, vol. 82, p. 053624, 2010.; [58] J. Silva-Valencia and A. M. C. Souza, "Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices," Phys. Rev. A, vol. 85, p. 033612, 2012.; [59] Y. Nishida, "SU(3) orbital Kondo effect with ultracold atoms," Phys. Rev. Lett., vol. 111, p. 135301, 2013.; [60] J. Bauer, C. Salomon, and E. Demler, "Realizing a Kondo-correlated state with ultracold atoms," Phys. Rev. Lett., vol. 111, p. 215304, 2013.; [61] M. Nakagawa and N. Kawakami, "Laser-induced Kondo effect in ultracold alkaline-earth fermions," Phys. Rev. Lett., vol. 115, p. 165303, 2015.; [62] L. Isaev, J. Schachenmayer, and A. M. Rey, "Spin-orbit-coupled correlated metal phase in Kondo lattices: An implementation with alkaline-earth atoms," Phys. Rev. Lett., vol. 117, p. 135302, 2016.; [63] Y. Zhong and H. Luo, "Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential," Front. Phys., vol. 12, p. 127502, 2017.; [64] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, "Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond," Advances in Physics, vol. 56, no. 2, pp. 243-379, 2007.; [65] I. Bloch, J. Dalibard, and S. Nascimbene, "Quantum simulations with ultracold quantum gases," Nature Physics, vol. 8, pp. 267 EP -, Apr 2012. Review Article.; [66] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, "Realization of a SU(2)×SU(6) system of fermions in a cold atomic gas," Phys. Rev. Lett., vol. 105, p. 190401, Nov 2010.; [67] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye, "Spectroscopic observation of SU(N)-symmetric interactions in sr orbital magnetism," Science, vol. 345, no. 6203, pp. 1467-1473, 2014.; [68] G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, "Erratum: Direct observation of coherent interorbital spin-exchange dynamics," Phys. Rev. Lett., vol. 114, p. 239903, Jun 2015.; [69] L. Riegger, N. Darkwah Oppong, M. Hofer, D. R. Fernandes, I. Bloch, and S. Folling, "Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions," Phys. Rev. Lett., vol. 120, p. 143601, Apr 2018.; [70] K. Ono, J. Kobayashi, Y. Amano, K. Sato, and Y. Takahashi, "Antiferromagnetic interorbital spin-exchange interaction of 171Yb," arXiv:1810.00536[cond-mat.quant-gas], 2018.; [71] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, "Entanglement in many-body systems," Reviews of Modern Physics, vol. 80, pp. 517-576, may 2008.; [72] V. V. Fran¸ca and K. Capelle, "Entanglement in spatially inhomogeneous many-fermion systems," Phys. Rev. Lett., vol. 100, p. 070403, Feb 2008.; [73] J. Silva-Valencia, R. Franco, and M. Figueira, "Entanglement and the ground state of fermions trapped in optical lattices," Physica B: Condensed Matter, vol. 404, pp. 3332-3334, oct 2009.; [74] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, "In situ observation of incompressible mott-insulating domains in ultracold atomic gases," Nature, vol. 460, pp. 995-998, aug 2009.; [75] W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, "A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice," Nature, vol. 462, pp. 74-77, nov 2009.; [76] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, "Single-atom imaging of fermions in a quantum-gas microscope," Nature Physics, vol. 11, pp. 38-742, jul 2015.; [77] R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, "An ytterbium quantum gas microscope with narrow-line laser cooling," New Journal of Physics, vol. 18, p. 023016, feb 2016.; [78] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer, and M. Troyer, "Mott domains of bosons confined on optical lattices," Physical Review Letters, vol. 89, aug 2002.; [79] V. L. Campo, K. Capelle, J. Quintanilla, and C. Hooley, "Quantitative determination of the hubbard model phase diagram from optical lattice experiments by two-parameter scaling," Physical Review Letters, vol. 99, dec 2007.; [80] G. C. et al, "One-dimensional two-orbital su(n) ultracold fermionic quantum gases at incommensurate filling: A low-energy approach," Phys. Rev. B, vol. 93, p. 134415, 2016.; [81] S. Capponi, P. Lecheminant, and K. Totsuka Phys., vol. 367, p. 50, 2016.; [82] M. Nakagawa, N. Kawakami, and M. Ueda Phys. Rev. Lett., vol. 121, p. 203011, 2018.; https://repositorio.unal.edu.co/handle/unal/78489Test

  9. 9
    دورية أكاديمية

    المساهمون: Sánchez Duque, Luis Alberto, Universidad Nacional de Colombia - Sede Medellín

    وصف الملف: application/pdf

    العلاقة: [1] Sher, M. (1998). Scalar-Mediated Flavor-Changing Neutral Currents. arXiv: hep-ph/9809590v1.; [2] Cogollo D, Q. F. (2014). Flavor Changing Neutral Currents Processes in a Reduced Minimal Scalar Sector. arXiv: 1312.0304v4.; [3] Dias A. G., P. P. (2014). A compact 341 model at TeV. arXiv:1309.6644v2.; [4] Machado A. C. B, M. J. (2013). Flavor-changing neutral currents in the minimal 3-3-1 model revisited. arXiv:1305.1921v3.; [5] Stanislaw Tatur, J. B. (2008). Mass matrices for quarks and leptons in triangular form. arxiv:0801.0095.; [6] Group), M. T. (2018). Bottom Mesons. Phys. Rev. D, 98; [7] Schiff, L. I. (1968). Quantum Mechanics. York, PA: McGraw-Hill.; [8] Sánchez, W. P. (2007). SYSTEMATIC STUDY OF THE SU(3)c ⊗ SU(4)L ⊗ U(1)X GAUGE SYMMETRY. Modern Physics Letters, 435 - 447.; https://repositorio.unal.edu.co/handle/unal/78024Test

  10. 10
    دورية أكاديمية