يعرض 1 - 10 نتائج من 44 نتيجة بحث عن '"e.g. blood"', وقت الاستعلام: 1.50s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Medical physics. 41(8)

    مصطلحات موضوعية: Mammary Glands, Human, Humans, Breast Neoplasms, Mammography, Organ Size, Calibration, Linear Models, Phantoms, Imaging, Algorithms, Fuzzy Logic, Female, Breast Density, Mass and density, Cancer, Logic and set theory, Segmentation, biochemistry, biological organs, cancer, density measurement, fuzzy set theory, image segmentation, mammography, medical image processing, phantoms, breast density, dual energy, breast imaging, Biochemistry, Beer, Spirits, Wine, Vinegar, Microbiology, Enzymology, Mutation or genetic engineering, Investigating density or specific gravity of materials, Analysing materials by determining density or specific gravity, Biological material, e.g. blood, urine, Haemocytometers, Digital computing or data processing equipment or methods, specially adapted for specific applications, Image data processing or generation, in general, Density measurement, Chemical analysis, Proteins, Lipids, Radiologists, Medical X-ray imaging, Mammary Glands, Human, Phantoms, Imaging, Biochemistry, Beer, Spirits, Wine, Vinegar, Microbiology, Enzymology, Mutation or genetic engineering, Investigating density or specific gravity of materials, Analysing materials by determining density or specific gravity, Biological material, e.g. blood, urine, Haemocytometers, Digital computing or data processing equipment or methods, specially adapted for specific applications, Image data processing or generation, in general, Breast Cancer, Biomedical Imaging, Prevention, 4.2 Evaluation of markers and technologies, Nuclear Medicine & Medical Imaging, Other Physical Sciences, Biomedical Engineering, Oncology and Carcinogenesis

    وصف الملف: application/pdf

  2. 2
  3. 3
    دورية أكاديمية

    المساهمون: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa 52242, Departments of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, Department of Medicine, University of California, Los Angeles, California 90095, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, Departments of Radiology, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, Department of Radiology, University of Iowa, Iowa City, Iowa 52242, Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, New York 10032

    وصف الملف: application/pdf

    العلاقة: Guo, Junfeng; Wang, Chao; Chan, Kung‐sik; Jin, Dakai; Saha, Punam K.; Sieren, Jered P.; Barr, R. G.; Han, MeiLan K.; Kazerooni, Ella; Cooper, Christopher B.; Couper, David; Newell, John D.; Hoffman, Eric A. (2016). "A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS)." Medical Physics 43(5): 2598-2610.; https://hdl.handle.net/2027.42/134827Test; Medical Physics; D. Jin, J. Guo, T. M. Dougherty, K. S. Iyer, E. A. Hoffman, and P. K. Saha, â A semiâ automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging,â Proc. SPIE 9788, 978816 ( 2016 ). 10.1117/12.2216558; D. Jin, K. Iyer, E. Hoffman, and P. Saha, â Automated assessment of pulmonary arterial morphology in multiâ row detector CT imaging using correspondence with anatomic airway branches,â in Advances in Visual Computing, edited by G. Bebis et al. ( Springer International, Cham, Switzerland, 2014 ), Vol. 8887, pp. 521 â 530.; S. N. Wood, Generalized Additive Models: An Introduction with r ( Chapman & Hall/CRC, Boca Raton, FL, 2006 ).; J. C. Pinheiro and D. M. Bates, Mixedâ Effects Models in S and Sâ PLUS ( Springer, New York, NY, 2000 ).; D. Couper, L. M. LaVange, M. Han, R. G. Barr, E. Bleecker, E. A. Hoffman, R. Kanner, E. Kleerup, F. J. Martinez, P. G. Woodruff, and S. Rennard, â Design of the subpopulations and intermediate outcomes in COPD study (SPIROMICS),â Thorax 69, 491 â 494 ( 2014 ). 10.1136/thoraxjnlâ 2013â 203897; J. P. Sieren, J. D. Newell, P. F. Judy, D. A. Lynch, K. S. Chan, J. Guo, and E. A. Hoffman, â Reference standard and statistical model for intersite and temporal comparisons of CT attenuation in a multicenter quantitative lung study,â Med. Phys. 39, 5757 â 5767 ( 2012 ). 10.1118/1.4747342; A. Rosenfeld and J. L. Pfaltz, â Sequential operations in digital picture processing,â J. ACM 13, 471 â 494 ( 1966 ). 10.1145/321356.321357; A. W. Van der Vaart, Asymptotic Statistics ( Cambridge University Press, Cambridge, England, 2000 ).; D. Gruber, â The mathematics of the 3D rotation matrix,â in Xtreme Game Developers Conference, Santa Clara, CA ( 2000 ).; M. E. Pique, â Rotation tools,â in Graphics Gems, edited by A. S. Glassner ( Academic Inc., Cambridge, MA, 1990 ), pp. 465 â 469.; S. Richard, D. B. Husarik, G. Yadava, S. N. Murphy, and E. Samei, â Towards taskâ based assessment of CT performance: System and object MTF across different reconstruction algorithms,â Med. Phys. 39, 4115 â 4122 ( 2012 ). 10.1118/1.4725171; S. N. Friedman, G. S. Fung, J. H. Siewerdsen, and B. M. Tsui, â A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noiseâ power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom,â Med. Phys. 40, 051907 (9pp.) ( 2013 ). 10.1118/1.4800795; N. D. Dâ Souza, J. M. Reinhardt, and E. A. Hoffman, â ASAP: Interactive quantification of 2D airway geometry,â Proc. SPIE 2709, 180 â 196 ( 1996 ). 10.1117/12.237860

  4. 4
    دورية أكاديمية

    المساهمون: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109â 0904

    وصف الملف: application/pdf

    العلاقة: Zhou, Chuan; Chan, Heang‐ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Wei, Jun; Kazerooni, Ella A. (2016). "Coronary artery analysis: Computerâ assisted selection of bestâ quality segments in multipleâ phase coronary CT angiography." Medical Physics 43(10): 5268-5278.; https://hdl.handle.net/2027.42/135134Test; Medical Physics; M. S. Kramer and A. R. Feinstein, â Clinical biostatistics: LIV. The biostatistics of concordance,â Clin. Pharmacol. Ther. 29, 111 â 123 ( 1981 ). 10.1038/clpt.1981.18; M. H. K. Hoffmann, J. Lessick, R. Manzke, F. T. Schmid, E. Gershin, D. T. Boll, S. Rispler, A. J. Aschoff, and M. Grass, â Automatic determination of minimal cardiac motion phases for computed tomography imaging: Initial experience,â Eur. Radiol. 16, 365 â 373 ( 2006 ). 10.1007/s00330â 005â 2849â z; R. M. S. Joemai, J. Geleijns, W. J. H. Veldkamp, and L. J. M. Kroft, â Clinical evaluation of 64â slice CT assessment of global left ventricular function using automated cardiac phase selection,â Circ. J. 72, 641 â 646 ( 2008 ). 10.1253/circj.72.641; R. M. S. Joemai, J. Geleijns, W. J. H. Veldkamp, A. de Roos, and L. J. M. Kroft, â Automated cardiac phase selection with 64â MDCT coronary angiography,â Am. J. Roentgenol. 191, 1690 â 1697 ( 2008 ). 10.2214/AJR.08.1039; B. Ruzsics, M. Gebregziabher, H. Lee, R. L. Brothers, T. Allmendinger, S. Vogt, P. Costello, and U. J. Schoepf, â Coronary CT angiography: Automatic cardiacâ phase selection for image reconstruction,â Eur. Radiol. 19, 1906 â 1913 ( 2009 ). 10.1007/s00330â 009â 1368â 8; C. Rohkohl, H. Bruder, K. Stierstorfer, and T. Flohr, â Improving bestâ phase image quality in cardiac CT by motion correction with MAM optimization,â Med. Phys. 40, 031901 (15pp.) ( 2013 ). 10.1118/1.4789486; W. G. Austen, J. E. Edwards, R. L. Frye, G. G. Gensini, V. L. Gott, L. S. Griffith, D. C. McGoon, M. L. Murphy, and B. B. Roe, â A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association,â Circulation 51, 5 â 40 ( 1975 ). 10.1161/01.CIR.51.4.5; J. Liu, L. Hadjiiski, H.â P. Chan, C. Zhou, J. Wei, A. Chughtai, J. Kuriakose, P. Agarwal, and E. Kazerooni, â Automatic selection of best quality vessels from multipleâ phase coronary CT angiography (cCTA),â Proc. SPIE 9414, 94140E1 â 94140E9 ( 2015 ). 10.1117/12.2082637; C. Zhou, H.â P. Chan, A. Chughtai, S. Patel, L. M. Hadjiiski, J. Wei, and E. A. Kazerooni, â Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCARâ DBT) method,â Comput. Med. Imaging Graphics 36, 1 â 10 ( 2012 ). 10.1016/j.compmedimag.2011.04.001; C. Zhou, H.â P. Chan, A. Chughtai, J. Kuriakose, P. Agarwal, E. A. Kazerooni, L. M. Hadjiiski, S. Patel, and J. Wei, â Computerized analysis of coronary artery disease: Performance evaluation of segmentation and tracking of coronary arteries in CT angiograms (CTA),â Med. Phys. 41, 081912 (11pp.) ( 2014 ). 10.1118/1.4890294; L. Hadjiiski, C. Zhou, H.â P. Chan, A. Chughtai, P. Agarwal, J. Kuriakose, E. Kazerooni, J. Wei, and S. Patel, â Coronary CT angiography (cCTA): Automated registration of coronary arterial trees from multiple phases,â Phys. Med. Biol. 59, 4661 â 4680 ( 2014 ). 10.1088/0031â 9155/59/16/4661; C. Zhou, H.â P. Chan, J. W. Kuriakose, A. Chughtai, J. Wei, L. M. Hadjiiski, Y. Guo, S. Patel, and E. A. Kazerooni, â Pulmonary vessel segmentation utilizing curved planar reformation and optimal path finding (CROP) in computed tomographic pulmonary angiography (CTPA) for CAD applications,â Proc. SPIE 8315, 83150N1 â 83150N9 ( 2012 ). 10.1117/12.912446; H.â P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, â Classifier design for computerâ aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers,â Med. Phys. 26, 2654 â 2668 ( 1999 ). 10.1118/1.598805; B. Sahiner, H.â P. Chan, N. Petrick, R. F. Wagner, and L. M. Hadjiiski, â Feature selection and classifier performance in computerâ aided diagnosis: The effect of finite sample size,â Med. Phys. 27, 1509 â 1522 ( 2000 ). 10.1118/1.599017; S. Achenbach, W. Moshage, D. Ropers, and K. Bachmann, â Curved multiplanar reconstructions for the evaluation of contrastâ enhanced electronâ beam CT of the coronary arteries,â Am. J. Roentgenol. 170, 895 â 899 ( 1998 ). 10.2214/ajr.170.4.9530029; C. Zhou, H.â P. Chan, B. Sahiner, L. M. Hadjiiski, A. Chughtai, S. Patel, J. Wei, J. Ge, P. N. Cascade, and E. A. Kazerooni, â Automatic multiscale enhancement and hierarchical segmentation of pulmonary vessels in CT pulmonary angiography (CTPA) images for CAD applications,â Med. Phys. 34, 4567 â 4577 ( 2007 ). 10.1118/1.2804558; M. J. Budoff, S. Achenbach, R. S. Blumenthal, J. J. Carr, J. G. Goldin, P. Greenland, A. D. Guerci, J. A. C. Lima, D. J. Rader, G. D. Rubin, L. J. Shaw, and S. E. Wiegers, â Assessment of coronary artery disease by cardiac computed tomography: A scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology,â Circulation 114, 1761 â 1791 ( 2006 ). 10.1161/CIRCULATIONAHA.106.178458; Writing group Members, D. Lloydâ Jones, R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. Oâ Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthielâ Smoller, N. Wong, J. Wylieâ Rosett, and Y. Hong, â Heart disease and stroke statisticsâ 2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,â Circulation 119, e21 â 181 ( 2009 ). 10.1161/CIRCULATIONAHA.108.191261; J. J. Fine, C. B. Hopkins, N. Ruff, and F. C. Newton, â Comparison of accuracy of 64â slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease,â Am. J. Cardiol. 97, 173 â 174 ( 2006 ). 10.1016/j.amjcard.2005.08.021; M. Budoff, D. Dowe, J. Jollis, M. Gitter, J. Sutherland, E. Halamert, M. Scherer, R. Bellinger, A. Martin, R. Benton, A. Delago, and J. Min, â Diagnostic performance of 64â multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter accuracy (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial,â J. Am. Coll. Cardiol. 52, 1724 â 1732 ( 2008 ). 10.1016/j.jacc.2008.07.031; J. Min, L. Shaw, R. Devereux, P. Okin, J. Weinsaft, D. Russo, N. Lippolis, D. Berman, and T. Callister, â Prognostic value of multidetector coronary computed tomographic angiography for prediction of allâ cause mortality,â J. Am. Coll. Cardiol. 50, 1161 â 1170 ( 2007 ). 10.1016/j.jacc.2007.03.067; M. Garcia, J. Lessick, M. Hoffmann, and C. S. Investigators, â Accuracy of 16â row multidetector computed tomography for the assessment of coronary artery stenosis,â JAMA 296, 403 â 411 ( 2006 ). 10.1001/jama.296.4.403; B. Desjardins and E. A. Kazerooni, â ECGâ gated cardiac CT,â Am. J. Roentgenol. 182, 993 â 1010 ( 2004 ). 10.2214/ajr.182.4.1820993; J. Wei, C. Zhou, H.â P. Chan, A. Chughtai, S. Patel, P. Agarwal, J. Kuriakose, L. M. Hadjiiski, and E. Kazerooni, â Computerized detection of nonâ calcified plaques in coronary CT angiography: Evaluation of topological soft gradient prescreening method and luminal analysis,â Med. Phys. 41, 081901 (9pp.) ( 2014 ). 10.1118/1.4885958; V. Rasche, B. Movassaghi, M. Grass, D. Schafer, and A. Buecker, â Automatic selection of the optimal cardiac phase for gated threeâ dimensional coronary xâ ray angiography,â Acad. Radiol. 13, 630 â 640 ( 2006 ). 10.1016/j.acra.2006.01.010

  5. 5
    دورية أكاديمية

    المساهمون: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48108, Pathology Department, University Health Network, Toronto, Ontario M5G 2C4, Canada, Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9, Canada, Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9, Canada and Centre Hospitalier de l’Université de Montréal, 1058 Rue Saint‐Denis, Montréal, Québec H2X 3J4, Canada, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada, Departments of Surgery (Urology) and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario M5G 2M9, Canada

    وصف الملف: application/pdf

    العلاقة: McGrath, Deirdre M.; Lee, Jenny; Foltz, Warren D.; Samavati, Navid; Jewett, Michael A. S.; Kwast, Theo; Chung, Peter; Ménard, Cynthia; Brock, Kristy K. (2016). "Technical Note: Method to correlate whole‐specimen histopathology of radical prostatectomy with diagnostic MR imaging." Medical Physics 43(3): 1065-1072.; https://hdl.handle.net/2027.42/134778Test; Medical Physics; C. Menard, D. Iupati, J. Lee, A. Simeonov, J. Abed, J. Publicover, P. Chung, A. Bayley, C. Catton, M. Milosevic, R. Bristow, G. Morton, P. Warde, K. Brock, and M. A. Haider, “ MRI and biopsy performance in delineating recurrent tumor boundaries after radiotherapy for prostate cancer,” Proc. Int. Soc. Magn. Reson. Med. 19, 3072 ( 2011 ).; M. A. Haider, P. Chung, J. Sweet, A. Toi, K. Jhaveri, C. Menard, P. Warde, J. Trachtenberg, G. Lockwood, and M. Milosevic, “ Dynamic contrast‐enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 70 ( 2 ), 425 – 430 ( 2008 ). 10.1016/j.ijrobp.2007.06.029; A. McNiven, J. Moseley, D. L. Langer, M. A. Haider, and K. K. Brock, “ Preliminary feasibility study: Modeling 3D deformations of the prostate from whole‐mount histology to in vivo MRI,” Med. Phys. 36, 2712 ( 2009 ). 10.1118/1.3182294; G. J. Jager, E. T. G. Ruijter, C. A. van de Kaa, J. J. M. C. H. de la Rosette, G. O. N. Oosterhof, J. R. Thornbury, and J. O. Barentsz, “ Local stagin of prostate cancer with endorectal MR imaging: Correlation with histopathology,” Am. J. Roentgenol. 166, 845 – 852 ( 1996 ). 10.2214/ajr.166.4.8610561; A. D. Ward, C. Crukley, C. McKenzie, J. Montreuil, E. Gibson, J. A. Gomez, M. Moussa, G. Bauman, and A. Fenster, “ Registration of in vivo prostate magnetic resonance images to digital histopathology images,” in Proceedings of MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervenion, LNCS --> ( Springer Berlin Heidelberg, 2010 ), Vol. 6367, pp. 66 – 76.; D. L. Langer, T. H. van der Kwast, A. J. Evans, J. Trachtenberg, B. C. Wilson, and M. A. Haider, “ Prostate cancer detection with multi‐parametric MRI: Logistic regression analysis of quantitative T2, diffusion‐weighted imaging, and dynamic contrast‐enhanced MRI,” J. Magn. Reson. Imaging 30, 327 – 334 ( 2009 ). 10.1002/jmri.21824; V. Shah, T. Pohida, B. Turkbey, H. Mani, M. Merino, P. A. Pinto, P. Choyke, and M. Bernardo, “ A method for correlating in vivo prostate magnetic resonance imaging and histopathology using individualized magnetic resonance ‐based molds,” Rev. Sci. Instrum. 80 ( 10 ), 104301 ( 2009 ). 10.1063/1.3242697; D. L. Langer, T. H. van der Kwast, A. J. Evans, A. Plotkin, J. Trachtenberg, B. C. Wilson, and M. A. Haider, “ Prostate tissue composition and MR measurements: Investigating the relationships between ADC, T2, K trans, V e and corresponding features,” Radiology 255 ( 2 ), 485 – 494 ( 2010 ). 10.1148/radiol.10091343; C. Yong‐Hing, A. Obenaus, R. Stryker, K. Tong, and G. Sarty, “ Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain,” Magn. Reson. Med. 54, 324 – 332 ( 2005 ). 10.1002/mrm.20578; A. Graser, A. Heuck, B. Sommer, J. Massmann, J. Scheidler, M. Reiser, and U. Mueller‐Lisse, “ Per‐sextant localization and staging or prostate cancer: Correlation of imaging findings with whole‐mount step section histopathology,” Am. J. Roentgenol. 188, 84 – 90 ( 2007 ). 10.2214/AJR.06.0401; C. Menard, R. C. Susil, P. Choyke, G. S. Gustafson, W. Kammerer, H. Ning, R. W. Millner, K. L. Ullman, N. S. Crouse, S. Smith, E. Lessard, J. Pouliot, V. Wright, E. McVeigh, C. N. Coleman, and K. C. Camphausen, “ MRI‐guided HDR prostate brachytherapy in standard 1.5T scanner,” Int. J. Radiat. Oncol., Biol., Phys. 59 ( 5 ), 1414 – 1423 ( 2004 ). 10.1016/j.ijrobp.2004.01.016; M. A. Haider, T. H. van der Kwast, J. Tanguay, A. J. Evans, A. Hashmi, G. Lockwood, and J. Trachtenberg, “ Combined T2‐weighted and diffusion‐weighted MRI for localization of prostate cancer,” Am. J. Roentgenol. 189, 323 – 328 ( 2007 ). 10.2214/ajr.07.2211; K. K. Brock, M. B. Sharpe, L. A. Dawson, S. M. Kim, and D. A. Jaffray, “ Accuracy of finite element model‐based multi‐organ deformable image registration,” Med. Phys. 32 ( 6 ), 1647 – 1659 ( 2005 ). 10.1118/1.1915012; K. Brock, S. Ahmed, J. Moseley, C. Moulton, M. Guindi, M. Haider, S. Gallinger, and L. Dawson, “ Deformable registration for in vivo imaging and pathology correlation,” Med. Phys. 33, 1994 ( 2006 ). 10.1118/1.2240229

  6. 6
    دورية أكاديمية

    المساهمون: Department of Biomedical Engineering, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, Department of Radiology and Imaging Sciences and Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30322, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322

    وصف الملف: application/pdf

    العلاقة: Orza, Anamaria; Yang, Yi; Feng, Ting; Wang, Xueding; Wu, Hui; Li, Yuancheng; Yang, Lily; Tang, Xiangyang; Mao, Hui (2016). "A nanocomposite of Au‐AgI core/shell dimer as a dual‐modality contrast agent for x‐ray computed tomography and photoacoustic imaging." Medical Physics 43(1): 589-599.; https://hdl.handle.net/2027.42/135097Test; Medical Physics; D. J. Naczynski, M. C. Tan, R. E. Riman, and P. V. Moghe, “ Rare earth nanoprobes for functional biomolecular imaging and theranostics,” J. Mater. Chem. B 2 ( 20 ), 2958 – 2973 ( 2014 ). 10.1039/c4tb00094c; V. Ntziachristos, “ Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7 ( 8 ), 603 – 614 ( 2010 ). 10.1038/nmeth.1483; C. P. Karger, P. Hipp, M. Henze, G. Echner, A. Hoss, L. Schad, and G. H. Hartmann, “ Stereotactic imaging for radiotherapy: Accuracy of CT, MRI, PET and SPECT,” Phys. Med. Biol. 48 ( 2 ), 211 – 221 ( 2003 ). 10.1088/0031‐9155/48/2/305; C. Paizs, A. Katona, and J. Retey, “ The interaction of heteroaryl‐acrylates and alanines with phenylalanine ammonia‐lyase from parsley,” Chem.–Eur. J. 12 ( 10 ), 2739 – 2744 ( 2006 ). 10.1002/chem.200501034; M.‐C. Bourg, A. Badia, and R. B. Lennox, “ Gold–sulfur bonding in 2D and 3D self‐assembled monolayers: XPS characterization,” J. Phys. Chem. B 104 ( 28 ), 6562 – 6567 ( 2000 ). 10.1021/jp9935337; I. Fratoddi, I. Venditti, C. Battocchio, G. Polzonetti, C. Cametti, and M. V. Russo, “ Core shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization,” Nanoscale Res. Lett. 6 ( 1 ), 98 ( 2011 ). 10.1186/1556‐276X‐6‐98; S. K. Jo and J. M. White, “ Characterization of adsorption states of atomic iodine on Pt(111),” Surf. Sci. 261 ( 1–3 ), 111 – 117 ( 1992 ). 10.1016/0039‐6028(92)90222‐r; J. Leiro, E. Minni, and E. Suoninen, “ Study of plasmon structure in XPS spectra of silver and gold,” J. Phys. F: Met. Phys. 13 ( 1 ), 215 – 221 ( 1983 ). 10.1088/0305‐4608/13/1/024; A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “ Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir 16 ( 23 ), 8789 – 8795 ( 2000 ). 10.1021/la000316k; A. N. Shipway, E. Katz, and I. Willner, “ Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1 ( 1 ), 18 – 52 ( 2000 ). 10.1002/1439‐7641(20000804)1:13.0.CO;2‐L; W. Cheng, S. Dong, and E. Wang, “ Iodine‐induced gold‐nanoparticle fusion/fragmentation/aggregation and iodine‐linked nanostructured assemblies on a glass substrate,” Angew. Chem., Int. Ed. Engl. 42 ( 4 ), 449 – 452 ( 2003 ). 10.1002/anie.200390136; C. Freese, C. Uboldi, M. I. Gibson, R. E. Unger, B. B. Weksler, I. A. Romero, P.‐O. Couraud, and C. J. Kirkpatrick, “ Uptake and cytotoxicity of citrate‐coated gold nanospheres: Comparative studies on human endothelial and epithelial cells,” Part. Fibre Toxicol. 9 ( 23 ), 1 – 11 ( 2012 ). 10.1186/1743‐8977‐9‐23; P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, “ Transferrin‐mediated gold nanoparticle cellular uptake,” Bioconjugate Chem. 16 ( 3 ), 494 – 506 ( 2005 ). 10.1021/bc049775d; Y. Li, R. Lin, L. Wang, J. Huang, H. Wu, G. Cheng, Z. Zhou, T. MacDonald, L. Yang, and H. Mao, “ PEG‐ b ‐AGE polymer coated magnetic nanoparticle probes with facile functionalization and anti‐fouling properties for reducing non‐specific uptake and improving biomarker targeting,” J. Mater. Chem. B Mater. Biol. Med. 3 ( 17 ), 3591 – 3603 ( 2015 ). 10.1039/C4TB01828A; See supplementary material at http://dx.doi.org/10.1118/1.4939062Test ftp://ftp.aip.org/epaps/med_phys/E-MPHYA6-43-054601 for more investigations of A‐D in vitro toxicity on cell lines at different concentrations of AuNPs and AgI/AuCSD.; X. Zheng, J. Shi, Y. Bu, G. Tian, X. Zhang, W. Yin, B. Gao, Z. Yang, Z. Hu, X. Liu, L. Yan, Z. Gu, and Y. Zhao, “ Silica‐coated bismuth sulfide nanorods as multimodal contrast agents for a non‐invasive visualization of the gastrointestinal tract,” Nanoscale 7 ( 29 ), 12581 – 12591 ( 2015 ). 10.1039/C5NR03068D; G. Tian, X. Zhang, X. Zheng, W. Yin, L. Ruan, X. Liu, L. Zhou, L. Yan, S. Li, Z. Gu, and Y. Zhao, “ Multifunctional Rb x WO 3 nanorods for simultaneous combined chemo‐photothermal therapy and photoacoustic/CT imaging,” Small 10 ( 20 ), 4160 – 4170 ( 2014 ). 10.1002/smll.201401237; L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Bu, B. Sun, and Z. Liu, “ PEGylated WS 2 nanosheets as a multifunctional theranostic agent for in vivo dual‐modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26 ( 12 ), 1886 – 1893 ( 2014 ). 10.1002/adma.201304497; Z. Liu, F. Pu, J. Liu, L. Jiang, Q. Yuan, Z. Li, J. Ren, and X. Qu, “ PEGylated hybrid ytterbia nanoparticles as high‐performance diagnostic probes for in vivo magnetic resonance and x‐ray computed tomography imaging with low systemic toxicity,” Nanoscale 5 ( 10 ), 4252 – 4261 ( 2013 ). 10.1039/c3nr00491k; Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, and J. Gatjens, “ Iron oxide nanoparticle‐containing microbubble composites as contrast agents for MR and ultrasound dual‐modality imaging,” Biomaterials 32 ( 26 ), 6155 – 6163 ( 2011 ). 10.1016/j.biomaterials.2011.05.019; D. Gao, P. Zhang, C. Liu, C. Chen, G. Gao, Y. Wu, Z. Sheng, L. Song, and L. Cai, “ Compact chelator‐free Ni‐integrated CuS nanoparticles with tunable near‐infrared absorption and enhanced relaxivity for in vivo dual‐modal photoacoustic/MR imaging,” Nanoscale 7 ( 42 ), 17631 – 17636 ( 2015 ). 10.1039/c5nr05237h; J. Chen, Z. Guo, H. B. Wang, M. Gong, X. K. Kong, P. Xia, and Q. W. Chen, “ Multifunctional Fe 3 O 4 @C@Ag hybrid nanoparticles as dual modal imaging probes and near‐infrared light‐responsive drug delivery platform,” Biomaterials 34 ( 2 ), 571 – 581 ( 2013 ). 10.1016/j.biomaterials.2012.10.002; S. Zhang, M. Gong, D. Zhang, H. Yang, F. Gao, and L. Zou, “ Thiol‐PEG‐carboxyl‐stabilized Fe 2 O 3 /Au nanoparticles targeted to CD 105: Synthesis, characterization and application in MR imaging of tumor angiogenesis,” Eur. J. Radiol. 83 ( 7 ), 1190 – 1198 ( 2014 ). 10.1016/j.ejrad.2014.03.034; W. Gao, W. Cao, H. Zhang, P. Li, K. Xu, and B. Tang, “ Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au‐ZnO hybrid nanoparticles,” Chem. Commun. (Cambridge, U. K.) 50 ( 60 ), 8117 – 8120 ( 2014 ). 10.1039/c4cc03793f; L. C. Gontard, A. Fernandez, R. E. Dunin‐Borkowski, T. Kasama, S. Lozano‐Perez, and S. Lucas, “ Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma‐poly‐allylamine): Structure and electron irradiation effects,” Micron 67, 1 – 9 ( 2014 ). 10.1016/j.micron.2014.06.004; E. Yang, W. Qian, Z. Cao, L. Wang, E. N. Bozeman, C. Ward, B. Yang, P. Selvaraj, M. Lipowska, Y. A. Wang, H. Mao, and L. Yang, “ Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery,” Theranostics 5 ( 1 ), 43 – 61 ( 2015 ). 10.7150/thno.10350; Y. Seo, C. Mari, and B. H. Hasegawa, “ Technological development and advances in single‐photon emission computed tomography/computed tomography,” Semin. Nucl. Med. 38 ( 3 ), 177 – 198 ( 2008 ). 10.1053/j.semnuclmed.2008.01.001; Y. Shao, S. R. Cherry, K. Farahani, K. Meadors, S. Siegel, R. W. Silverman, and P. K. Marsden, “ Simultaneous PET and MR imaging,” Phys. Med. Biol. 42 ( 10 ), 1965 – 1970 ( 1997 ). 10.1088/0031‐9155/42/10/010; Y. Jin, Y. Li, X. Ma, Z. Zha, L. Shi, J. Tian, and Z. Dai, “ Encapsulating tantalum oxide into polypyrrole nanoparticles for x‐ray CT/photoacoustic bimodal imaging‐guided photothermal ablation of cancer,” Biomaterials 35 ( 22 ), 5795 – 5804 ( 2014 ). 10.1016/j.biomaterials.2014.03.086; J. Zhu, Y. Lu, Y. Li, J. Jiang, L. Cheng, Z. Liu, L. Guo, Y. Pan, and H. Gu, “ Synthesis of Au‐Fe 3 O 4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging,” Nanoscale 6 ( 1 ), 199 – 202 ( 2014 ). 10.1039/C3NR04730J; L. Sampath, S. Kwon, S. Ke, W. Wang, R. Schiff, M. E. Mawad, and E. M. Sevick‐Muraca, “ Dual‐labeled trastuzumab‐based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer,” J. Nucl. Med. 48 ( 9 ), 1501 – 1510 ( 2007 ). 10.2967/jnumed.107.042234; M. P. Melancon, Y. Wang, X. Wen, J. A. Bankson, L. C. Stephens, S. Jasser, J. G. Gelovani, J. N. Myers, and C. Li, “ Development of a macromolecular dual‐modality MR‐optical imaging for sentinel lymph node mapping,” Invest. Radiol. 42 ( 8 ), 569 – 578 ( 2007 ). 10.1097/RLI.0b013e31804f5a79; M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “ Simultaneous PET‐MRI: A new approach for functional and morphological imaging,” Nat. Med. 14 ( 4 ), 459 – 465 ( 2008 ). 10.1038/nm1700; Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “ Photo‐magnetic imaging: Resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58 ( 11 ), 3551 – 3562 ( 2013 ). 10.1088/0031‐9155/58/11/3551; J. Kim, Y. Piao, and T. Hyeon, “ Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38 ( 2 ), 372 – 390 ( 2009 ). 10.1039/B709883A

  7. 7
    دورية أكاديمية

    المساهمون: Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China and Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China

    وصف الملف: application/pdf

    العلاقة: Li, Weisi; Belmont, Barry; Greve, Joan M.; Manders, Adam B.; Downey, Brian C.; Zhang, Xi; Xu, Zhen; Guo, Dongming; Shih, Albert (2016). "Polyvinyl chloride as a multimodal tissue‐mimicking material with tuned mechanical and medical imaging properties." Medical Physics 43(10): 5577-5592.; https://hdl.handle.net/2027.42/135011Test; Medical Physics; K. Yasukawa, T. Kunisue, K. Tsuta, Y. Shikinami, and T. Kondo, “ An ultrasound phantom with long‐term stability using a new biomimic soft gel material,” in IEEE Ultrasonics Symposium Proceedings ( IEEE, New York City, NY, 2007 ), pp. 2501 – 2502.; M. D. Mitchell, H. L. Kundel, L. Axel, and P. M. Joseph, “ Agarose as a tissue equivalent phantom material for NMR imaging,” Magn. Reson. Imaging 4 ( 3 ), 263 – 266 ( 1986 ). 10.1016/0730‐725X(86)91068‐4; M. Penders, S. Nilsson, L. Piculell, and B. Lindman, “ Clouding and diffusion of nonionic surfactants in agarose gels and solutions,” J. Phys. Chem. 97 ( 43 ), 11332 – 11338 ( 1993 ). 10.1021/j100145a035; X. Zhang, B. Qiang, and J. Greenleaf, “ Comparison of the surface wave method and the indentation method for measuring the elasticity of gelatin phantoms of different concentrations,” Ultrasonics 51 ( 2 ), 157 – 164 ( 2011 ). 10.1016/j.ultras.2010.07.005; R. J. Roesthuis, Y. R. J. van Veen, A. Jahya, and S. Misra, “ Mechanics of needle‐tissue interaction,” in IEEE/RSJ International Conference on Intelligent Robots and Systems ( IEEE, Stanford, CA, 2011 ), pp. 2557 – 2563.; J. C. Blechinger, E. L. Madsen, and G. R. Frank, “ Tissue‐mimicking gelatin‐agar gels for use in magnetic resonance imaging phantoms,” Med. Phys. 15 ( 4 ), 629 – 636 ( 1988 ). 10.1118/1.596219; S. Smitha, P. Shajesh, P. Mukundan, T. D. R. Nair, and K. G. K. Warrier, “ Synthesis of biocompatible hydrophobic silica‐gelatin nano‐hybrid by sol–gel process,” Colloids Surf., B 55 ( 1 ), 38 – 43 ( 2007 ). 10.1016/j.colsurfb.2006.11.008; D. F. Coutinho, S. V. Sant, H. Shin, J. T. Oliveira, M. E. Gomes, N. M. Neves, A. Khademhosseini, and R. L. Reis, “ Modified gellan gum hydrogels with tunable physical and mechanical properties,” Biomaterials 31 ( 29 ), 7494 – 7502 ( 2010 ). 10.1016/j.biomaterials.2010.06.035; A. Asadian, M. R. Kermani, and R. V. Patel, “ A compact dynamic force model for needle‐tissue interaction,” in Annual International Conference of the IEEE Engineering in Medicine and Biology ( IEEE, Buenos Aires, Argentina, 2010 ), pp. 2292 – 2295.; A. Asadian, R. V. Patel, and M. R. Kermani, “ Compensation for relative velocity between needle and soft tissue for friction modeling in needle insertion,” in Annual International Conference of the IEEE Engineering in Medicine and Biology ( IEEE, San Diego, CA, 2012 ), pp. 960 – 963.; R. L. King, Y. Liu, S. Maruvada, B. A. Herman, K. A. Wear, and G. R. Harris, “ Development and characterization of a tissue‐mimicking material for high‐intensity focused ultrasound,” IEEE Trans. Ultrason. Eng. 58 ( 7 ), 1397 – 1405 ( 2011 ). 10.1109/TUFFC.2011.1959; K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “ Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49 ( 24 ), 5529 – 5546 ( 2004 ). 10.1088/0031‐9155/49/24/009; W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “ Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16 ( 7 ), 075002 ( 2011 ). 10.1117/1.3597616; K. C. Chu and B. K. Rutt, “ Polyvinyl alcohol cryogel: An ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med. 37 ( 2 ), 314 – 319 ( 1997 ). 10.1002/mrm.1910370230; Z. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, and Z. Zheng, “ Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method,” Mater. Lett. 63 ( 1 ), 130 – 132 ( 2009 ). 10.1016/j.matlet.2008.09.042; M. Kita, Y. Ogura, Y. Honda, S. H. Hyon, W. Cha II, and Y. Ikada, “ Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material,” Graefes Arch. Clin. Exp. Ophthalmol. 228 ( 6 ), 533 – 537 ( 1990 ). 10.1007/BF00918486; S. Misra, K. B. Reed, B. W. Schafer, K. T. Ramesh, and A. M. Okamura, “ Mechanics of flexible needles robotically steered through soft tissue,” Int. J. Rob. Res. 29 ( 13 ), 1640 – 1660 ( 2010 ). 10.1177/0278364910369714; R. Nyman, A. Ericsson, A. Hemmingsson, B. Jung, G. Sperber, and K. A. Thuomas, “ T 1, T 2, and relative proton density at 0.35 T for spleen, liver, adipose tissue, and vertebral body: Normal values,” Magn. Reson. Med. 3, 901 – 910 ( 1986 ). 10.1002/mrm.1910030610; M. Carbone, S. Condino, L. Mattei, P. Forte, V. Ferrari, and F. Mosca, “ Anthropomorphic ultrasound elastography phantoms—Characterization of silicone materials to build breast elastography phantoms,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, San Diego, CA, 2012 ), pp. 492 – 494.; C. L. Cheung, T. Looi, J. Drake, and P. C. W. Kim, “ Magnetic resonance imaging properties of multimodality anthropomorphic silicone rubber phantoms for validating surgical robots and image guided therapy systems,” Proc. SPIE 8316, 83161X ( 2012 ). 10.1117/12.908274; D. C. Goldstein, H. L. Kundel, M. E. Daube‐Witherspoon, L. E. Thibault, and E. J. Goldstein, “ A silicone gel phantom suitable for multimodality imaging,” Invest. Radiol. 22 ( 2 ), 153 – 157 ( 1987 ). 10.1097/00004424‐198702000‐00013; G. M. Bernacca, B. O’Connor, D. F. Williams, and D. J. Wheatley, “ Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness,” Biomaterials 23 ( 1 ), 45 – 50 ( 2002 ). 10.1016/S0142‐9612(01)00077‐1; B.‐S. Chiou and P. E. Schoen, “ Effects of crosslinking on thermal and mechanical properties of polyurethanes,” J. Appl. Polym. Sci. 83 ( 1 ), 212 – 223 ( 2002 ). 10.1002/app.10056; D. Fuerst, D. Stephan, P. Augat, and A. Schrempf, “ Foam phantom development for artificial vertebrae used for surgical training,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, San Diego, CA, 2012 ), pp. 5773 – 5776.; W. D. D’Souza, E. L. Madsen, O. Unal, K. K. Vigen, G. R. Frank, and B. R. Thomadsen, “ Tissue mimicking materials for a multi‐imaging modality prostate phantom,” Med. Phys. 28 ( 4 ), 688 – 700 ( 2001 ). 10.1118/1.1354998; E. L. Madsen, W. D. D’Souza, and G. R. Frank, “ Multi‐imaging modality tissue mimicking materials for imaging phantoms,” U.S. patent 6635486(November 20, 2001 ).; S. Zhou, L. Wu, J. Sun, and W. Shen, “ The change of the properties of acrylic‐based polyurethane via addition of nano‐silica,” Prog. Org. Coatings 45 ( 1 ), 33 – 42 ( 2002 ). 10.1016/S0300‐9440(02)00085‐1; M. M. Jalili, S. Moradian, H. Dastmalchian, and A. Karbasi, “ Investigating the variations in properties of 2‐pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano‐silica,” Prog. Org. Coatings 59 ( 1 ), 81 – 87 ( 2007 ). 10.1016/j.porgcoat.2007.01.018; X. Liang, A. L. Oldenburg, V. Crecea, S. Kalyanam, M. F. Insana, and S. A. Boppart, “ Modeling and measurement of tissue elastic moduli using optical coherence elastography,” Proc. SPIE 6858, 685803 – 685808 ( 2008 ). 10.1117/12.760779; V. P. Mathews, A. D. Elster, P. B. Barker, B. L. Buff, J. A. Haller, and C. M. Greven, “ Intraocular silicone oil: In vitro and in vivo MR and CT characteristics,” Am. J. Neuroradiol. 15 ( 2 ), 343 – 347 ( 1994 ).; T.‐K. Shih, C.‐F. Chen, J.‐R. Ho, and F.‐T. Chuang, “ Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83 ( 11–12 ), 2499 – 2503 ( 2006 ). 10.1016/j.mee.2006.05.006; G. S. Rajan, G. S. Sur, J. E. Mark, D. W. Schaefer, and G. Beaucage, “ Preparation and characterization of some unusually transparent poly(dimethylsiloxane) nanocomposites,” J. Polym. Sci., Part B: Polym. Phys. 41 ( 16 ), 1897 – 1901 ( 2003 ). 10.1002/polb.10565; E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien, “ Young’s modulus measurements of soft tissues with application to elasticity imaging,” IEEE Trans. Ultrason. Eng. 43 ( 1 ), 191 – 194 ( 1996 ). 10.1109/58.484478; W. C. Yeh, P. C. Li, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and H. L. Po, “ Elastic modulus measurements of human liver and correlation with pathology,” Ultrasound Med. Biol. 28 ( 4 ), 467 – 474 ( 2002 ). 10.1016/S0301‐5629(02)00489‐1; Y. Kobayashi, T. Sato, and M. G. Fujie, “ Modeling of friction force based on relative velocity between liver tissue and needle for needle insertion simulation plates needle,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, Minneapolis, MN, 2009 ), pp. 5274 – 5278.; A. Asadian, R. V. Patel, and M. R. Kermani, “ Dynamics of translational friction in needle‐tissue interaction during needle insertion,” Ann. Biomed. Eng. 42 ( 1 ), 73 – 85 ( 2014 ). 10.1007/s10439‐013‐0892‐5; J. C. Bamber and C. R. Hill, “ Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature,” Ultrasound Med. Biol. 5 ( 2 ), 149 – 157 ( 1979 ). 10.1016/0301‐5629(79)90083‐8; J. C. Bamber and C. R. Hill, “ Acoustic properties of normal and cancerous human liver‐I. Dependence on pathological condition,” Ultrasound Med. Biol. 7 ( 2 ), 121 – 133 ( 1981 ). 10.1016/0301‐5629(81)90001‐6; C. C. Dierickx, M. C. Grossman, W. A. Farinelli, and R. R. Anderson, “ Permanent hair removal by normal‐mode ruby laser,” Arch. Dermatol. 134 ( 7 ), 837 – 842 ( 1998 ). 10.1001/archderm.134.7.837; G. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “ T 1, T 2 relaxation and magnetization transfer in tissue at 3T,” Magn. Reson. Med. 54 ( 3 ), 507 – 512 ( 2005 ). 10.1002/mrm.20605; Z. Taylor and K. Miller, “ Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus,” J. Biomech. 37 ( 8 ), 1263 – 1269 ( 2004 ). 10.1016/j.jbiomech.2003.11.027; F. Casanova, P. R. Carney, and M. Sarntinoranont, “ In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain,” J. Neurosci. Methods 237, 79 – 89 ( 2014 ). 10.1016/j.jneumeth.2014.08.012; B. Fischl, D. H. Salat, A. J. W. Van Der Kouwe, N. Makris, F. Ségonne, B. T. Quinn, and A. M. Dale, “ Sequence‐independent segmentation of magnetic resonance images,” NeuroImage 23 ( Suppl.1 ), 69 – 84 ( 2004 ). 10.1016/j.neuroimage.2004.07.016; J. T. Iivarinen, R. K. Korhonen, and J. S. Jurvelin, “ Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device—Significance of indentation geometry and soft tissue thickness,” Skin Res. Technol. 20 ( 3 ), 347 – 354 ( 2014 ). 10.1111/srt.12125; B. A. Bullen, F. Quaade, E. Olesen, and S. A. Lund, “ Ultrasonic reflections used for measuring subcutaneous fat in humans,” Hum. Biol. 37 ( 4 ), 375 – 384 ( 1965 ).; R. L. Errabolu, C. M. Sehgal, R. C. Bahn, and J. F. Greenleaf, “ Measurement of ultrasonic nonlinear parameter in excised fat tissues,” Ultrasound Med. Biol. 14 ( 2 ), 137 – 146 ( 1988 ). 10.1016/0301‐5629(88)90181‐0; R. L. Ehman, B. O. Kjos, H. Hricak, R. C. Brasch, and C. B. Higgins, “ Relative intensity of abdominal organs in MR images,” J. Comput. Assist. Tomogr. 9 ( 2 ), 315 – 319 ( 1985 ). 10.1097/00004728‐198503000‐00016; B. C. W. Kot, Z. J. Zhang, A. W. C. Lee, V. Y. F. Leung, and S. N. Fu, “ Elastic modulus of muscle and tendon with shear wave ultrasound elastography: Variations with different technical settings,” PLoS One 7 ( 8 ), e44348 ( 2012 ). 10.1371/journal.pone.0044348; Y. Fukushima and K. Naemura, “ Estimation of the friction force during the needle insertion using the disturbance observer and the recursive least square,” ROBOMECH J. 1 ( 1 ), 1 – 8 ( 2014 ). 10.1186/s40648‐014‐0014‐7; B. M. Ahn, J. Kim, L. Ian, K. H. Rha, and H. J. Kim, “ Mechanical property characterization of prostate cancer using a minimally motorized indenter in an ex vivo indentation experiment,” Urology 76 ( 4 ), 1007 – 1011 ( 2010 ). 10.1016/j.urology.2010.02.025; X. Wang, J. Wang, Y. Liu, H. Zong, X. Che, W. Zheng, F. Chen, Z. Zhu, D. Yang, and X. Song, “ Alterations in mechanical properties are associated with prostate cancer progression,” Med. Oncol. 31:876 ( 2014 ). 10.1007/s12032‐014‐0876‐9; T. Podder, D. Clark, J. Sherman, D. Fuller, E. Messing, D. Rubens, J. Strang, R. Brasacchio, L. Liao, W.‐S. Ng, and Y. Yu, “ Vivo motion and force measurement of surgical needle intervention during prostate brachytherapy,” Med. Phys. 33 ( 8 ), 2915 – 2922 ( 2006 ). 10.1118/1.2218061; L. Kjaer, C. Thomsen, P. Iversen, and O. Henriksen, “ In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging,” Magn. Reson. Imaging 5, 23 – 30 ( 1987 ). 10.1016/0730‐725X(87)90480‐2; D. C. Montgometry, Design and Analysis of Experiments ( John Wiley & Sons, New Jersey, 2008 ).; H. Mehrabian and A. Samani, “ Constrained hyperelastic parameters reconstruction of PVA (polyvinyl alcohol) phantom undergoing large deformation,” Proc. SPIE 7261, 72612G ( 2009 ). 10.1117/12.813871; ASTM, International Standard Test Method for Rubber Property—Durometer Hardness ASTM Standard D2240–05 ( ASTM, West Conshohocken, 2015).; B. J. Briscoe, K. S. Sebastian, and M. J. Adams, “ The effect of indenter geometry on the elastic response to indentation,” J. Phys. D. Appl. Phys. 27 ( 6 ), 1156 – 1162 ( 1999 ). 10.1088/0022‐3727/27/6/013; D. J. Naylor, “ Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures,” Int. J. Numer. Methods Eng. 8, 443 – 460 ( 1974 ). 10.1002/nme.1620080302; J. D. Ferry, Viscoelastic Properties of Polymers ( Wiley, New York, NY, 1980 ).; W. Xu and J. J. Kaufman, “ Diffraction correction methods for insertion ultrasound attenuation estimation,” IEEE Trans. Biomed. Eng. 40 ( 6 ), 563 – 570 ( 1993 ). 10.1109/10.237676; K. Sharma, Optics ( Academic, 2006 ).; R. J. Dickinson, A. S. Hall, A. J. Hind, and I. R. Young, “ Measurement of changes in tissue temperature using MR imaging,” J. Comput. Assist. Tomogr. 10 ( 3 ), 468 – 472 ( 1986 ). 10.1097/00004728‐199005000‐00021; R. S. Lakes, Viscoelastic Materials ( Cambridge University Press, New York, NY, 2009 ).; L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “ Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29 ( 1 ), 91 – 95 ( 2000 ). 10.1007/s003480050430; Y. Tang, S. Lee, M. D. Nelson, S. Richard, and R. A. Moats, “ Adipose segmentation in small animals at 7T: A preliminary study,” BMC Genomics 11 (Suppl 3):S9 (2010). 10.1186/1471‐2164‐11‐s3‐s9; W. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S. G. Kim, K. Ugurbil, and C. S. Springer, “ Magnetic field and tissue dependencies of human brain longitudinal 1H 2 O relaxation in vivo,” Magn. Reson. Med. 57 ( 2 ), 308 – 318 ( 2007 ). 10.1002/mrm.21122; M. A. Korteweg, J. J. M. Zwanenburg, P. J. Van Diest, M. A. A. J. Van Den Bosch, P. R. Luijten, R. Van Hillegersberg, W. P. T. M. Mali, and W. B. Veldhuis, “ Characterization of ex vivo healthy human axillary lymph nodes with high resolution 7 Tesla MRI,” Eur. Radiol. 21 ( 2 ), 310 – 317 ( 2011 ). 10.1007/s00330‐010‐1915‐3; J. Dankelman, “ Surgical simulator design and development,” World J. Surg. 32 ( 2 ), 149 – 155 ( 2008 ). 10.1007/s00268‐007‐9150‐z; K. J. Domuracki, C. J. Moule, H. Owen, G. Kostandoff, and J. L. Plummer, “ Learning on a simulator does transfer to clinical practice,” Resuscitation 80 ( 3 ), 346 – 349 ( 2009 ). 10.1016/j.resuscitation.2008.10.036; A. Liu, F. Tendick, K. Cleary, and C. Kaufmann, “ A survey of surgical simulation: Applications, technology, and education,” Presence Teleoperators Virtual Environ. 12 ( 6 ), 599 – 614 ( 2003 ). 10.1162/105474603322955905; M. Srinivasan, J. C. Hwang, D. West, and P. M. Yellowlees, “ Assessment of clinical skills using simulator technologies,” Acad. Psychiatry 30 ( 6 ), 505 – 515 ( 2006 ). 10.1176/appi.ap.30.6.505; M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “ A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36 ( 6 ), 861 – 873 ( 2010 ). 10.1016/j.ultrasmedbio.2010.02.012; R. Cao, Z. Huang, T. Varghese, and G. Nabi, “ Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40 ( 2 ), 022903 (9pp.) ( 2013 ). 10.1118/1.4773315; T. Yoshida, K. Tanaka, T. Kondo, K. Yasukawa, N. Miyamoto, M. Taniguchi, and Y. Shikinami, “ Tissue‐mimicking materials using segmented polyurethane gel and their acoustic properties,” Jpn. J. Appl. Phys., Part 1 51 ( 7S ), 07GF17 ( 2012 ). 10.7567/JJAP.51.07GF17; E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “ Tissue‐mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50 ( 23 ), 5597 – 5618 ( 2005 ). 10.1088/0031‐9155/50/23/013; S. J.‐S. Chen, P. Hellier, M. Marchal, J.‐Y. Gauvrit, R. Carpentier, X. Morandi, and D. L. Collins, “ An anthropomorphic polyvinyl alcohol brain phantom based on Colin27 for use in multimodal imaging,” Med. Phys. 39 ( 1 ), 554 – 561 ( 2012 ). 10.1118/1.3673069; M. Solanki and V. Raja, “ Haptic based augmented reality simulator for training clinical breast examination,” in IEEE EMBS Conference on Biomedical Engineering and Sciences ( IEEE, Kuala Lumpur, Malaysia, 2010 ), pp. 265 – 269.; Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “ Silicone‐based tissue‐mimicking phantom for needle insertion simulation,” J. Med. Devices 8 ( 2 ), 021001 ( 2014 ). 10.1115/1.4026508; J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “ Copolymer‐in‐oil phantom materials for elastography,” Ultrasound Med. Biol. 35 ( 7 ), 1185 – 1197 ( 2009 ). 10.1016/j.ultrasmedbio.2009.01.012; A. S. Kashif, T. F. Lotz, M. D. McGarry, A. J. Pattison, and J. G. Chase, “ Silicone breast phantoms for elastographic imaging evaluation,” Med. Phys. 40 ( 6 ), 063503 (11pp.) ( 2013 ). 10.1118/1.4805096; J. Fromageau, J.‐L. Gennisson, C. Schmitt, R. L. Maurice, R. Mongrain, and G. Cloutier, “ Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings,” IEEE Trans. Ultrason. Eng. 54 ( 3 ), 498 – 509 ( 2007 ). 10.1109/TUFFC.2007.273; M. M. Nguyen, S. Zhou, J.‐L. Robert, V. Shamdasani, and H. Xie, “ Development of oil‐in‐gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography,” Ultrasound Med. Biol. 40 ( 1 ), 168 – 176 ( 2014 ). 10.1016/j.ultrasmedbio.2013.08.020; N. Hungr, J.‐A. Long, V. Beix, and J. Troccaz, “ A realistic deformable prostate phantom for multimodal imaging and needle‐insertion procedures,” Med. Phys. 39 ( 4 ), 2031 – 2041 ( 2012 ). 10.1118/1.3692179; M. K. Chmarra, R. Hansen, R. Marvik, and T. Lango, “ Multimodal phantom of liver tissue,” PLoS One 8 ( 5 ), e64180 ( 2013 ). 10.1371/journal.pone.0064180; D. W. Rickey, P. A. Picot, D. A. Christopher, and A. Fenster, “ A wall‐less vessel phantom for doppler ultrasound studies,” Ultrasound Med. Biol. 21 ( 9 ), 1163 – 1176 ( 1995 ). 10.1016/0301‐5629(95)00044‐5; C. L. de Korte, E. I. Cespedes, A. F. W. van der Steen, and C. T. Lancee, “ Intravascular elasticity imaging using ultrasound: Feasibility studies in phantoms,” Ultrasound Med. Biol. 23 ( 5 ), 735 – 746 ( 1997 ). 10.1016/S0301‐5629(97)00004‐5; E. L. Madsen, E. Kelly‐Fry, and G. R. Frank, “ Anthropomorphic phantoms for assessing systems used in ultrasound imaging of the compressed breast,” Ultrasound Med. Biol. 14 ( 1 ), 183 – 201 ( 1988 ). 10.1016/0301‐5629(88)90061‐0; I. Mano, H. Goshima, M. Nambu, and M. Iio, “ New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med. 3 ( 6 ), 921 – 926 ( 1986 ). 10.1002/mrm.1910030612; N. J. Lawson and J. Wu, “ Three‐dimensional particle image velocimetry: Experimental error analysis of a digital angular stereoscopic system,” Meas. Sci. Technol. 8 ( 12 ), 1455 – 1464 ( 1997 ). 10.1088/0957‐0233/8/12/009; R. K. Chen and A. J. Shih, “ Multi‐modality gellan gum‐based tissue‐mimicking phantom with targeted mechanical, electrical, and thermal properties,” Phys. Med. Biol. 58 ( 16 ), 5511 – 5525 ( 2013 ). 10.1088/0031‐9155/58/16/5511; B. W. Pogue and M. S. Patterson, “ Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11 ( 4 ), 041102 ( 2006 ). 10.1117/1.2335429; G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “ Optical and acoustic properties at 1064 nm of polyvinyl chloride‐plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50 ( 14 ), N141 – N153 ( 2005 ). 10.1088/0031‐9155/50/14/N01; I. M. de Carvalho, R. L. Q. Basto, A. F. C. Infantosi, M. A. von Krüger, and W. C. A. Pereira, “ Breast ultrasound imaging phantom to mimic malign lesion characteristics,” Phys. Procedia 3 ( 1 ), 421 – 426 ( 2010 ). 10.1016/j.phpro.2010.01.055; J. K. Tsou, J. Liu, A. I. Barakat, and M. F. Insana, “ Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk,” Ultrasound Med. Biol. 34 ( 6 ), 963 – 972 ( 2008 ). 10.1016/j.ultrasmedbio.2007.11.010; L. Maggi, G. Cortela, M. V. Krüger, C. A. Negreira, and W. C. de Albuquerque Pereira, “ Ultrasonic attenuation and speed in phantoms made of PVCP and evaluation of acoustic and thermal properties of ultrasonic phantoms made of polyvinyl chloride plastisol (PVCP),” in Proceedings of International Work‐Conference on Bioinformatics and Biomedical Engineering ( Springer, Granada, Spain, 2013 ), pp. 233 – 241.; H. Tanoue, Y. Hagiwara, K. Kobayashi, and Y. Saijo, “ Ultrasonic tissue characterization of prostate biopsy tissues by ultrasound speed microscope,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS ( IEEE, Boston, MA, 2011 ), pp. 8499 – 8502.; M. O. Woods and C. A. Miles, “ Ultrasound speed and attenuation in homogenates of bovine skeletal muscle,” Ultrasonics 24 ( 5 ), 260 – 266 ( 1986 ). 10.1016/0041‐624X(86)90103‐4; F. W. Kremkau, R. W. Barnes, and C. P. McGraw, “ Ultrasonic attenuation and propagation speed in normal human brain,” J. Acoust. Soc. Am. 70 ( 1 ), 29 – 38 ( 1981 ). 10.1121/1.386578; J. C. Bamber, “ Ultrasonic attenuation in fress human tissues,” Ultrasonics 19, 187 – 188 ( 1981 ). 10.1016/0041‐624X(81)90101‐3; D. L. Folds, “ Speed of sound and transmission loss in silicone rubbers at ultrasonic frequencies,” J. Acoust. Soc. Am. 56 ( 4 ), 1295 – 1296 ( 1974 ). 10.1121/1.1903422; A. Ashead and S. M. Lindsay, “ Brillouin scattering from polyurethane gels,” Polymer 23, 1884 – 1888 ( 1982 ). 10.1016/0032‐3861(82)90212‐9; R. L. Cook and D. Kendrick, “ Speed of sound of six PRC polyurethane materials as a function of temperature,” J. Acoust. Soc. Am. 70 ( 2 ), 639 – 640 ( 1981 ). 10.1121/1.386759; K. A. Ross and M. G. Scanlon, “ Analysis of the elastic modulus of agar gel by indentation,” J. Texture Stud. 30 ( 1 ), 17 – 27 ( 1999 ). 10.1111/j.1745‐4603.1999.tb00199.x; V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “ Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60 – 68 ( 2012 ). 10.1016/j.jmbbm.2011.05.027; T. Z. Pavan, E. L. Madsen, G. R. Frank, A. Adilton O Carneiro, and T. J. Hall, “ Nonlinear elastic behavior of phantom materials for elastography,” Phys. Med. Biol. 55 ( 9 ), 2679 – 2692 ( 2010 ). 10.1088/0031‐9155/55/9/017; C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “ The speed of sound and attenuation of an IEC agar‐based tissue‐mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38 ( 7 ), 1262 – 1270 ( 2012 ). 10.1016/j.ultrasmedbio.2012.02.030; K. Manickam, R. R. Machireddy, and S. Seshadri, “ Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques,” J. Mech. Behav. Biomed. Mater. 35, 132 – 143 ( 2014 ). 10.1016/j.jmbbm.2014.03.017; R. F. Smith, B. K. Rutt, and D. W. Holdsworth, “ Anthropomorphic carotid bifurcation phantom for MRI applications,” J. Magn. Reson. Imaging 10 ( 4 ), 533 – 544 ( 1999 ). 10.1002/(SICI)1522‐2586(199910)10:4¡533::AID‐JMRI6¿3.0.CO;2‐Z; R. Mathur‐De Vre, R. Grimee, F. Parmentier, and J. Binet, “ The use of agar gel as a basic reference material for calibrating relaxation times and imaging parameters,” Magn. Reson. Med. 2 ( 2 ), 176 – 179 ( 1985 ). 10.1002/mrm.1910020208; E. Raphael, C. O. Avellaneda, B. Manzolli, and A. Pawlicka, “ Agar‐based films for application as polymer electrolytes,” Electrochim. Acta 55 ( 4 ), 1455 – 1459 ( 2010 ). 10.1016/j.electacta.2009.06.010; B. Luo, R. Yang, P. Ying, M. Awad, M. Choti, and R. Taylor, “ Elasticity and echogenicity analysis of agarose phantoms mimicking liver tumors,” in Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference ( IEEE, Easton, PA, 2006 ), pp. 81 – 82.; V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “ New insight into agarose gel mechanical properties,” Biomacromolecules 1 ( 4 ), 730 – 738 ( 2000 ). 10.1021/bm005583j; S. A. Lopez‐Haro, C. J. Trujillo, A. Vera, and L. Leija, “ An agarose based phantom embedded in an in vitro liver tissue to simulate tumors: First experience,” in Pan American Health Care Exchanges ( IEEE, Rio de Janeiro, Brazil, 2011 ), pp. 233 – 236.; S. A. Lopez‐Haro, I. Bazan‐Trujillo, L. Leija‐Salas, and A. Vera‐Hernandez, “ Ultrasound propagation speed measurement of mimicking soft tissue phantoms based on agarose in the range of 25 °C and 50 °C,” in 5th International Conference on Electrical Engineering, Computing Science and Automatic Control ( IEEE, Mexico City, Mexico, 2008 ), pp. 192 – 195.; H. I. Litt and A. S. Brody, “ BaSO 4 ‐loaded agarose: A construction material for multimodality imaging phantoms,” Acad. Radiol. 8 ( 5 ), 377 – 383 ( 2001 ). 10.1016/S1076‐6332(03)80544‐5

  8. 8
    دورية أكاديمية

    المساهمون: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109

    وصف الملف: application/pdf

    العلاقة: Samala, Ravi K.; Chan, Heang‐ping; Hadjiiski, Lubomir; Helvie, Mark A.; Wei, Jun; Cha, Kenny (2016). "Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography." Medical Physics 43(12): 6654-6666.; http://hdl.handle.net/2027.42/135545Test; Medical Physics; Y.â T. Wu, C. Zhou, L. M. Hadjiiski, J. Shi, J. Wei, C. Paramagul, B. Sahiner, and H.â P. Chan, â A dynamic multiple thresholding method for automated breast boundary detection in digitized mammograms,â Proc. SPIE 6512, 65122U1 â 65122U8 ( 2007 ). 10.1117/12.710198; J. J. Näppi, T. Hironaka, D. Regge, and H. Yoshida, â Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography,â Proc. SPIE 9785, 97852Bâ 1 â 97852Bâ 8 ( 2016 ). 10.1117/12.2217260; A. Cruzâ Roa, J. Arévalo, A. Judkins, A. Madabhushi, and F. González, â A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning,â Proc. SPIE 9681, 968103â 1 â 968103â 8 ( 2015 ). 10.1117/12.2208825; N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, â Convolutional neural networks for medical image Analysis: Full training or fine tuning?,â IEEE Trans. Med. Imaging 35, 1299 â 1312 ( 2016 ). 10.1109/TMI.2016.2535302; H.â P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, â Computerâ aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network,â Med. Phys. 22, 1555 â 1567 ( 1995 ). 10.1118/1.597428; B. Sahiner, H.â P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, â Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images,â IEEE Trans. Med. Imaging 15, 598 â 610 ( 1996 ). 10.1109/42.538937; J. Ge, B. Sahiner, L. M. Hadjiiski, H.â P. Chan, J. Wei, M. A. Helvie, and C. Zhou, â Computer aided detection of clusters of microcalcifications on full field digital mammograms,â Med. Phys. 33, 2975 â 2988 ( 2006 ). 10.1118/1.2211710; R. K. Samala, H.â P. Chan, Y. Lu, L. Hadjiiski, J. Wei, and M. A. Helvie, â Digital breast tomosynthesis: Computerâ aided detection of clustered microcalcifications on planar projection images,â Phys. Med. Biol. 59, 7457 â 7477 ( 2014 ). 10.1088/0031â 9155/59/23/7457; R. K. Samala, H.â P. Chan, Y. Lu, L. M. Hadjiiski, J. Wei, and M. A. Helvie, â Computerâ aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images,â Phys. Med. Biol. 60, 8457 â 8479 ( 2015 ). 10.1088/0031â 9155/60/21/8457; S. C. Lo, S. L. Lou, J. S. Lin, M. T. Freedman, and S. K. Mun, â Artificial convolution neural network techniques and applications to lung nodule detection,â IEEE Trans. Med. Imaging 14, 711 â 718 ( 1995 ). 10.1109/42.476112; S. C. B. Lo, H.â P. Chan, J. S. Lin, H. Li, M. Freedman, and S. K. Mun, â Artificial convolution neural network for medical image pattern recognition,â Neural Networks 8, 1201 â 1214 ( 1995 ). 10.1016/0893â 6080(95)00061â 5; R. K. Samala, H.â P. Chan, L. Hadjiiski, and M. Helvie, â Analysis of computerâ aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis,â Phys. Med. Biol. 61, 7092 â 7112 ( 2016 ). 10.1088/0031â 9155/61/19/7092; T. Kooi, A. Gubernâ Merida, J.â J. Mordang, R. Mann, R. Pijnappel, K. Schuur, A. den Heeten, and N. Karssemeijer, â A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography,â in Proceedings of the 13th International Workshop on Digital Mammography ( Springer International Publishing, Switzerland, 2016 ), pp. 51 â 56.; K. H. Cha, L. Hadjiiski, R. K. Samala, H.â P. Chan, E. M. Caoili, and R. H. Cohan, â Urinary bladder segmentation in CT urography using deepâ learning convolutional neural network and level sets,â Med. Phys. 43, 1882 â 1896 ( 2016 ). 10.1118/1.4944498; M. Gao, U. Bagci, L. Lu, A. Wu, M. Buty, H.â C. Shin, H. Roth, G. Z. Papadakis, A. Depeursinge, and R. M. Summers, â Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks,â Comput. Methods Biomech. Biomed. Eng.: Imaging Visualization 1 â 6 ( 2016 ). 10.1080/21681163.2015.1124249; F. Ciompi, B. de Hoop, S. J. van Riel, K. Chung, E. T. Scholten, M. Oudkerk, P. A. de Jong, M. Prokop, and B. van Ginneken, â Automatic classification of pulmonary periâ fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network outâ ofâ theâ box,â Med. Image Anal. 26, 195 â 202 ( 2015 ). 10.1016/j.media.2015.08.001; M. L. Zuley, A. I. Bandos, G. S. Abrams, C. Cohen, C. M. Hakim, J. H. Sumkin, J. Drescher, H. E. Rockette, and D. Gur, â Time to diagnosis and performance levels during repeat interpretations of digital breast tomosynthesis: Preliminary observations,â Acad. Radiol. 17, 450 â 455 ( 2010 ). 10.1016/j.acra.2009.11.011; S. Astley et al., â A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis,â Proc. SPIE 8673, 86730Sâ 1 â 86730Sâ 8 ( 2013 ). 10.1117/12.2006039; D. Bernardi, S. Ciatto, M. Pellegrini, V. Anesi, S. Burlon, E. Cauli, M. Depaoli, L. Larentis, V. Malesani, and L. Targa, â Application of breast tomosynthesis in screening: Incremental effect on mammography acquisition and reading time,â Br. J. Radiol. 85, e1174 â e1178 ( 2014 ). 10.1259/bjr/19385909; M. G. Wallis, E. Moa, F. Zanca, K. Leifland, and M. Danielsson, â Twoâ view and singleâ view tomosynthesis versus fullâ field digital mammography: Highâ resolution xâ ray imaging observer study,â Radiology 262, 788 â 796 ( 2012 ). 10.1148/radiol.11103514; H.â P. Chan, J. Wei, B. Sahiner, E. A. Rafferty, T. Wu, M. A. Roubidoux, R. H. Moore, D. B. Kopans, L. M. Hadjiiski, and M. A. Helvie, â Computerâ aided detection system for breast masses on digital tomosynthesis mammogramsâ preliminary experience,â Radiology 237, 1075 â 1080 ( 2005 ). 10.1148/radiol.2373041657; H.â P. Chan, J. Wei, Y. H. Zhang, M. A. Helvie, R. H. Moore, B. Sahiner, L. Hadjiiski, and D. B. Kopans, â Computerâ aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches,â Med. Phys. 35, 4087 â 4095 ( 2008 ). 10.1118/1.2968098; J. Wei, H.â P. Chan, B. Sahiner, L. M. Hadjiiski, M. A. Helvie, C. Zhou, and Y. Lu, â Computerâ aided detection of breast masses in digital breast tomosynthesis (DBT): Improvement of false positive reduction by optimization of object segmentation,â Proc. SPIE 7963, 796311â 1 â 796311â 6 ( 2011 ). 10.1117/12.878214; M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. Kegelmeyer, â The digital database for screening mammography,â in Digital Mammography; IWDM 2000, edited by M. J. Yaffe ( Medical Physics Publishing, Toronto, Canada, 2001 ).; H.â P. Chan, Y. T. Wu, B. Sahiner, J. Wei, M. A. Helvie, Y. Zhang, R. H. Moore, D. B. Kopans, L. Hadjiiski, and T. Way, â Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices,â Med. Phys. 37, 3576 â 3586 ( 2010 ). 10.1118/1.3432570; Y. Zhang, H.â P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiski, J. Ge, and C. Zhou, â A comparative study of limitedâ angle coneâ beam reconstruction methods for breast tomosynthesis,â Med. Phys. 33, 3781 â 3795 ( 2006 ). 10.1118/1.2237543; J. Wei et al., â Computer aided detection systems for breast masses: Comparison of performances on fullâ field digital mammograms and digitized screenâ film mammograms,â Acad. Radiol. 6, 659 â 669 ( 2007 ). 10.1016/j.acra.2007.02.017; C. Zhou, H.â P. Chan, C. Paramagul, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, and N. Petrick, â Computerized nipple identification for multiple image analysis in computerâ aided diagnosis,â Med. Phys. 31, 2871 â 2882 ( 2004 ). 10.1118/1.1800713; R. K. Samala, J. Wei, H.â P. Chan, L. M. Hadjiiski, K. Cha, and M. A. Helvie, â First and secondâ order features for detection of masses in digital breast tomosynthesis,â Proc. SPIE 9785, 978523â 1 â 978523â 7 ( 2016 ). 10.1117/12.2216327; B. Sahiner, H.â P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, â Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,â Med. Phys. 25, 516 â 526 ( 1998 ). 10.1118/1.598228; T. Way, B. Sahiner, L. Hadjiiski, and H.â P. Chan, â Effect of finite sample size on feature selection and classification: A simulation study,â Med. Phys. 37, 907 â 920 ( 2010 ). 10.1118/1.3284974; H.â P. Chan, B. Sahiner, K. L. Lam, N. Petrick, M. A. Helvie, M. M. Goodsitt, and D. D. Adler, â Computerized analysis of mammographic microcalcifications in morphological and texture feature space,â Med. Phys. 25, 2007 â 2019 ( 1998 ). 10.1118/1.598389; M. A. Ranzato, F. J. Huang, Y.â L. Boureau, and Y. Lecun, â Unsupervised learning of invariant feature hierarchies with applications to object recognition,â in IEEE Conference on Computer Vision and Pattern Recognition, 2007 ( IEEE, 2007 ), pp. 1 â 8. 10.1109/CVPR.2007.383157; A. Krizhevsky, I. Sutskever, and G. E. Hinton, â Imagenet classification with deep convolutional neural networks,â Adv. Neural Inf. Proc. Syst. 1097 â 1105 ( 2012 ).; J. Deng, W. Dong, R. Socher, L.â J. Li, K. Li, and L. Feiâ Fei, â Imagenet: A largeâ scale hierarchical image database,â in IEEE Conference on Computer Vision and Pattern Recognition, 2009 ( IEEE, 2009 ), pp. 248 â 255. 10.1109/CVPR.2009.5206848; K. H. Cha, L. Hadjiiski, H.â P. Chan, R. K. Samala, R. H. Cohan, and E. M. Caoli, â Deepâ learningâ based bladder segmentation in CT urography,â in RSNA Program Book, SSG16â 02, 2015.; K. H. Cha, L. M. Hadjiiski, R. K. Samala, H.â P. Chan, R. H. Cohan, and E. M. Caoili, â Comparison of bladder segmentation using deepâ learning convolutional neural network with and without level sets,â Proc. SPIE 9785, 978512â 1 â 978512â 7 ( 2016 ). 10.1117/12.2216852; K. H. Cha, L. Hadjiiski, H.â P. Chan, R. K. Samala, R. H. Cohan, E. M. Caoili, A. Weizer, and A. Alva, â Deepâ learning bladder cancer treatment response assessment in CT urography,â in RSNA Program Book, SSQ18â 01, 2016.; K. H. Cha, L. Hadjiiski, R. K. Samala, H.â P. Chan, R. H. Cohan, E. M. Caoili, C. Paramagul, A. Alva, and A. Weizer, â Bladder cancer segmentation in CT for treatment response assessment: Application of deepâ learning convolution neural networkâ A pilot study,â Tomography ( 2016 ) (accepted).; K. H. Cha, L. M. Hadjiiski, H.â P. Chan, E. M. Caoili, R. H. Cohan, A. Weizer, and C. Zhou, â Computerâ aided detection of bladder mass within nonâ contrastâ enhanced region of CT Urography (CTU),â Proc. SPIE 9785, 97853Wâ 1 â 97853Wâ 6 ( 2016 ). 10.1117/12.2216289; R. K. Samala, H.â P. Chan, L. M. Hadjiiski, K. Cha, and M. A. Helvie, â Deepâ learning convolution neural network for computerâ aided detection of microcalcifications in digital breast tomosynthesis,â Proc. SPIE 9785, 97850Yâ 1 â 97850Yâ 7 ( 2016 ). 10.1117/12.2217092; N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, â Dropout: A simple way to prevent neural networks from overfitting,â J. Mach. Learn. Res. 15, 1929 â 1958 ( 2014 ).; A. E. Burgess, â On the noise variance of a digital mammography system,â Med. Phys. 31, 1987 â 1995 ( 2004 ). 10.1118/1.1758791; H.â P. Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt, and N. Petrick, â Computerâ aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space,â Phys. Med. Biol. 40, 857 â 876 ( 1995 ). 10.1088/0031â 9155/40/5/010; F. W. Samuelson, N. Petrick, and S. Paquerault, â Advantages and examples of resampling for CAD evaluation,â in 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007 ( IEEE, 2007 ), pp. 492 â 495.; F. W. Samuelson and N. Petrick, â Comparing image detection algorithms using resampling,â in 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006 ( IEEE, 2006 ), pp. 1312 â 1315.; G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, â Improving neural networks by preventing coâ adaptation of feature detectors,â preprint arXiv:1207.0580 ( 2012 ).; R. K. Samala, H.â P. Chan, L. Hadjiyski, J. Wei, K. Cha, and M. Helvie, â Comparison of mass detection for digital breast tomosynthesis (DBT) with and without transfer learning of deepâ learning convolution neural network (DLCNN) from digitized screenâ film mammography (SFM) and digital mammography (DM),â in RSNA Program Book, PH256â SDâ WEB5, 2016.; S. V. Fotin, Y. Yin, H. Haldankar, J. W. Hoffmeister, and S. Periaswamy, â Detection of soft tissue densities from digital breast tomosynthesis: Comparison of conventional and deep learning approaches,â Proc. SPIE 9785, 97850X â 97850Xâ 6 ( 2016 ). 10.1117/12.2217045; L. Morra, D. Sacchetto, M. Durando, S. Agliozzo, L. A. Carbonaro, S. Delsanto, B. Pesce, D. Persano, G. Mariscotti, and V. Marra, â Breast cancer: Computerâ aided detection with digital breast tomosynthesis,â Radiology 277, 56 â 63 ( 2015 ). 10.1148/radiol.2015141959; G. van Schie, M. G. Wallis, K. Leifland, M. Danielsson, and N. Karssemeijer, â Mass detection in reconstructed digital breast tomosynthesis volumes with a computerâ aided detection system trained on 2D mammograms,â Med. Phys. 40, 041902 (11pp.) ( 2013 ). 10.1118/1.4791643; H.â P. Chan, J. Wei, Y. Zhang, M. A. Helvie, L. M. Hadjiiski, and B. Sahiner, â Digital breast tomosynthesis (DBT) mammography: Effect of number of projection views on computerized mass detection using 2D and 3D approaches,â in RSNA Program Book, 2008 ( RSNA, Oak Brook, IL, 2008 ), p. 560.; R. K. Samala, H.â P. Chan, Y. Lu, L. Hadjiiski, J. Wei, and M. Helvie, â Digital breast tomosynthesis: Effects of projectionâ view distribution on computerâ aided detection of microcalcification clusters,â Proc. SPIE 9035, 90350Y ( 2014 ). 10.1117/12.2043513; H.â P. Chan, J. Wei, Y. H. Zhang, B. Sahiner, L. Hadjiiski, and M. A. Helvie, â Detection of masses in digital breast tomosynthesis mammography: Effects of the number of projection views and dose,â in Proceedings of the 9th International Workshop on Digital Mammography IWDMâ 2008 ( Springer, Berlin Heidelberg, 2008 ), pp. 279 â 285.; O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, â ImageNet large scale visual recognition challenge,â Int. J. Comput. Vision 115, 211 â 252 ( 2015 ). 10.1007/s11263â 015â 0816â y; J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, â How transferable are features in deep neural networks?,â in Advances in Neural Information Processing Systems ( Red Hook, NY, 2014 ), pp. 3320 â 3328.; See breastscreening.cancer.gov for NCIâ funded breast Cancer Surveillance Consortium (HHSN261201100031C), downloaded from the Breast Cancer Surveillance Consortium, 23 September 2013.; M. Broeders, S. Moss, L. Nyström, S. Njor, H. Jonsson, E. Paap, N. Massat, S. Duffy, E. Lynge, and E. Paci, â The impact of mammographic screening on breast cancer mortality in Europe: A review of observational studies,â J. Med. Screening 19, 14 â 25 ( 2012 ). 10.1258/jms.2012.012078; B. Laubyâ Secretan, C. Scoccianti, D. Loomis, L. Benbrahimâ Tallaa, V. Bouvard, F. Bianchini, and K. Straif, â Breastâ cancer screeningâ Viewpoint of the IARC Working Group,â N. Engl. J. Med. 372, 2353 â 2358 ( 2015 ). 10.1056/NEJMsr1504363; L. T. Niklason et al., â Digital tomosynthesis in breast imaging,â Radiology 205, 399 â 406 ( 1997 ). 10.1148/radiology.205.2.9356620; T. Wu et al., â Tomographic mammography using a limited number of lowâ dose coneâ beam projection images,â Med. Phys. 30, 365 â 380 ( 2003 ). 10.1118/1.1543934; I. Sechopoulos, â A review of breast tomosynthesis. Part I. The image acquisition process,â Med. Phys. 40, 014301 (12pp.) ( 2013 ). 10.1118/1.4770279; K. Fukunaga and R. R. Hayes, â Effects of sample size on classifier design,â IEEE Trans. Pattern Anal. Mach. Intell. 11, 873 â 885 ( 1989 ). 10.1109/34.31448; H.â P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, â Classifier design for computerâ aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers,â Med. Phys. 26, 2654 â 2668 ( 1999 ). 10.1118/1.598805; H.â C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, â Deep convolutional neural networks for computerâ aided detection: CNN architectures, dataset characteristics and transfer learning,â IEEE Trans. Med. Imaging 35, 1285 â 1298 ( 2016 ). 10.1109/TMI.2016.2528162

  9. 9
    دورية أكاديمية

    المؤلفون: Chan, Heang‐ping

    المساهمون: Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Med Inn Building C477, Ann Arbor, Michigan 48109â 5842

    وصف الملف: application/pdf

    العلاقة: Chan, Heang‐ping (2016). "Comment on â Large area CMOS active pixel sensor xâ ray imager for digital breast tomosynthesis: Analysis, modeling, and characterizationâ [Med. Phys. 42, 6294â 6308 (2015)]." Medical Physics 43(3): 1578-1579.; http://hdl.handle.net/2027.42/134858Test; Medical Physics; C. M. Zhao, J. Kanicki, A. C. Konstantinidis, and T. Patel, â Large area CMOS active pixel sensor xâ ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization,â Med. Phys. 42, 6294 â 6308 ( 2015 ). 10.1118/1.4932368; H.â P. Chan, M. M. Goodsitt, M. A. Helvie, S. Zelakiewicz, A. Schmitz, M. Noroozian, C. Paramagul, M. A. Roubidoux, A. V. Nees, C. H. Neal, P. Carson, Y. Lu, L. Hadjiiski, and J. Wei, â Digital breast tomosynthesis: Observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views,â Radiology 273, 675 â 685 ( 2014 ). 10.1148/radiol.14132722; H. S. Park, Y. S. Kim, H. J. Kim, Y. W. Choi, and J. G. Choi, â Optimization of configuration parameters in a newly developed digital breast tomosynthesis system,â J. Radiat. Res. 55, 589 â 599 ( 2014 ). 10.1093/jrr/rrt130; Y. Lu, H.â P. Chan, J. Wei, M. M. Goodsitt, P. L. Carson, L. Hadjiiski, A. Schmitz, J. W. Eberhard, and B. E. H. Claus, â Image quality of microcalcifications in digital breast tomosynthesis: Effects of projectionâ view distributions,â Med. Phys. 38, 5703 â 5712 ( 2011 ). 10.1118/1.3637492

  10. 10
    دورية أكاديمية

    المساهمون: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109‐0010, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada, Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada

    وصف الملف: application/pdf

    العلاقة: Samavati, Navid; Velec, Michael; Brock, Kristy K. (2016). "Effect of deformable registration uncertainty on lung SBRT dose accumulation." Medical Physics 43(1): 233-240.; http://hdl.handle.net/2027.42/134767Test; Medical Physics; K. Brock, D. McShan, R. Ten Haken, S. Hollister, L. Dawson, and J. Balter, “ Inclusion of organ deformation in dose calculations,” Med. Phys. 30 ( 3 ), 290 – 295 ( 2003 ). 10.1118/1.1539039; G. D. Hugo, J. Campbell, T. Zhang, and D. Yan, “ Cumulative lung dose for several motion management strategies as a function of pretreatment patient parameters,” Int. J. Radiat. Oncol., Biol., Phys. 74 ( 2 ), 593 – 601 ( 2009 ). 10.1016/j.ijrobp.2008.12.069; W. Lu et al., “ Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy,” Phys. Med. Biol. 51 ( 17 ), 4357 – 4374 ( 2006 ). 10.1088/0031‐9155/51/17/015; M. K. Chan, D. L. Kwong, S. C. Ng, A. S. Tong, and E. K. Tam, “ Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers,” Med. Phys. 40 ( 4 ), 041712 (11pp.) ( 2013 ). 10.1118/1.4794505; N. Kirby, C. Chuang, U. Ueda, and J. Pouliot, “ The need for application‐based adaptation of deformable image registration,” Med. Phys. 40 ( 1 ), 011702 (10pp.) ( 2013 ). 10.1118/1.4769114; E. T. Bender, N. Hardcastle, and W. A. Tome, “ On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation,” Med. Phys. 39 ( 1 ), 272 – 280 ( 2012 ). 10.1118/1.3666948; N. Hardcastle, E. T. Bender, and W. A. Tomé, “ The effect on dose accumulation accuracy of inverse‐consistency and transitivity error reduced deformation maps,” Australas. Phys. Eng. Sci. Med. 37, 321 – 326 ( 2014 ). 10.1007/s13246‐014‐0262‐0; N. Samavati, M. Velec, and K. Brock, “ A hybrid biomechanical intensity based deformable image registration of lung 4DCT,” Proc. SPIE 9034, 90343J ( 2014 ). 10.1117/12.2043560; C. Ding, C.‐H. Chang, J. Haslam, R. Timmerman, and T. Solberg, “ A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: Robotic versus conventional Linac‐based systems,” J. Appl. Clin. Med. Phys. 11 ( 3 ), 212 – 224 ( 2010 ).; A. Al‐Mayah, J. Moseley, and K. Brock, “ Contact surface and material nonlinearity modeling of human lungs,” Phys. Med. Biol. 53 ( 1 ), 305 – 317 ( 2008 ). 10.1088/0031‐9155/53/1/022; B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and N. Paragios, “ Dense image registration through MRFs and efficient linear programming,” Med. Image Anal. 12 ( 6 ), 731 – 741 ( 2008 ). 10.1016/j.media.2008.03.006; J. M. Balter, K. L. Lam, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, “ Improvement of CT‐based treatment‐planning models of abdominal targets using static exhale imaging,” Int. J. Radiat. Oncol., Biol., Phys. 41 ( 4 ), 939 – 943 ( 1998 ). 10.1016/S0360‐3016(98)00130‐8; M. Rosu, J. M. Balter, I. J. Chetty, M. L. Kessler, D. L. McShan, P. Balter, and R. K. Ten Haken, “ How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?,” Med. Phys. 34 ( 1 ), 233 – 245 ( 2007 ). 10.1118/1.2400624; S. Li et al., “ Voxel‐based statistical analysis of uncertainties associated with deformable image registration,” Phys. Med. Biol. 58 ( 18 ), 6481 – 6494 ( 2013 ). 10.1088/0031‐9155/58/18/6481; H. Yu, S.‐X. Zhang, R.‐H. Wang, G.‐Q. Zhang, and J.‐M. Tan, “ The feasibility of mapping dose distribution of 4DCT images with deformable image registration in lung,” Bio‐Med. Mater. Eng. 24 ( 1 ), 145 – 153 ( 2014 ).; J.D. Bradley et al., “ A randomized phase III comparison of standard‐dose (60 Gy) versus high‐dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non‐small cell lung cancer: Results on radiation dose in RTOG 0617,” in ASCO Annual Meeting Proceedings --> ( 2013 ).; D. A. Jaffray, P. E. Lindsay, K. K. Brock, J. O. Deasy, and W. Tomé, “ Accurate accumulation of dose for improved understanding of radiation effects in normal tissue,” Int. J. Radiat. Oncol., Biol., Phys. 76 ( 3 ), S135 – S139 ( 2010 ). 10.1016/j.ijrobp.2009.06.093; M. Rosu, I. J. Chetty, J. M. Balter, M. L. Kessler, D. L. McShan, and R. K. Ten Haken, “ Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications,” Med. Phys. 32 ( 8 ), 2487 – 2495 ( 2005 ). 10.1118/1.1949749; M. L. Siker, W. A. Tomé, and M. P. Mehta, “ Tumor volume changes on serial imaging with megavoltage CT for non–small‐cell lung cancer during intensity‐modulated radiotherapy: How reliable, consistent, and meaningful is the effect?,” Int. J. Radiat. Oncol., Biol., Phys. 66 ( 1 ), 135 – 141 ( 2006 ). 10.1016/j.ijrobp.2006.03.064; P.A. Kupelian et al., “ Serial megavoltage CT imaging during external beam radiotherapy for non–small‐cell lung cancer: Observations on tumor regression during treatment,” Int. J. Radiat. Oncol., Biol., Phys. 63 ( 4 ), 1024 – 1028 ( 2005 ). 10.1016/j.ijrobp.2005.04.046; J.‐J. Sonke, L. Zijp, P. Remeijer, and M. van Herk, “ Respiratory correlated cone beam CT,” Med. Phys. 32 ( 4 ), 1176 – 1186 ( 2005 ). 10.1118/1.1869074; S. Flampouri, S. B. Jiang, G. C. Sharp, J. Wolfgang, A. A. Patel, and N. C. Choi, “ Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D‐CT data and Monte Carlo simulations,” Phys. Med. Biol. 51 ( 11 ), 2763 – 2779 ( 2006 ). 10.1088/0031‐9155/51/11/006