يعرض 1 - 10 نتائج من 24 نتيجة بحث عن '"da Silva Bruckmann, Franciele"', وقت الاستعلام: 1.20s تنقيح النتائج
  1. 1
    دورية أكاديمية

    مصطلحات موضوعية: Adsorption, Carbon nanomaterials, Magnetite, Captopril

    وصف الملف: 19 páginas; application/pdf

    العلاقة: Water; 1. Duarte, E.D.V.; Oliveira, M.G.; Spaolonzi, M.P.; Costa, H.P.S.; da Silva, T.L.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceutical Products from Aqueous Solutions on Functionalized Carbon Nanotubes by Conventional and Green Methods: A Critical Review. J. Clean. Prod. 2022, 372, 133743. [CrossRef]; 2. Ramos, S.; Homem, V.; Alves, A.; Santos, L. A Review of Organic UV-Filters in Wastewater Treatment Plants. Environ. Int. 2016, 86, 24–44. [CrossRef] [PubMed]; 3. Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. N. Biotechnol. 2015, 32, 147–156. [CrossRef] [PubMed]; 4. Wang, L.; Chen, G.; Shu, H.; Cui, X.; Luo, Z.; Chang, C.; Zeng, A.; Zhang, J.; Fu, Q. Facile Covalent Preparation of Carbon Nanotubes / Amine-Functionalized Fe3O4 Nanocomposites for Selective Extraction of Estradiol in Pharmaceutical Industry Wastewater. J. Chromatogr. A 2021, 1638, 461889. [CrossRef]; 5. Xi, L.; Zhang, X.; Chen, Y.; Peng, J.; Liu, M.; Huo, D.; Li, G.; He, H. A Fluorescence Turn-on Strategy to Achieve Detection of Captopril Based on Ag Nanoclusters. Chem. Phys. Lett. 2022, 807, 140085. [CrossRef]; 6. Qu, F.; Zhu, G.; Huang, S.; Li, S.; Qiu, S. Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhysChem 2006, 7, 400–406. [CrossRef]; 7. Mahmoud, W.M.M.; Kümmerer, K. Captopril and Its Dimer Captopril Disulfide: Photodegradation, Aerobic Biodegradation and Identification of Transformation Products by HPLC-UV and LC-Ion Trap-MS(n). Chemosphere 2012, 88, 1170–1177. [CrossRef]; 8. Da Silva, D.M.; Carneiro da Cunha Areias, M. Voltammetric Detection of Captopril in a Commercial Drug Using a Gold-Copper Metal-organic Framework Nanocomposite Modified Electrode. Electroanalysis 2021, 33, 1255–1263. [CrossRef]; 9. Cunha, M.R.; Lima, E.C.; Lima, D.R.; Da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sheir, F.; Dos Reis, G.S.; Larsson, S.H. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [CrossRef]; 11. Oviedo, L.R.; Muraro, P.C.L.; Pavoski, G.; Espinosa, D.C.R.; Ruiz, Y.P.M.; Galembeck, A.; Rhoden, C.R.B.; da Silva, W.L. Synthesis and Characterization of Nanozeolite from (Agro)Industrial Waste for Application in Heterogeneous Photocatalysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 3794–3807. [CrossRef] [PubMed]; 12. Sani, O.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J. Water Process Eng. 2019, 32, 100894. [CrossRef]; 13. Erdem, S.; Öztekin, M.; Açıkel, Y.S. Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nano-composites and halloysite nanotubes/alginate hydrogel beads. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100576.; 14. Ci ˘gero ˘glu, Z.; Kazan-Kaya, E.S.; El Messaoudi, N.; Fernine, Y.; Américo-Pinheiro, J.H.P.; Jada, A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4 -ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical calculation. J. Mol. Liq. 2022, 369, 120866. [CrossRef]; 15. Silveira, C.C.; Botega, C.S.; Rhoden, C.R.B.; Nunes, M.R.S.; Braga, A.L.; Lenardão, E.J. A Facile Synthesis of α-Phenylchalcogeno(S, Se) α,β-Unsaturated Esters from Ethyl α-Bromo-α-Phenylchalcogeno Acetates. Synth. Commun. 1998, 28, 3371–3380. [CrossRef]; 16. Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; Dos Reis, G.S.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; Da Costa, J.B. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions. J. Clean. Prod. 2018, 197, 919–929. [CrossRef]; 17. Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al. Adsorption and Detoxification of Pharmaceutical Compounds from Wastewater Using Nanomaterials: A Review on Mechanism, Kinetics, Valorization and Circular Economy. J. Environ. Manag. 2021, 300, 113569. [CrossRef]; 18. El Messaoudi, N.; El Mouden, A.; Fernine, Y.; El Khomri, M.; Bouich, A.; Faska, N.; Ci ˘gero ˘glu, Z.; Américo-Pinheiro, J.H.P.; Jada, A.; Lacherai, A. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: Characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 2022, 29, 1–18. [CrossRef]; 19. Singh, S.; Anil, A.G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Kumar Naik, T.S.S.; Subramanian, S.; Kumar, V.; Singh, J.; et al. Sustainable Removal of Cr(VI) Using Graphene Oxide-Zinc Oxide Nanohybrid: Adsorption Kinetics, Isotherms and Thermodynamics. Environ. Res. 2022, 203, 111891. [CrossRef]; 20. Li, R.; Liu, Y.; Lan, G.; Qiu, H.; Xu, B.; Xu, Q.; Sun, N.; Zhang, L. Pb(II) Adsorption Characteristics of Magnetic GO-Hydroxyapatite and the Contribution of GO to Enhance Its Acid Resistance. J. Environ. Chem. Eng. 2021, 9, 105310. [CrossRef]; 21. Rhoden, C.R.B.; Bruckmann, F.d.S.; Salles, T.d.R.; Kaufmann Junior, C.G.; Mortari, S.R. Study from the Influence of Magnetite onto Removal of Hydrochlorothiazide from Aqueous Solutions Applying Magnetic Graphene Oxide. J. Water Proc. Eng. 2021, 43, 102262. [CrossRef]; 22. Salles, T.d.R.; Rodrigues, H.d.B.; Bruckmann, F.d.S.; Alves, L.C.S.; Mortari, S.R.; Rhoden, C.R.B. Graphene Oxide Optimization Synthesis for Application on Laboratory of Universidade Franciscana. Discip. Sci. 2020, 21, 15–26. [CrossRef]; 23. Bruckmann, F.d.S.; Zuchetto, T.; Ledur, C.M.; dos Santos, C.L.; da Silva, W.L.; Binotto Fagan, S.; Zanella da Silva, I.; Bohn Rhoden, C.R. Methylphenidate Adsorption onto Graphene Derivatives: Theory and Experiment. New J. Chem. 2022, 46, 4283–4291. [CrossRef]; 24. Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [CrossRef]; 25. Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [CrossRef]; 26. Da Rosa Salles, T.; Da Silva Bruckamann, F.; Viana, A.R.; Krause, L.M.F.; Mortari, S.R.; Rhoden, C.R.B. Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells. J. Polym. Environ. 2022, 30, 2695–2713. [CrossRef]; 27. Cimirro, F.N.; Lima, C.E.; Cunha, M.R.; Dias, S.L.; Thue, P.S.; Mazzocato, A.C.; Dotto, G.L.; Gelesky, M.A.; Pavan, F.A. Removal of pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae). Environ. Sci. Pollut. Res. 2020, 27, 21442–21454. [CrossRef]; 28. Kanta, U.-A.; Thongpool, V.; Sangkhun, W.; Wongyao, N.; Wootthikanokkhan, J. Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes. J. Nanomater. 2017, 2017, 2758294. [CrossRef]; 29. Ossonon, B.D.; Bélanger, D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets. RSC Adv. 2017, 7, 27224–27234. [CrossRef]; 30. Da Silva Bruckmann, F.; Viana, A.R.; Lopes, L.Q.S.; Santos, R.C.V.; Muller, E.I.; Mortari, S.R.; Rhoden, C.R.B. Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1459–1472. [CrossRef]; 31. Bruckmann, F.d.S.; Pimentel, A.C.; Viana, A.R.; Salles, T.d.R.; Krause, L.M.F.; Mortari, S.R.; da Silva, I.Z.; Rhoden, C.R.B. Synthesis, Characterization and Cytotoxicity Evaluation of Magnetic Nanosilica in L929 Cell Line. Discip. Sci. 2020, 21, 1–14. [CrossRef]; 32. Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The Systemic Effect of PEG-NGO-Induced Oxidative Stress in Vivo in a Rodent Model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [CrossRef] [PubMed]; 33. Liu, J.; Xu, D.; Chen, P.; Yu, Q.; Qiu, H.; Xiong, X. Solvothermal Synthesis of Porous Superparamagnetic RGO@Fe3O4 Nanocomposites for Microwave Absorption. J. Mater. Sci. Mater. Electron. 2019, 30, 17106–17118. [CrossRef]; 34. Kellici, S.; Acord, J.; Ball, J.; Reehal, H.S.; Morgan, D.; Saha, B. A Single Rapid Route for the Synthesis of Reduced Graphene Oxide with Antibacterial Activities. RSC Adv. 2014, 4, 14858–14861. [CrossRef]; 35. Côa, F.; Strauss, M.; Clemente, Z.; Rodrigues Neto, L.L.; Lopes, J.R.; Alencar, R.S.; Souza Filho, A.G.; Alves, O.L.; Castro, V.L.S.S.; Barbieri, E.; et al. Coating Carbon Nanotubes with Humic Acid Using an Eco-Friendly Mechanochemical Method: Application for Cu(II) Ions Removal from Water and Aquatic Ecotoxicity. Sci. Total Environ. 2017, 607–608, 1479–1486. [CrossRef] [PubMed]; 36. Zhang, K.; Zhang, Q.; Gao, X.; Chen, X.; Wang, Y.; Li, W.; Wu, J. Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 70–716. [CrossRef]; 37. Hatel, R.; Majdoub, S.E.; Bakour, A.; Khenfouch, M.; Baitoul, M. Graphene Oxide/Fe3O4 Nanorods Composite: Structural and Raman Investigation. J. Phys. Conf. Ser. 2018, 1081, 012006. [CrossRef]; 38. Ghosh, B.; Sarma, S.; Pontsho, M.; Ray, S.C. Tuning of Magnetic Behaviour in Nitrogenated Graphene Oxide Functionalized with Iron Oxide. Diam. Relat. Mater. 2018, 89, 35–42. [CrossRef]; 39. Da Silva Bruckmann, F.; Mafra Ledur, C.; Zanella da Silva, I.; Luiz Dotto, G.; Rodrigo Bohn Rhoden, C. A DFT Theoretical and Experimental Study about Tetracycline Adsorption onto Magnetic Graphene Oxide. J. Mol. Liq. 2022, 353, 118837. [CrossRef]; 40. Cheng, Y.; Yang, S.; Tao, E. Magnetic graphene oxide prepared via ammonia coprecipitation method: The effects of preserved functional groups on adsorption property. Inorg. Chem. Commun. 2021, 128, 108603. [CrossRef]; 41. Zeng, K.; Hachem, K.; Kuznetsova, M.; Chupradit, S.; Su, C.H.; Nguyen, H.C.; El-Shafay, A.S. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J. Mol. Liq. 2022, 347, 118290. [CrossRef]; 42. Nuengmatcha, P.; Mahachai, R.; Chanthai, S. Thermodynamic and kinetic study of the intrinsic adsorption capacity of graphene oxide for malachite green removal from aqueous solution. Orient. J. Chem. 2014, 30, 1463. [CrossRef]; 43. Nasiri, A.; Rajabi, S.; Amiri, A.; Fattahizade, M.; Hasani, O.; Lalehzari, A.; Hashemi, M. Adsorption of tetracycline using CuCoFe2O4@ Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study. Arab. J. Chem. 2022, 15, 104014. [CrossRef]; 44. Da Silva Bruckmann, F.; Schnorr, C.E.; Da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854. [CrossRef]; 45. Pereira, A.V.; Garabeli, A.A.; Schunemann, G.D.; Borck, P.C. Determination of dissociation constant (Ka) of captopril and nimesulide: Analytical chemistry experiments for undergraduate pharmacy. Quim Nova 2011, 34, 1656–1660. [CrossRef]; 46. Zhu, H.; Chen, T.; Liu, J.; Li, D. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv. 2018, 8, 2616–2621. [CrossRef]; 47. Bruckmann, F.S.; Rossato Viana, A.; Tonel, M.Z.; Fagan, S.B.; Garcia, W.J.D.S.; Oliveira, A.H.D.; Dorneles, L.S.; Mortari, S.R.; Da Silva, W.L.; Da Silva, I.Z.; et al. Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity. Environ. Sci. Pollut. Res. 2022, 29, 70413–70434. [CrossRef]; 48. Ji, L.; Chen, W.; Bi, J.; Zheng, S.; Xu, Z.; Zhu, D.; Alvarez, P.J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719. [CrossRef]; 49. Liang, J.; Fang, Y.; Luo, Y.; Zeng, G.; Deng, J.; Tan, X.; Tang, N.; Li, X.; He, X.; Feng, C.; et al. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ. Sci. Pollut. Res. 2019, 26, 5892–5903. [CrossRef]; 50. Agarry, S.E.; Aworanti, O.A. Kinetics, Isothermal and Thermodynamic Modelling Studies of Hexavalent Chromium Ions Adsorption from Simulated Wastewater onto Parkia biglobosa-Sawdust Derived Acid-Steam Activated Carbon. Appl. J. Envir. Eng. Sci. 2017, 3, 58–76.; 51. De Souza, F.M.; Dos Santos, O.A.A.; Vieira, M.G.A. Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environ. Sci. Pollut. Res. 2019, 26, 18329–18342. [CrossRef] [PubMed]; 52. Nunes, F.B.; Da Silva Bruckmann, F.; Da Rosa Salles, T.; Rhoden, C.B.R. Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environ. Sci. Pollut. Res. 2022, 29, 1–14. [CrossRef] [PubMed]; 53. Carvajal-Bernal, A.M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J.C. Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. Eur. J. Chem. 2017, 8, 112–118. [CrossRef]; 54. Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [CrossRef]; 55. Gago, D.; Chagas, R.; Ferreira, L.M.; Velizarov, S.; Coelhoso, I. A Novel Cellulose-Based Polymer for Efficient Removal of Methylene Blue. Membranes 2020, 10, 13. [CrossRef]; 56. Salvstrini, S.; Ambrosone, L.; Kopinke, F.D. Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data. J. Mol. Liq. 2022, 352, 118762. [CrossRef]; 57. Tran, H.N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (Qe/Ce) or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorp. Sci. Technol. 2022, 2022, 5553212. [CrossRef]; 58. Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. [CrossRef]; 59. Tran, H.N.; Lima, E.C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng. 2021, 9, 106674. [CrossRef]; 60. Dotto, G.L.; Moura, J.M.D.; Cadaval, T.R.S.; Pinto, L.A.D.A. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 2013, 214, 8–16. [CrossRef]; 61. Li, Z.; Wu, D.; Liang, Y.; Xu, F.; Fu, R. Facile Fabrication of Novel Highly Microporous Carbons with Superior Size-Selective Adsorption and Supercapacitance Properties. Nanoscale 2013, 5, 10824–10828. [CrossRef] [PubMed]; 19; 15; de Oliveira, M.P.; Schnorr, C.; da Rosa Salles, T.; da Silva Bruckmann, F.; Baumann, L.; Muller, E.I.; da Silva Garcia, W.J.; de Oliveira, A.H.; Silva, L.F.O.; Rhoden, C.R.B. Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water 2023, 15, 293. https://doi.orgTest/ 10.3390/w15020293; https://hdl.handle.net/11323/10364Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  2. 2
    كتاب
  3. 3
  4. 4
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    وصف الملف: 12 páginas; application/pdf

    العلاقة: Separation and Purification Technology; [1] S.P. Maleti´c, J.M. Beljin, S.D. Ronˇcevi´c, M.G. Grgi´c, B.D. Dalmacija, State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques, J. Hazard. Mater. 365 (2019) 467–482, https://doi.org/10.1016/j.jhazmat.2018.11.020Test.; [2] I. Vasilachi, D. Asiminicesei, D. Fertu, M. Gavrilescu, Occurrence and fate of emerging pollutants in water environment and options for their removal, Water (Basel). 13 (2021) 181, https://doi.org/10.3390/w13020181Test.; [3] C. Laurenc´e, M. Rivard, T. Martens, C. Morin, D. Buisson, S. Bourcier, M. Sablier, M.A. Oturan, Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide, Chemosphere. 113 (2014) 193–199, https://doi.org/10.1016/jTest. chemosphere.2014.05.036.; [4] H. Olvera-Vargas, S. Leroy, M. Rivard, N. Oturan, M. Oturan, D. Buisson, Microbial biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation, Environ. Sci. Pollut. Res. Int. 23 (2016) 22691–22700, https://doi.org/10.1007/s11356-016-7398-2Test.; [5] A. Mendoza, J. Acena, ˜ S. P´erez, M. Lopez ´ de Alda, D. Barcelo, ´ A. Gil, Y. Valcarcel, ´ Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard, Environ. Res. 140 (2015) 225–241, https://doi.org/10.1016/jTest. envres.2015.04.003.; [6] Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Sep. Purif. Technol. 242 (2020), 116800, https://doi.orgTest/ 10.1016/j.seppur.2020.116800.; [7] A. Alayli, H. Nadaroglu, E. Turgut, Nanobiocatalyst beds with Fenton process for removal of methylene blue, Appl. Water Sci. 11 (2021), https://doi.org/10.1007Test/ s13201-021-01367-8.; [8] F.T. Alshorifi, A.A. Alswat, R.S. Salama, Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B, Heliyon. 8 (2022) e09652.; [9] O. Nemati Sani, A.A. Navaei fezabady, M. Yazdani, M. Taghavi, Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters, J. Water Proc. Eng. 32 (2019), 100894, https://doi.org/10.1016/jTest. jwpe.2019.100894.; [10] S. Erdem, M. Oztekin, ¨ Y. Sag ˘ Açıkel, Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads, Environ. Nanotechnol. Monit. Manag. 16 (2021), 100576, https://doi.org/10.1016/j.enmm.2021.100576Test.; [11] M.L.G. Vieira, C.P. Pinheiro, K.A. Silva, T.R.S. Cadaval Jr, G.L. Dotto, L.A.A. Pinto, Development of adsorbent rigid structure based on Spirulina sp./chitosan bioblends coatings for dye adsorption in fixed bed column, Environ. Sci. Pollut. Res. Int. 29 (2022) 79466–79477, https://doi.org/10.1007/s11356-022-21372-xTest.; [12] C.R.B. Rhoden, F. da S. Bruckmann, T. da R. Salles, C.G. Kaufmann Junior, S. R. Mortari, Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide, J. Water Proc. Eng. 43 (2021), 102262, https://doi.org/10.1016/jTest. jwpe.2021.102262.; [13] T. da R. Salles, H. de B. Rodrigues, F. da S. Bruckmann, L.C.S. Alves, S.R. Mortari, C.R.B. Rhoden, Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana, Disciplinarum Scientia - Ciˆencias Naturais e Tecnologicas. ´ 21 (2020) 15–26, https://doi.org/10.37779/nt.v21i3.3632Test.; [14] F.B. Nunes, F. da Silva Bruckmann, T. da Rosa Salles, C.R.B. Rhoden, Study of phenobarbital removal from the aqueous solutions employing magnetitefunctionalized chitosan, Environ. Sci. Pollut. Res. Int. 30 (2023) 12658–12671, https://doi.org/10.1007/s11356-022-23075-9Test.; [15] Z. Wang, W. Xu, F. Jie, Z. Zhao, K. Zhou, H. Liu, The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater, Sci. Rep. 11 (2021) 16878, https://doi.org/10.1038Test/ s41598-021-96465-7.; [16] C.G. Kaufmann Junior, R.Y.S. Zampiva, J. Venturini, L.M. dos Santos, C. Florence, E. da Silva Fernandes, S.R. Mortari, C.P. Bergmann, C.S. ten Caten, A.K. Alves, CNT sponges with outstanding absorption capacity and electrical properties: Impact of the CVD parameters on the product structure, Ceram. Int. 45 (2019) 13761–13771, https://doi.org/10.1016/j.ceramint.2019.04.072Test.; [17] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval Jr, H.A. Pereira, I.D.S. Nunes, C.W. Basso, M. do C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption, Chemosphere. 283 (2021), 131193, https:// doi.org/10.1016/j.chemosphere.2021.131193.; [18] D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol. 75 (2017) 1599–1606, https://doi.org/10.2166/wst.2017.025Test.; [19] F.S. Bruckmann, C. Schnorr, L.R. Oviedo, S. Knani, L.F.O. Silva, W.L. Silva, G. L. Dotto, C.R. Bohn Rhoden, Adsorption and photocatalytic degradation of pesticides into nanocomposites: A review, Molecules. 27 (2022), https://doi.orgTest/ 10.3390/molecules27196261.; [20] F. da S. Bruckmann, T. Zuchetto, C.M. Ledur, C.L. dos Santos, W.L. da Silva, S. Binotto Fagan, I. Zanella da Silva, C.R. Bohn Rhoden, Methylphenidate adsorption onto graphene derivatives: theory and experiment, New J Chem. 46 (2022) 4283–4291, https://doi.org/10.1039/d1nj03916dTest.; [21] G. William Kajjumba, S. Emik, A. Ongen, ¨ H. Kurtulus Ozcan, ¨ S. Aydın, Modelling of adsorption kinetic processes—errors, theory and application, in: Advanced Sorption Process Applications, IntechOpen, 2019.; [22] F. da S. Bruckmann, A. Rossato Viana, M.Z. Tonel, S.B. Fagan, W.J. da S. Garcia, A. H. de Oliveira, L.S. Dorneles, S. Roberto Mortari, W.L. da Silva, I.Z. da Silva, C.R. B. Rhoden, Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity, Environ. Sci. Pollut. Res. Int. 29 (2022) 70413–70434, https://doi.org/10.1007/s11356-022-20786-xTest.; [23] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study, J. Environ. Chem. Eng. 9 (2021), 106674, https://doi.org/10.1016/jTest. jece.2021.106674.; [24] A. Rossato Viana, B. Godoy Noro, D. Santos, K. Wolf, Y. Sudatti Das Neves, R. N. Moresco, A.F. Ourique, E.M. Moraes Flores, C.R.B. Rhoden, L. Maria Fontanari Krause, B. Stefanello Vizzotto, Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract, J. Toxicol. Environ. Health Part A. 86 (2023) 51–68, https://doi.org/10.1080/15287394.2022.2156956Test.; [25] A. Rossato Viana, N. Bianchin Bottari, D. Santos, M. Bolson Serafin, B. Garlet Rossato, R.N. Moresco, K. Wolf, A. Ourique, R. Horner, ¨ E.M. ´ de Moraes Flores, M. R. Chitolina Schetinger, B. Stefanello Vizzotto L., Maria Fontanari Krause, Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic, J. Toxicol. Environ. Health Part A. 85 (2022) 972–987, https://doi.org/10.1080/15287394.2022.2130844Test.; [26] M. Carrett-Dias, L.K. Almeida, J.L. Pereira, D.V. Almeida, D.M.V.B. Filgueira, L. F. Marins, A.P. de S. Votto, G.S. Trindade, Cell differentiation and the multiple drug resistance phenotype in human erythroleukemic cells, Leuk. Res. 42 (2016) 13–20, https://doi.org/10.1016/j.leukres.2016.01.008Test.; [27] E.C. ´ de Oliveira, F. da Silva Bruckmann, P.F. Schopf, A.R. Viana, S.R. Mortari, M. R. Sagrillo, N.J.S. de Vasconcellos, L. da Silva Fernandes, C.R. Bohn Rhoden In, vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite, J. Nanopart. Res. 24 (2022), https://doiTest. org/10.1007/s11051-022-05529-w.; [28] M.S. Levy, P. Lotfian, R. O’Kennedy, M.Y. Lo-Yim, P.A. Shamlou, Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method, Nucleic Acids Res. 28 (2000) E57, https://doi.org/10.1093/nar/28.12Test. e57.; [29] F. da Silva Bruckmann, A.R. Viana, L.Q.S. Lopes, R.C.V. Santos, E.I. Muller, S. R. Mortari, C.R.B. Rhoden, Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol, J. Inorg. Organomet. Polym. Mater. 32 (2022) 1459–1472, https://doi.org/10.1007/s10904-021-02207-7Test.; [30] B.P. Sahu, M.K. Das, Nanoprecipitation with sonication for enhancement of oral bioavailability of furosemide, Acta Pol. Pharm. 71 (2014) 129–137.; [31] M. Gallignani, R.A. Rondon, ´ J.F. Ovalles, M.R. Brunetto, Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form, Acta Pharm. Sin. B. 4 (2014) 376–383, https://doi.org/10.1016/jTest. apsb.2014.06.013.; [32] A. Harres, M. Mikhov, V. Skumryev, A.M.H. de Andrade, J.E. Schmidt, J. Geshev, Criteria for saturated magnetization loop, J. Magn. Magn. Mater. 402 (2016) 76–82, https://doi.org/10.1016/j.jmmm.2015.11.046Test.; [33] D.L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small. 1 (2005) 482–501, https://doi.org/10.1002/smll.200500006Test.; [34] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 9894, https://doi.orgTest/ 10.1038/s41598-017-09897-5.; [35] J. Sung Lee, J. Myung Cha, H. Young Yoon, J.-K. Lee, Y. Keun Kim, Magnetic multigranule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Sci. Rep. 5 (2015) 12135, https://doi.org/10.1038/srep12135Test.; [36] E.P. Wohlfarth, The effect of particle interaction on the coercive force of ferromagnetic micropowders, Proc. R. Soc. Lond. 232 (1955) 208–227, https://doiTest. org/10.1098/rspa.1955.0212.; [37] J.J. Lu, M.-T. Lin, C.C. Kuo, H.L. Huang, Hysteretic behavior of magnetic particles with dipole interaction, J. Appl. Phys. 85 (1999) 5558–5560, https://doi.orgTest/ 10.1063/1.369894.; [38] M. El-Hilo, I. Bsoul, Interaction effects on the coercivity and fluctuation field in granular powder magnetic systems, Physica B Condens. Matter. 389 (2007) 311–316, https://doi.org/10.1016/j.physb.2006.07.003Test.; [39] B. Aslibeiki, P. Kameli, H. Salamati, The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles, J. Appl. Phys. 119 (2016), 063901, https://doi.org/10.1063Test/ 1.4941388.; [40] M. Song, M. Li, Adsorption and regeneration characteristics of phosphorus from sludge dewatering filtrate by magnetic anion exchange resin, Environ. Sci. Pollut. Res. Int. 26 (2019) 34233–34247, https://doi.org/10.1007/s11356-018-4049-9Test.; [41] Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Wang, The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes, J. Environ. Radioact. 105 (2012) 40–47, https://doi.org/10.1016/j.jenvrad.2011.10.009Test.; [42] J. Liu, D. Xu, P. Chen, Q. Yu, H. Qiu, X. Xiong, Solvothermal synthesis of porous superparamagnetic RGO@Fe3O4 nanocomposites for microwave absorption, J. Mater. Sci.: Mater. Electron. 30 (2019) 17106–17118, https://doi.org/10.1007Test/ s10854-019-02057-7.; [43] F. Coa, ˆ M. Strauss, Z. Clemente, L.L. Rodrigues Neto, J.R. Lopes, R.S. Alencar, A. G. Souza Filho, O.L. Alves, V.L.S.S. Castro, E. Barbieri, D.S.T. Martinez, Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity, Sci. Total Environ. 607–608 (2017) 1479–1486, https://doi.org/10.1016/jTest. scitotenv.2017.07.045.; [44] Y. Liu, N. Wu, Z. Wang, H. Cao, J. Liu, Fe3O4 nanoparticles encapsulated in multiwalled carbon nanotubes possess superior lithium storage capability, New J Chem. 41 (2017) 6241–6250, https://doi.org/10.1039/c7nj00230kTest.; [45] K. Zhang, Q. Zhang, X. Gao, X. Chen, Y. Wang, W. Li, J. Wu, Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites, J. Alloys Compd. 748 (2018) 706–716, https://doi.org/10.1016/j.jallcom.2018.03.202Test.; [46] H. Sadegh, K. Zare, B. Maazinejad, R. Shahryari-ghoshekandi, I. Tyagi, S. Agarwal, V.K. Gupta, Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal, J. Mol. Liq. 215 (2016) 221–228, https://doi.org/10.1016/jTest. molliq.2015.12.042.; [47] C. Aparecida Matias, P.B. Vilela, V.A. Becegato, A.T. Paulino, Adsorption kinetic, isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel alternative natural adsorbents, Water Air Soil Pollut. 230 (2019), https://doi.orgTest/ 10.1007/s11270-019-4324-5.; [48] K. Ezeh, I.C. Ogbu, K.G. Akpomie, N.C. Ojukwu, J.C. Ibe. Utilizing the Sorption Capacity of Local Nigerian Sawdust for Attenuation of Heavy Metals from Solution: Isotherm, Kinetic, and Thermodynamic Investigations, n.d.; [49] A. Ebrahimian Pirbazari, E. Saberikhah, M. Badrouh, M.S. Emami, Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution, Water Resour, Ind. 6 (2014) 64–80, https://doi.org/10.1016/jTest. wri.2014.07.003.; [50] G.Y. Abate, A.N. Alene, A.T. Habte, D.M. Getahun, Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent, Environ. Syst. Res. 9 (2020), https://doi.orgTest/ 10.1186/s40068-020-00191-4.; [51] K. Tak´ acs-Nov´ ak, V. Szoke, ˝ G. Volgyi, ¨ P. Horvath, ´ R. Ambrus, P. Szabo-R ´ ´ev´esz, Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid, J. Pharm. Biomed. Anal. 83 (2013) 279–285, https://doi.orgTest/ 10.1016/j.jpba.2013.05.011.; [52] L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez, Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry, Environ. Toxicol. Chem. 29 (2010) 2713–2719, https://doi.org/10.1002/etc.350Test.; [53] E.M. P´erez, N. Martín, Π-π interactions in carbon nanostructures, Chem. Soc. Rev. 44 (2015) 6425–6433, https://doi.org/10.1039/c5cs00578gTest.; [54] P. Karthik, R. Vinoth, P. Zhang, W. Choi, E. Balaraman, B. Neppolian, Π-π interaction between metal-organic framework and reduced graphene oxide for visible-light photocatalytic H2 production, ACS Appl. Energy Mater. 1 (2018) 1913–1923, https://doi.org/10.1021/acsaem.7b00245Test.; [55] Y. Yang, F. Sun, J. Li, J. Chen, M. Tang, The effects of different factors on the removal mechanism of Pb(ii) by biochar-supported carbon nanotube composites, RSC Adv. 10 (2020) 5988–5995, https://doi.org/10.1039/c9ra09470aTest.; [56] S. Lin, Y. Zhao, Y.-S. Yun, Highly effective removal of nonsteroidal antiinflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: Adsorption performance and mechanisms, ACS Appl. Mater. Interfaces. 10 (2018) 28076–28085, https://doi.org/10.1021/acsami.8b08596Test.; [57] N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride, Adsorption (Boston). 22 (2016) 901–914, https://doi.orgTest/ 10.1007/s10450-016-9794-9.; [58] E.D.V. Duarte, M.G. Oliveira, M.P. Spaolonzi, H.P.S. Costa, T.L. da Silva, M.G.C. da Silva, M.G.A. Vieira, Adsorption of pharmaceutical products from aqueous solutions on functionalized carbon nanotubes by conventional and green methods: A critical review, J. Clean. Prod. 372 (2022), 133743, https://doi.org/10.1016/jTest. jclepro.2022.133743.; [59] E. Ahangaran, H. Aghaie, R. Fazaeli, Study of amoxicillin adsorption on the silanized multiwalled carbon nanotubes: Isotherms, kinetics, and thermodynamics study, Russ. J. Phys. Chem. 94 (2020) 2818–2828, https://doi.org/10.1134Test/ s0036024420130038.; [60] H. Zhang, P. Wang, L. Shi, J. Xue, A. Liang, D. Zhang, Opposite impacts of chemical oxidation for ofloxacin adsorption on activated carbon and carbon nanotubes, Sci. Total Environ. 771 (2021), 145455, https://doi.org/10.1016/jTest. scitotenv.2021.145455.; [61] A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies, Water Sci. Technol. 74 (2016) 1202–1216, https://doiTest. org/10.2166/wst.2016.301.; [62] J. Yao, Y. Deng, S. Pan, R. Korna, J. Wen, N. Yuan, K. Wang, H. Li, Y. Yang, The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes, J. Hazard. Mater. 415 (2021), 125551, https://doi.org/10.1016/jTest. jhazmat.2021.125551.; [63] K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74 (2017) 25–48, https://doi.org/10.1016/j.jtice.2017.01.024Test.; [64] F. da Silva Bruckmann, C. Mafra Ledur, I. Zanella da Silva, G. Luiz Dotto, C. Rodrigo Bohn Rhoden, A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide, J. Mol. Liq. 353 (2022), 118837, https://doi.org/10.1016/j.molliq.2022.118837Test.; [65] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, E. I. Müller, L.F.O. Silva, G.L. Dotto, C.R. Bohn Rhoden, Highly efficient adsorption of tetracycline using chitosan-based magnetic adsorbent, Polymers (Basel) 14 (2022) 4854, https://doi.org/10.3390/polym14224854Test.; [66] M.T. Amin, A.A. Alazba, M. Shafiq, Successful application of eucalyptus camdulensis biochar in the batch adsorption of crystal Violet and methylene blue dyes from aqueous solution, Sustainability. 13 (2021) 3600, https://doi.orgTest/ 10.3390/su13073600.; [67] C. Li, Y. Yan, Q. Zhang, Z. Zhang, L. Huang, J. Zhang, Y. Xiong, S. Tan, Adsorption of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxidechitosan-poly(vinyl alcohol) hydrogels, Langmuir. 35 (2019) 4481–4490, https:// doi.org/10.1021/acs.langmuir.8b04189.; [68] T. da Rosa Salles, F. da Silva Bruckamann, A.R. Viana, L.M.F. Krause, S.R. Mortari, C.R.B. Rhoden, Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells, J. Polym. Environ. 30 (2022) 2695–2713, https://doi.org/10.1007/s10924-022-02388-3Test.; [69] S. Raghav, D. Kumar, Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent, J. Chem. Eng. Data. 63 (2018) 1682–1697, https://doi.org/10.1021/acs.jced.8b00024Test.; [70] N.G. Rincon-Silva, ´ J.C. Moreno-Pirajan, ´ L.G. Giraldo, Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from eucalyptus seed, J. Chem. 2015 (2015) 1–12, https://doi.orgTest/ 10.1155/2015/569403.; [71] N.P. Higgins, A.V. Vologodskii, Topological behavior of Plasmid DNA, Microbiol. Spectr. 3 (2015), https://doi.org/10.1128/microbiolspec.PLAS-0036-2014Test.; [72] B. Murugesan, J. Sonamuthu, S. Samayanan, S. Arumugam, S. Mahalingam, Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite, Appl. Surf. Sci. 434 (2018) 400–411, https://doiTest. org/10.1016/j.apsusc.2017.10.142.; [73] S. Alarifi, D. Ali, Mechanisms of multi-walled carbon nanotubes-induced oxidative stress and genotoxicity in mouse fibroblast cells, Int. J. Toxicol. 34 (2015) 258–265, https://doi.org/10.1177/1091581815584799Test.; [74] J.S. Kim, K.S. Song, I.J. Yu, Multiwall carbon nanotube-induced DNA damage and cytotoxicity in male human peripheral blood lymphocytes, Int. J. Toxicol. 35 (2016) 27–37, https://doi.org/10.1177/1091581815598749Test.; [75] A. Kavosi, S. Hosseini Ghale Noei, S. Madani, S. Khalighfard, S. Khodayari, H. Khodayari, M. Mirzaei, M.R. Kalhori, M. Yavarian, A.M. Alizadeh, M. Falahati, The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer, Sci. Rep. 8 (2018), https://doi.org/10.1038/s41598-018Test- 26790-x.; [76] M.L. Di Giorgio, S. Di Bucchianico, A.M. Ragnelli, P. Aimola, S. Santucci, A. Poma, Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy, Mutat. Res. 722 (2011) 20–31, https://doiTest. org/10.1016/j.mrgentox.2011.02.008.; 12; 315; Theodoro da Rosa Salles, Carlos Schnorr, Franciele da Silva Bruckmann, Enzo Cassol Vicensi, Altevir Rossato Viana, André Passaglia Schuch, Wagner de Jesus da Silva Garcia, Luis F.O. Silva, Artur Harres de Oliveira, Sergio Roberto Mortari, Cristiano Rodrigo Bohn Rhoden, Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment, Separation and Purification Technology, Volume 315, 2023, 123713, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2023.123713Test.; https://hdl.handle.net/11323/10455Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10