يعرض 1 - 10 نتائج من 3,033 نتيجة بحث عن '"cytochrome P450 reductase"', وقت الاستعلام: 1.28s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    وصف الملف: 12 páginas; application/pdf

    العلاقة: Marine Drugs; 1. Hale, S.S.; Buffum, H.W.; Hughes, M.M. Six decades of change in pollution and benthic invertebrate biodiversity in a southern New England estuary. Mar. Pollut. Bull. 2018, 133, 77–87. [CrossRef] [PubMed]; 2. Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018, 198, 1602–1631. [CrossRef]; 3. Ismail, M.; Akhtar, K.; Khan, M.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Seo, J.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [CrossRef]; 4. Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.; Nadda, A.K.; Stevanato, R.; Bilal, M.; Iqbal, H. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst. Eng. 2022, 45, 237–256. [CrossRef] [PubMed]; 5. Ranjbari, N.; Razzaghi, M.; Fernandez-Lafuente, R.; Shojaei, F.; Satari, M.; Homaei, A. Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. Int. J. Biol. Macromol. 2019, 130, 564–572. [CrossRef]; 6. Yan, H.; Wu, L.; Yu, J. The environmental impact analysis of hazardous materials and the development of green technology in the shipbreaking process. Ocean Eng. 2018, 161, 187–194. [CrossRef]; 7. Homaei, A. Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J. Mol. Catal. B Enzym. 2015, 118, 16–22. [CrossRef]; 8. Ufarte, L.; Laville, E.; Duquesne, S.; Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv. 2015, 33, 1845–1854. [CrossRef]; 9. Kadri, T.; Rouissi, T.; Brar, S.K.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 2017, 51, 52–74. [CrossRef]; 11. Ahuja, S.K.; Ferreira, G.M.; Moreira, A.R. Utilization of enzymes for environmental applications. Crit. Rev. Biotechnol. 2004, 24, 125–154. [CrossRef]; 12. Nikolaivits, E.; Dimarogona, M.; Fokialakis, N.; Topakas, E. Marine-derived biocatalysts: Importance, accessing, and application in aromatic pollutant bioremediation. Front. Microbiol. 2017, 8, 265. [CrossRef] [PubMed]; 13. Menzorova, N.I.; Seitkalieva, A.V.; Rasskazov, V.A. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius. Mar. Pollut. Bull. 2014, 79, 188–195. [CrossRef] [PubMed]; 14. Seitkalieva, A.V.; Menzorova, N.I.; Rasskazov, V.A. Application of different enzyme assays and biomarkers for pollution monitoring of the marine environment. Environ. Monit. Assess. 2016, 188, 1–13. [CrossRef] [PubMed]; 15. Ducharme, J.; Auclair, K. Use of bioconjugation with cytochrome P450 enzymes. Biochim. Et Biophys. Acta (BBA) Proteins Proteom. 2018, 1866, 32–51. [CrossRef] [PubMed]; 16. Rudeck, J.; Bert, B.; Marx-Stoelting, P.; Schönfelder, G.; Vogl, S. Liver lobe and strain differences in the activity of murine cytochrome p450 enzymes. Toxicology 2018, 404, 76–85. [CrossRef] [PubMed]; 17. Brummund, J.; Müller, M.; Schmitges, T.; Kaluzna, I.; Mink, D.; Hilterhaus, L.; Liese, A. Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro. J. Biotechnol. 2016, 233, 143–150. [CrossRef]; 18. Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 2018, 210, 10–22. [CrossRef] [PubMed]; 19. Zheng, S.; Chen, B.; Qiu, X.; Lin, K.; Yu, X. Three novel cytochrome P450 genes identified in the marine polychaete Perinereis nuntia and their transcriptional response to xenobiotics. Aquat. Toxicol. 2013, 134, 11–22. [CrossRef]; 20. Han, J.; Won, E.-J.; Kang, H.-M.; Lee, M.-C.; Jeong, C.-B.; Kim, H.-S.; Hwang, D.-S.; Lee, J.-S. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. Mar. Pollut. Bull. 2017, 124, 953–961. [CrossRef]; 21. Basilone, G.; Gargano, A.; Corriero, A.; Zupa, R.; Santamaria, N.; Mangano, S.; Ferreri, R.; Pulizzi, M.; Mazzola, S.; Bonanno, A. Liver melanomacrophage centres and CYP1A expression as response biomarkers to environmental pollution in European anchovy (Engraulis encrasicolus) from the western Mediterranean Sea. Mar. Pollut. Bull. 2018, 131, 197–204. [CrossRef] [PubMed]; 22. Mundle, S.O.; Spain, J.C.; Lacrampe-Couloume, G.; Nishino, S.F.; Lollar, B.S. Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666. Sci. Total Environ. 2017, 605, 99–105. [CrossRef] [PubMed]; 23. Gunasekaran, V.; Donmez, E.; Girhard, M.; Urlacher, V.B.; Constantí, M. Biodegradation of fuel oxygenates and their effect on the expression of a newly identified cytochrome P450 gene in Achromobacter xylosoxidans MCM2/2/1. Process Biochem. 2014, 49, 124–129. [CrossRef]; 24. Wu, R.-R.; Dang, Z.; Yi, X.-Y.; Yang, C.; Lu, G.-N.; Guo, C.-L.; Liu, C.-Q. The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. J. Hazard. Mater. 2011, 186, 978–983. [CrossRef] [PubMed]; 25. Pandey, A.V.; Flück, C.E. NADPH P450 oxidoreductase: Structure, function, and pathology of diseases. Pharmacol. Ther. 2013, 138, 229–254. [CrossRef] [PubMed]; 26. Klotz, A.V.; Stegeman, J.J.; Walsh, C. An aryl hydrocarbon hydroxylating hepatic cytochrome P-450 from the marine fish Stenotomus chrysops. Arch. Biochem. Biophys. 1983, 226, 578–592. [CrossRef]; 27. Sen, A.; Arinc, E. Purification and characterization of cytochrome P450 reductase from liver microsomes of feral leaping mullet (Liza saliens). J. Biochem. Mol. Toxicol. 1998, 12, 103–113. [CrossRef]; 28. Arinç, E. Characterization of cytochrome P450 dependent mixed-function oxidase system of gilthead seabream (Sparus aurata; Sparidae) liver. Comp. Biochem. Physiol. Part B Comp. Biochem. 1993, 104, 133–139. [CrossRef]; 29. Kojima, H.; Takahashi, K.; Sakane, F.; Koyama, J. Purification and characterization of NADPH-cytochrome c reductase from porcine polymorphonuclear leukocytes. J. Biochem. 1987, 102, 1083–1088. [CrossRef]; 30. Kubota, S.; Yoshida, Y.; Kumaoka, H.; Furumichi, A. Studies on the microsomal electron-transport system of anaerobically grown yeast: V. Purification and characterization of NADPH-cytochrome c reductase. J. Biochem. 1977, 81, 197–205. [CrossRef]; 31. Shen, A.L.; Porter, T.; Wilson, T.; Kasper, C. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J. Biol. Chem. 1989, 264, 7584–7589. [CrossRef] [PubMed]; 32. Kuzu, M.; Ciftci, M. Purification and characterization of NADPH-cytochrome P450 reductase from Lake Van fish liver microsomes and investigation of some chemical and metals’ effects on the enzyme activity. Turk. J. Chem. 2015, 39, 149–158. [CrossRef]; 33. Kuwahara, T.; White, R.A., Jr.; Agosin, M. A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties. Arch. Biochem. Biophys. 1985, 239, 18–28. [CrossRef] [PubMed]; 34. Tsou, C.-Y.; Matsunaga, S.; Okada, S. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race. J. Biosci. Bioeng. 2018, 125, 30–37. [CrossRef]; 35. Milhim, M.; Gerber, A.; Neunzig, J.; Hannemann, F.; Bernhardt, R. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase. J. Biotechnol. 2016, 231, 83–94. [CrossRef]; 36. Lee, G.-Y.; Kim, H.M.; Ma, S.H.; Park, S.H.; Joung, Y.H.; Yun, C.-H. Heterologous expression and functional characterization of the NADPH-cytochrome P450 reductase from Capsicum annuum. Plant Physiol. Biochem. 2014, 82, 116–122. [CrossRef]; 37. Takahashi, N.; Saito, T.; Goda, Y.; Tomita, K. Characterization of microsomal NADPH-dependent aldehyde reductase from rat brain. J. Biochem. 1986, 99, 513–519. [CrossRef]; 38. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]; 39. Guengerich, F.P.; Martin, M.V.; Sohl, C.D.; Cheng, Q. Measurement of cytochrome P450 and NADPH–cytochrome P450 reductase. Nat. Protoc. 2009, 4, 1245. [CrossRef]; 40. Williams, J.; Kamin, H. The preparation and properties of microsomal TPNH-cytochrome c reductase from pig liver. J. Biol. Chem. 1962, 237, 587–595. [CrossRef]; 41. Yonetani, T. Studies on cytochrome c peroxidase II. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c. J. Biol. Chem. 1965, 240, 4509–4514. [CrossRef] [PubMed]; 42. Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [CrossRef]; 43. Arrhenius, S. On the reaction velocity of the inversion of cane sugar by acids. J. Phys. Chem 1889, 4, 226.; 44. Copeland, R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2004.; 45. Lamb, S.B.; Lamb, D.C.; Kelly, S.L.; Stuckey, D.C. Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis. FEBS Lett. 1998, 431, 343–346. [CrossRef]; 12; 21; Bahramian Nasab, S.; Homaei, A.; Fernandez-Lafuente, R.; Del Arco, J.; Fernández-Lucas, J. A Novel, Highly Potent NADPH-Dependent Cytochrome P450 Reductase from Waste Liza klunzingeri Liver. Mar. Drugs 2023, 21, 99. https://doi.org/10.3390Test/ md21020099; https://hdl.handle.net/11323/10385Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/