يعرض 1 - 10 نتائج من 66 نتيجة بحث عن '"cambios estacionales"', وقت الاستعلام: 0.94s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Revista de Biología Tropical; Vol. 70 No. 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Continuous publication, 01 January - 31 December 2022; 557–575 ; Revista de Biología Tropical; Vol. 70 Núm. 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Publicación continua, Enero - Diciembre 2022; 557–575 ; Revista Biología Tropical; Vol. 70 N.º 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Publicación continua, Enero - Diciembre 2022; 557–575 ; 2215-2075 ; 0034-7744 ; 10.15517/rev.biol.trop.v70i1.2022

    وصف الملف: application/pdf; text/html

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المؤلفون: Kaçar, S., Kaya, H., Başhan, M.

    المصدر: Grasas y Aceites; Vol. 72 No. 4 (2021); e435 ; Grasas y Aceites; Vol. 72 Núm. 4 (2021); e435 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2021.v72.i4

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1899/2802Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1899/2803Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1899/2804Test; Ackman RG. 1967. Characteristics of the fatty acid composition and biochemistry of some fresh-water fish oils and lipids in comparison with marine oils and lipids. Comp. Biochem. Physiol. 22, 907-922. https://doi.org/10.1016/0010-406XTest(67)90781-5; Ackman RG, Eaton CA, Linne BA. 1975. Differentiation of freshwater characteristics of fatty acids in marine specimens of the Atlantic sturgeon (Acipenser oxyrhynchus). Fish. Bull. 73, 838-845.; Ackman RG, Mcleod C, Rakshit S, Mısra KK. 2002. Lipids and fatty acids of five freshwater food fishes of India. J. Food Lipids 9 (2), 127-145. https://doi.org/10.1111/j.1745-4522.2002.tb00214.xTest; Akpınar MA. 1986. Cyprinus carpio L. (Osteichthyes:Cyprinidae)'nın karaciğer ve kasındaki total lipit ve total yağ asidinin mevsimsel değişimi. CÜ Fen Ede. Fak. Fen Bil. Derg. 4, 33-42.; Akpınar MA. 1987. Cyprinus carpio L. (Osteichthyes:Cyprinidae)'nın kas dokusu yağ asitlerinin mevsimsel değişimi. Doğa TU Biyol. 11 (1), 1-9.; Akpınar MA, Görgün S, Akpınar AE. 2009. A comparative analysis of the fatty acid profiles in the liver and muscles of male and female Salmo trutta macrostigma. Food Chem. 112, 6-8. https://doi.org/10.1016/j.foodchem.2008.05.025Test; Aras MS, Çetinkaya O, Karataş M. 1997. Anadolu Alabalığı (Salmo trutta macrostigma, Dumeril., 1858)'in Türkiye'de bugünkü durumu. Akdeniz Balıkçılık Kong Nisan, İzmir.; Aras NM, Haliloğlu HI, Bayır A, Atamanalp M, Sirkecioğlu AN. 2003a. Karasu Havzası Yeşildere Çayı Olgun Dere Alabalıkları (Salmo trutta macrostigma, Dumeril, 1858)'nda farklı dokuların yağ asidi kompozisyonlarının karşılaştırılması. Turk. J. Vet. Anim. Sci. 27, 887-892.; Aras NM, Haliloğlu HI, Ayık Ö, Yetim H. 2003b. Comparison of fatty acid profiles of different tissues of mature trout (Salmo trutta labrax, Pallas, 1811) caught from Kazandere Creek in the Çoruh Region, Erzurum, Turkey. Turk. J. Vet. Anim. Sci. 27, 311-316.; Ateş M, Çakıroğulları GÇ, Kocabaş M, Kayım M, Can E, Kızak V. 2013. Seasonal variations of proximate and total fatty acid composition of wild brown trout in Munzur River, Tunceli-Turkey. Turk. J. Fish. Aquat. Sci. 13,613-619.; Bayır A, Sirkecioglu AN, Aras NM, Aksakal E, Haliloglu HI, Bayır M. 2010. Fatty acids of neutral and phospholipids of three endangered trout: Salmo trutta caspius Kessler, Salmo trutta labrax Pallas and Salmo trutta macrostigma Dumeril. Food Chem. 119, 1050-1056. https://doi.org/10.1016/j.foodchem.2009.07.064Test; Bell JG, Tocher DR, Henderson RJ, Dick JR, Crampton VO. 2003. Altered fatty acid composition in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J. Nutr. 133, 2793-801. https://doi.org/10.1093/jn/133.9.2793Test PMid:12949367; Borlongan IG, Benitez LV. 1992. Lipid and fatty acid composition of Milkfish (Chanos chanos) grown in freshwater and seawater. Aquaculture 104 (1-2), 79-89. https://doi.org/10.1016/0044-8486Test(92)90139-C; Christiansen JS, Ringo E, Farkas T. 1989. Effect of sustained exercise on growth and body composition of first feeding fry of arctic charr, Salvelinus alpinus (L). Aquaculture 79, 329-335. https://doi.org/10.1016/0044-8486Test(89)90474-2; Çelik M, Gökçe MA, Başusta N, Küçükgülmez A, Taşbozan O, Tabakoğlu ŞS. 2008. Nutritional quality of rainbow trout (Oncorhynchus mykiss) caught from the Atatürk Dam Lake in Turkey. J. Muscle Foods 19 (1), 50-61. https://doi.org/10.1111/j.1745-4573.2007.00099.xTest; Farkas T, Csengeri I. 1976. Biosynthesis of fatty acids by the carp, Cyprinus carpio L., in relation to environmental temperature. Lipids 11, 401-407. https://doi.org/10.1007/BF02532847Test PMid:1271977; Folch J, Lees M, Stanley A. 1957. Simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258Test(18)64849-5; Görgün S, Akpınar MA. 2007. Liver and muscle fatty acid composition of mature and immature rainbow trout (Oncorhynchus mykiss) fed two different diets. J. Muscle Foods 62 (3), 351-355. https://doi.org/10.2478/s11756-007-0058-8Test; Güler GO, Aktümsek A, Çitil OB, Arslan A, Torlak E. 2007. Seasonal variations on total fatty acid composition of fillets of zander (Sander lucioperca) in Beysehir Lake (Turkey). Food Chem. 103, 1241-1246. https://doi.org/10.1016/j.foodchem.2006.10.029Test; Haliloğlu HI. 2001. Farklı işletmelerde yetiştirilen Gökkuşağı alabalığının (Oncorhynchus mykiss) adipoz, gonad, karaciğer, kas dokuları yağ asidi profillerinin belirlenmesi, Doktora Tezi, Atatürk Üniv Fen Bil Ens Su ürün. A.B.D, Erzurum.; Haliloğlu HI, Aras NM, Yetim H. 2002. Comparison of muscle fatty acids of three trout species (Salvelinus alpinus, Salmo trutta fario, Oncorhynchus mykiss) raised under the same conditions. Turk. J. Vet. Anim. Sci. 26, 1097-1102.; Haliloğlu HI, Bayır A, Sirkecioğlu AN, Aras NM, Atamanalp M. 2004. Comparision of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem. 86, 55-59. https://doi.org/10.1016/j.foodchem.2003.08.028Test; Henderson RJ, Tocher DR. 1987. The lipid composition and biochemistry of freswater fish. Progress in Lipid Research 26, 281-347. https://doi.org/10.1016/0163-7827Test(87)90002-6; Jeong BY, Jeong WG, Moon SK, Ohshima T. 2002. Preferential accumulation of fatty acids in the testis and ovary of cultured and wild sweet smelt Plecoglossus altivelis. Comp. Biochem. Physiol. 131 B, 251-259. https://doi.org/10.1016/S1096-4959Test(01)00501-2; Justi KC, Hayashi C, Visentainer JV, de Souza NE, Matusushita M. 2003. The Influence of Feed Supply Time on The Fatty Acid Profile of Nile Tilapia (Oreochromis niloticus) Fed on A Diet Enriched With n-3 Fatty Acids. Food Chem. 80, 489-493. https://doi.org/10.1016/S0308-8146Test(02)00317-5; Kalyoncu L, Yaman Y, Aktumsek A. 2010. Determination of the seasonal changes on the total fatty acid composition of rainbow trout, Oncorhynchus mykiss in Ivriz Dam Lake, Turkey. Afr. J. Biotech. 9 (30), 4783-4787.; Kaushik SJ, Corraze G, Radunz-Neto J, Larroquet L, Dumas J. 2006. Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. J. Fish Biol. 68, 1376-1387. https://doi.org/10.1111/j.0022-1112.2006.01005.xTest; Kayhan H, Başhan M, Kaçar S. 2015. Seasonal variations in the fatty acid composition of phospholipids and triacylglycerols of brown trout. Eur. J. Lipid Sci. Technol. 117 (5), 738-744. https://doi.org/10.1002/ejlt.201400152Test; Kayım M, Öksüz A, Özyılmaz A, Kocabaş M, Can E, Kızak V, Ateş M. 2011. Proximate composition, fatty acid profile and mineral content of wild brown trout (Salmo trutta sp.) from Munzur River in Tunceli, Turkey. Asian J. Chem. 23, 3533-3537.; Kinsella JE. 1987. Seafoods and fish oils in human health and disease, Pub. Marcel Dekker, New York. Inc. 234.; Kozlova TA, Khotimchenko SV. 2000. Lipids and fatty acids of two pelagic cottoid fishes (Comephorus spp.) endemic to Lake Baikal. Comp. Biochem. Physiol. 126 B, 477-485. https://doi.org/10.1016/S0305-0491Test(00)00207-8; Osman H, Suriah AR, Law EC. 2001. Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chem. 73, 55-60. https://doi.org/10.1016/S0308-8146Test(00)00277-6; Rincon-Sanchez AR, Hernandez A, Lopez ML, Mendoza-Figueroa T. 1992. Synthesis and secretion of lipids by long-term cultures of female rat hepatocytes. Biol. Cell. 76, 131-138. https://doi.org/10.1016/0248-4900Test(92)90205-F; Sargent JR. 1995. Origins and function of lipids in eggs. In: Bromage, N.R., Roberts, R.J. (Eds.), Broodstock Management and Egg and Larval Quality, Blackwell, Oxford, 353-372.; Sushchik NN, Gladyshev MI, Kalachova GS. (2007). Seasonal dynamics of fatty acid content of a common food fish fraom the Yenisei river, Siberian grayling, Thymallus arcticus. Food Chem. 104 (4), 1353-1358. https://doi.org/10.1016/j.foodchem.2007.01.050Test; Williams EE, Hazel JR. 1992. The role of docosahexaenoic acid-containing molecular species of phospholipids in the thermal adaptation of biological membranes. In essential fatty acids and eicosanoids, 128-133. Edited by A. Sinclair and R. Gibson. Am. Oil Chem. Soc. Champaign, Illinois.; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1899Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Mediterranean Botany; Vol 40 No 1 (2019); 53-70 ; Mediterranean Botany; Vol. 40 Núm. 1 (2019); 53-70 ; 2603-9109

    وصف الملف: application/pdf

    العلاقة: https://revistas.ucm.es/index.php/MBOT/article/view/60490/4564456549271Test; Abegunde, J.A. 1988. Security needs of a typical Nigerian academic library. Nigerian Library and Information Science Review 6(2): 62–66.; Adekanmbi, O.H. & Ogundipe, O. 2009. Mangrove biodiversity in the restoration and sustainability of the Nigerian natural environment. J. Ecol. Nat. Environ. 1(3): 064–072.; Adeleye, M.A., Akinsoji, A. & Adeonipekun, P.A. 2017. A survey of vascular epiphytes of oil palms (Elaeis guineensis JACQ.) in Lekki Conservation Centre, Lagos, Nigeria. FUW Trends in Science & Technology Journal 2(1A): 74–78.; Adeniyi, T.A., Oyebanji, O.O. & Adeonipekun, P.A. 2016. Floral diversity in the wetlands of Ibeju–Lekki area, Lagos, Nigeria. Ife J. Sci. 18(3): 729–737.; Akinsoji, A., Adeniyi, T.A., Oyebanji, O.O. & Eluwole, T.A. 2016. Evaluation and flora diversity of Gashaka Gumti Gashaka Gumti Park–1, Gashaka Sector, Taraba state, Nigeria. Ethiopian Journal of Environmental Studies and Management 9(3): 713–737.; Akobundu, I.O. & Agyakwa, C.W. 1987. Guide to West African Weeds. IITA, Ibadan, 522p.; Angiosperm Phylogeny Group 2009.An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105–121.; Blanco, M.A., Whitten, W.M., Penneys, D.S., Williams, N.H., Neubig, K.M. & Endara, L. 2006. A simple and safe method for rapid drying of plants specimens using forced–air space heaters. Selbayana 27(1):83–87.; Cilliers, S.S., Schoeman, L.L. & Bredenkamp, G.J. 1998. Wetland plant communities in the Potchefstroom Municipal Area, North–West, South Africa. Bothalia 28(2): 213–229.; Cowan, G.I. 1995. South Africa and the Ramsar Convention. In: Cowan, G.I. (Ed.). Wetlands of South Africa. I–II. Dep. Environ.Aff. Tour., Pretoria.; Cruz–García, S. & Struik, P.C. 2015. Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand. Econ. Bot. 20(10): 1–15.; Deane, D., Fordham, D., He, F. & Bradshaw, C. 2016. Diversity patterns of seasonal wetland plant communities mainly driven by rare terrestrial species. Biodivers. Conserv. 25(8): 1569–1585.; Denny, P. 1993. Wetlands of Africa. In: Whigham, D.F., Dykyjová, D. & Hejný, S. (Eds.). Wetlands of the world I. Pp. 1–128. Kluwer Acad. Publ., Dordrecht.; Dixon, J.A. & Sherman, P.B. 1991. Economics of protected areas: a new look at benefits and costs. Earthscan, London.; Eni, D.I., Oka, P.O. & Atu, J.E. 2011. Assessment of wetland resources utilization along the Cross River estuary. Sacha. J. Environ. Stud. 1(2):1–7.; Eriksson, O. 1993. The species–pool hypothesis and plant community diversity. Oikos 68: 371–374.; Filmer, D, & Pritchett, L.H. 2002. Environmental degradation and the demand for children: searching for the vicious circle in Pakistan. Environ. Dev. Econ. 7:123–46.; Grice, A.C. 2006. The impacts of invasive plant species on the biodiversity of Australian Rangelands. Rangeland J. 28: 27–35.; Hammer, Øyvind, Harper, David A.T., & Paul D.R. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4(1): art. 4.; Hutchinson, J. & Dalziel, J.M. 1954. Flora of West Tropical Africa. Vol. 1, part 1. Crown Agents, London.; Hutchinson, J. & Dalziel, J.M. 1958. Flora of West Tropical Africa. Vol. 1, part 2. Crown Agents, London.; Hutchinson, J. & Dalziel, J.M. 1963. Flora of West Tropical Africa. Vol. 2. Crown Agents, London.; Hutchinson, J. & Dalziel, J.M. 1968. Flora of West Tropical Africa. Vol. 3, part 1. Crown Agents, London.; Hutchinson, J. & Dalziel, J.M. 1972. Flora of West Tropical Africa. Vol. 3, part 2. Crown Agents, London.; Kotze, D.C. 1996. Wetlands and people: what benefits do wetlands have and how are these benefits affected by our land–use activities? Wetland Use Booklet 1. Howick Share Net, South Africa. 35p.; Obiefuna, J.N., Nwilo, P.C., Atagbaza, A.O. & Okolie, C.J. 2013. Spatial change in wetlands of Lagos/Lekki lagoons of Lagos, Nigeria. J. Sustain. Dev. 6: 7.; Okorie, F.C. 2012. A spatio–temporal analysis of deforestation in Epe and its environs (Lagos, Nigeria). Int. J. Sci. Environ. Technol. 1(5): 548–562.; Oladele, O.I. 2013. Up–scaling ecological based approaches for food security and adaptation. Paper presented in Panel 1.1. First Africa food security conference on harnessing ecosystem based approaches for food security and adaptation to climate change in Africa. Pp. 20–21. UN Complex Nairobi, Nairobi.; Olowokudejo, J.D. & Oyebanji, O.O. 2016. Floral diversity of the littoral vegetation of South–eastern Nigeria. Int. J. Biodivers. Conserv. 8(12): 320–333.; Olubode, O.S., Awodoyin, R.O. & Ogunyemi, S. 2011. Floral diversity in the wetlands of Apete River, Eleyele Lake and Oba Dam in Ibadan, Nigeria: Its implication for biodiversity erosion. W. Afr. J. Appl. Ecol. 18: 109–119.; Oramah, I.T. 2006. The effects of population growth in Nigeria. J. Appl. Sci. 6: 1332–1337.; Partel, M., Zobel, K. & van der Maarel, E. 1996. The species pool and its relation to species richness: evidence from Estonia plant communities. Oikos 75: 111–117.; Pascual, U. & Barbier, E. 2006. Deprived land–use intensification in shifting cultivation: the population pressure hypothesis revisited. Agric Econ. 34: 155–65.; Ramsar, (1994). Convention on wetlands of International importance. Unit. Nat. Educ. Sci. Cult. Org. (UNESCO) handbook, Paris.; Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge Univ. Press, Cambridge.; Shaheen, H., Khan, S.M., Harper, D.M., Zahid, U. & Rizwana, A.Q. 2011. Species diversity, community structure, and distribution patterns in western Himalayan alpine pastures of Kashmir, Pakistan. Mount. Res. Dev. 31(2):153–159.; Shimadzu, H., Dornelas, M., Henderson, P.A. and Magurran, A.E. 2013. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11: 38.; Silva, I.A., Cianciaruso, M.V. & Batalha, M.A. 2010. Abundance distribution of common and rare plant species of Brazilian savannas along a seasonality gradient. Act. Bot. Brasil. 24: 2.; Song, N. & Zhang, J.T. 2013. An Index for Measuring Functional Diversity in Plant Communities Based on Neural Network Theory. J. Appl. Math. 2013: 320905.; Sowunmi, M.A. 2004. Aspects of Nigerian coastal vegetation in the Holocene: some recent insights. Dev. Paleoenviron. Res. 6: 199–218.; Tilman, D., Reich, P.B. & Knops, J.M.H. 2006. Biodiversity and ecosystem stability in a decade–long Grassland experiment. Nature 441: 629–632.; Tokeshi, M. 1999. Species Coexistence: Ecological and Evolutionary Perspectives. Blackwell Science, Oxford.; Turner, R.E. & Cahoon, D.R. 1988. Causes of Wetland Loss in the Coastal Central Gulf of Mexico Volume II : Technical Narrative. Min. Manag. Serv. New Orleans, Louisiana. 412p.; van Ruijven, J. & Berendse, F. 2007. Contrasting effects of diversity on the temporal stability of plant populations. Oikos 116: 1323–1330.; Vinchesi, C. & Walsh D.B. 2014. Quadrat Method for Assessing the Population Abundance of a Commercially Managed Native Soil–Nesting Bee, Nomia melanderi (Hymenoptera: Halictidae), in Proximity to Alfalfa Seed Production in the Western United States. J. Econ. Entomol. 107(4): 1695–1699.; Walker S., Comrie J., Head N., Ladley K.J., Clarke D. and Monks A. 2016. Sampling method and sample size affect diversity and indigenous dominance estimates in a mixed grassland community New Zealand J. Ecol. 40(1): 150–159.; White, F. 1983. The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Nat. Resources Res. 20: 1–356.; White, P.S. 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45: 229.; Williams, M. 1990. Understanding wetlands. In: Williams, M. (Ed.). Wetlands: a threatened landscape. Pp. 1–41. The Alden Press, Oxford.; Williams, S.E. & Middleton, J. 2008. Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Div. Distr. 14: 69–77.; Zakari, H.H. 1992. Vegetation composition and conservation status of baturiya wetland, Jigawa State, Nigeria. Master Thes. Sci. Degr. Botany. Dep. Biol. Sc., Fac. Sci., Ahmadu Bello Univ., Zaria, Niger. 87p.; Zhang, H., John, R., Peng, Z., Yuan, J., Chu, C., Du, G. & Zhou, S. 2012. The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the Eastern Qinghai-Tibetan Plateau, China. PLoS One 7(11): e49024.; https://revistas.ucm.es/index.php/MBOT/article/view/60490Test

  7. 7
  8. 8

    المصدر: Revista de Biología Tropical; Vol. 70 No. 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Continuous publication, 01 January-31 December 2022; 557–575
    Revista de Biología Tropical; Vol. 70 Núm. 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Publicación continua, Enero-Diciembre 2022; 557–575
    Revista Biología Tropical; Vol. 70 N.º 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Publicación continua, Enero-Diciembre 2022; 557–575
    Portal de Revistas UCR
    Universidad de Costa Rica
    instacron:UCR

    وصف الملف: application/pdf; text/html

  9. 9
    دورية أكاديمية

    المصدر: Revista de Biología Tropical; Vol. 66 No. 3 (2018): Volume 66 – Regular number 3 – September 2018; 1065-1077 ; Revista de Biología Tropical; Vol. 66 Núm. 3 (2018): Volumen 66 – Número regular 3 – Setiembre 2018; 1065-1077 ; Revista Biología Tropical; Vol. 66 N.º 3 (2018): Volumen 66 – Número regular 3 – Setiembre 2018; 1065-1077 ; 2215-2075 ; 0034-7744 ; 10.15517/rbt.v66i3

    وصف الملف: application/pdf; text/html

  10. 10
    دورية أكاديمية

    المؤلفون: Kaçar, S., Başhan, M., Oymak, S. A.

    المصدر: Grasas y Aceites; Vol. 69 No. 1 (2018); e242 ; Grasas y Aceites; Vol. 69 Núm. 1 (2018); e242 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2018.v69.i1

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1709/2245Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1709/2246Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1709/2247Test; Ackman RG. 1967. Characteristics of the FA composition and biochemistry of some freshwater fish oils and lipids in composition with marine oils and lipids. Comp. Biochem. Physiol. 22, 907. https://doi.org/10.1016/0010-406XTest(67)90781-5; Akpinar MA, Görgün S, Akpinar AE.2009. A comparative analysis of the fatty acid profiles in the liver and muscles of male and female Salmo trutta macrostigma. Food Chem. 112, 6–8. https://doi.org/10.1016/j.foodchem.2008.05.025Test; Almeida NM, Franco MRB. 2007. Fatty acid composition of total lipids, neutral lipids and phospholipids in wild and farmed matrinxa (Brycon caphalus) in the Brazilian Amazon area. J. Sci. Food Agric. 87, 2596–2603. https://doi.org/10.1002/jsfa.3014Test PMid:20836167; Aras NM, Haliloglu H?, Bayır A, Atamanalp M, Sirkecio?lu AN. 2003. Karasu Havzası Ye?ildere Çayı olgun dere alabalıkları (Salmo trutta macrostigma, Dumeril, 1858)'nda farklı dokuların ya? asidi kompozisyonlarının kar?ıla?tırılması. Turk. J. Vet. Anim. Sci. 27, 887–892.; Arts MT, Ackman RG, Holub BJ. 2001. Essential fatty acids in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish Aquat. Sci. 58, 122–137. https://doi.org/10.1139/f00-224Test; Bayır A, Sirkecioglu AN, Aras NM, Aksakal E, Haliloglu HI, Bayır M. 2010. Fatty acids of neutral and phospholipids of three endangered trout: Salmo trutta caspius Kessler, Salmo trutta labrax Pallas and Salmo trutta macrostigma Dumeril. Food Chem. 119, 1050–1056. https://doi.org/10.1016/j.foodchem.2009.07.064Test; Castell JD, Sinnhuber RO, Wales JH, Lee DJ. 1972. Essential fatty acids in the diet of rainbow trout (Salmo gairdnerii): Growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102, 77–86. https://doi.org/10.1093/jn/102.1.77Test PMid:5007119; Cengiz EI, Ünlü E, Bashan M, Satar A, Uysal E. 2012. Effects of seasonal variations on the fatty acid composition of total lipid, phospholipid and triacylglicerol in the dorsal muscle of Mesopotamian Catfish (Silurus triostegus Heckel, 1843) in Tigris River (Turkey). Turk. J. Fish. Aquat. Sci. 12, 33–39.; Christiansen JS, Ringo E, Farkas T. 1989. Effect of sustained exercise on growth and body composition of first feeding fry of Arctic charr, Salvelinus alpinus (L.). Aquaculture 79, 329–335. https://doi.org/10.1016/0044-8486Test(89)90474-2; Çelik M, Diler A, Küçükgülmez A. 2005. A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions. Food Chem. 92, 637–641. https://doi.org/10.1016/j.foodchem.2004.08.026Test; Folch J, Lees M, Stanley A. 1957. Simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. PMid:13428781; Gunstone FD, Wijesundera RC, Scrimgeour CM. 1978. The component acids of lipids from marine and freshwater species with special reference to furan-containing acids. J. Sci. Food Agric. 29, 539–550. https://doi.org/10.1002/jsfa.2740290608Test; Halilo?lu HI, Bayır A, Sirkecio?lu N, Aras NM, Atamanalp M. 2004. Comparison of fatty acid composition in some tissue of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem. 86, 55–59.; Harlıo?lu AG, Yılmaz Ö. 2010. Fatty acid composition, cholesterol and fat soluble vitamins of wild-caugth freshwater speeny eel, Mastasembelus simack (Walbaum, 1792). J. Appl. Ichthyol. 27, 1123–1127.; Henderson RJ, Tocher DR. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281–347. https://doi.org/10.1016/0163-7827Test(87)90002-6; Kaçar S, Ba?han M. 2015. Seasonal Variations in the Fatty Acid Composition of Phospholipid and Triacylglycerol in Gonad and Liver of Mastacembelus simack. J. Am. Oil Chem. Soc. 92, 1313–1320. https://doi.org/10.1007/s11746-015-2692-6Test; Kaçar S, Ba?han M, Oymak AS. 2016. Effect of seasonal variation on lipid and fatty acid profile in muscle tissue of male and female Silurus triostegus. J. Food Sci. Technol. Mys. 53, 2913–2922. https://doi.org/10.1007/s13197-016-2253-5Test PMid:27765962 PMCid:PMC5052160; Kayhan H, Ba?han M, Kaçar S. 2015. Seasonal variations in the fatty acid composition of phospholipids and triacylglycerols of brown trout. Eur. J. Lipid Sci. Technol. 117, 738–744. https://doi.org/10.1002/ejlt.201400152Test; ?uczy?ska J, Borejszo Z, ?uczy?ski MJ. 2008. The composition of fatty acids in muscles of six freshwater fish species from the Mazurian Great Lakes (northeastern Poland). Arch. Pol. Fish. 16, 167–178.; Olguno?lu IA. 2011. Determination of the fundamental nutritional components in fresh and hot smoked spiny eel (Mastacembelus mastacembelus, Bank and Solander, 1794). Sci. Res. Essays. 6, 6448–6453.; Osman H, Suriah AR, Law EC.2001. Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chem.73, 55–60. https://doi.org/10.1016/S0308-8146Test(00)00277-6; Sargent JR, Tocher DR, Bell JG. 2002. The lipids. In: Halver J.E., Hardy R.W. (eds): Fish Nutrition. 3rd Ed. Elsevier Science, San Diego: 181–257.; Shirai N, Suzuki H, Tokairin S, Eharac H, Wada S.2002. Dietary and seasonal effects on the dorsal meat lipid composition of Japanese (Silurus asotus) and Thai catfish (Clarias macrocephalus and hybrid Clarias macrocephalus and Clarias galipinus). Comp. Biochem. Physiol. 132, 609–619. https://doi.org/10.1016/S1095-6433Test(02)00081-8; Sidhu KS. 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 38, 336–344. https://doi.org/10.1016/j.yrtph.2003.07.002Test PMid:14623484; Tasbozan O, Gökçe MA, Çelik M, Tabako?lu ?S, Küçükgülmez A, Ba?usta A.2013. Nutritional composition of Spiny eel (Mastacembelus mastacembelus) caught from the Atatürk Dam Lake in Turkey. J. Appl. Biol. Sci. 7,78–82.; Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Fish. Sci. 11, 107–184. https://doi.org/10.1080/713610925Test; Ugoala Ch, Ndukwe GI, Audu TO.2008. Comparison of fatty acids of some freshwater and marine fishes. Int. J. Food Saf. 10, 9–17.; Vlaming VLD, Kuris A, Parker FR. 1978. Seasonal variations of reproduction and lipid reserves in some subtropical cyprinodantids. Trans. Am. Fish. Soc. 107, 464–472. 2.0.CO;2" target="_blank">https://doi.org/10.1577/1548-8659Test(1978)1072.0.CO;2; Ward OP, Singh A. 2005. Omega-3/6 fatty acids: alternative sources of production. Process. Biochem. 40, 3627–3652. https://doi.org/10.1016/j.procbio.2005.02.020Test; Wills RBH, Hopkirk G.1976. Distribution and fatty acid composition of lipids of Eels (Anguilla australis). Comp. Biochem. Physiol. 53B, 525–527. https://doi.org/10.1016/0305-0491Test(76)90211-X; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1709Test