يعرض 1 - 10 نتائج من 168 نتيجة بحث عن '"cacahuete"', وقت الاستعلام: 0.80s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Grasas y Aceites; Vol. 74 No. 4 (2023); e527 ; Grasas y Aceites; Vol. 74 Núm. 4 (2023); e527 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2023.v74.i4

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2082/3101Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2082/3102Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2082/3103Test; Ali A, Islam A, Pal TK. 2016. The effect of microwave roasting on the antioxidant properties of the Bangladesh groundnut cultivar. Acta Sci. Pol. Technol. Aliment. 15, 429-438. https://doi.org/10.17306/J.AFS.2016.4.41Test PMid:28071020; AOAC. 1995. Official Method of Analysis of AOAC, 16th ed, AOAC Intl., Washington, DC, USA.; Beltrán-Orozco MC, Martínez-Olguín A, Robles-Ramírez MC. 2020. Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci. Biotechnol. 29, 751-757. https://doi.org/10.1007/s10068-019-00726-1Test PMid:32523784 PMCid:PMC7256148; Benzie I, Strain J. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of ''antioxidant power'': the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292Test PMid:8660627; Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci.Technol. 28, 25-30. https://doi.org/10.1016/S0023-6438Test(95)80008-5; Chukwumah Y, Walker L, Vogler B, Verghese M. 2007. Changes in the phytochemical composition and profile of raw, boiled and roasted peanuts. J. Agric. Food Chem. 55, 9266-9273. https://doi.org/10.1021/jf071877lTest PMid:17924703; Craft BD, Kosinska A, Amarowicz R, Pegg RB. 2010. Antioxidant properties of extracts obtained from raw, dry-roasted and oil-roasted US peanuts of commercial importance. Plant Foods Hum. Nutr. 65, 311-318. https://doi.org/10.1007/s11130-010-0160-xTest PMid:20198439; Dueñas M, Hernández T, Estrella I, Fernández D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 117, 599-607. https://doi.org/10.1016/j.foodchem.2009.04.051Test; Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. 2008. Iron quelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr. J. Biotechnol. 7, 3188-3192.; Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Koslowska H, Vidal-Valverde C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem. 111, 622-630. https://doi.org/10.1016/j.foodchem.2008.04.028Test; Ferreira CD, Ziegler V, Bubolz VK, Da Silva J, Cardozo MMC, Elias MC, De Oliveira M. 2016. Effects of the roasting process over the content of secondary metabolites from peanut grains (Arachis hypogaea. L) with different colorations of testa. J. Food Qual., 39 685-694. https://doi.org/10.1111/jfq.12235Test; Geng J, Li J, Zhu F, Chen X, Du B, Tian H, Li, J. (2021). Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. e13777 https://doi.org/10.1111/jfbc.13777Test; Khang D, Dung T, Elzaawely A, Xuan T. 2016. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods 5, 27. https://doi.org/10.3390/foods5020027Test PMid:28231122 PMCid:PMC5302343; Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. Sci. World J. ID 162750, 1-16. https://doi.org/10.1155/2013/162750Test PMid:24470791 PMCid:PMC3891543; Kumar RR, Upadhyay R, Niwas MH. 2017. Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. J. Food Sci. Technol. 54, 2145-2155. https://doi.org/10.1007/s13197-017-2654-0Test PMid:28720972 PMCid:PMC5495743; Mahatma MK, Thawait LK, Bishi SK, Khatediya N, Rathnakumar AL, Lalwani HB, Misra JB. 2016. Nutritional composition and antioxidant activity of Spanish and Virginia groundnuts (Arachis hypogaea L.): a comparative study. J. Food Sci.Technol. 53, 2279-2286. https://doi.org/10.1007/s13197-016-2187-yTest PMid:27407194 PMCid:PMC4921078; Mora-Escobedo R, Hernández-Luna P, Joaquín-Torres I, Ortiz-Moreno A, Robles- Ramírez MC. 2015. Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyTA-J. Food 13, 300-304. https://doi.org/10.1080/19476337.2014.971345Test; Ndakidemi PA, Dakora FD. 2003. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 30, 729-745. https://doi.org/10.1071/FP03042Test PMid:32689057; Phan-Thien K.-Y, Wright GC, Tillman BL, Lee NA. 2014. Peanut antioxidants: Part 1. Genotypic variation and genotype-by-environment interaction in antioxidant capacity of raw kernels. LWT-Food Sci. Technol. 57, 306-311. https://doi.org/10.1016/j.lwt.2013.12.021Test; Prakash M, Basavaraj BV, Chidambara MKN. 2019. Biological functions of epicatechin: plant cell to human cell health. J. Funct. Foods 52, 14-24. https://doi.org/10.1016/j.jff.2018.10.021Test; Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290-4302. https://doi.org/10.1021/jf0502698Test PMid:15884874; Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849Test(98)00315-3 PMid:10381194; Robles-Ramírez MC, Almazán-Rodríguez RL, Mora-Escobedo R. 2014. Nutraceutical potential of peanut seeds, in Rosalva Mora Escobedo (Ed.) Functional food components in seeds, Nova Science Publishers Inc., New York, pp. 93-114, (ISBN 978-1-62808-489-4).; Rosales-Martínez P, Arellano-Cárdenas S, Dorantes-Álvarez L, García-Ochoa F, López-Cortez MS. 2014. Comparison between antioxidant activities of phenolic extracts from Mexican peanuts, peanuts skins, nuts and pistachios. J. Mex. Chem. Soc. 58, 185-193. https://doi.org/10.29356/jmcs.v58i2.176Test; Serafini F, Peluso I. 2016. Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 22 6701- 6715. https://doi.org/10.2174/1381612823666161123094235Test PMid:27881064 PMCid:PMC5427773; Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299, 152-178. https://doi.org/10.1016/S0076-6879Test(99)99017-1; Thummakomma K, Prashanthi M, Rajeswari K. 2018. Evaluation of Antioxidant Activity and Bioactive Compounds on Domestic Cooking Method. Int. J. Curr. Microbiol. Appl. Sci. 7, 4090-4097. https://doi.org/10.20546/ijcmas.2018.708.425Test; Vauzour D, Rodríguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. 2010. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2, 1106-1131. https://doi.org/10.3390/nu2111106Test PMid:22254000 PMCid:PMC3257622; Win M M, Abdul-Hamid A, Baharin B S, Anwar F, Saari N. 2011. Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. Eur Food Res Technol. 233 599-608. https://doi.org/10.1007/s00217-011-1544-3Test; Yang Q-Q, Cheng L, Long Z-Y, Li H-B, Gunaratne A, Gan R-Y, Gan R-Y, Corke H. 2019. Comparison of the phenolic profiles of soaked and germinated peanut cultivars via UPLC-QTOF-MS. Antioxidants 8, 1-12. https://doi.org/10.3390/antiox8020047Test PMid:30791635 PMCid:PMC6406428; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2082Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    تقرير

    المؤلفون: Pedelini, Ricardo, Monetti, Mariela

    مصطلحات موضوعية: Arachis hypogaea, Cultivo, Groundnuts, Cultivation, Cacahuete, Maní

    وصف الملف: application/pdf

    العلاقة: info:eu-repograntAgreement/INTA/PNIND-1108063/AR./Desarrollo y aplicación de nuevas herramientas tecnológicas para caracterización y generación de materiales genéticos; info:eu-repograntAgreement/INTA/PNIND-1108073/AR./Manejo integrado de los cultivos industriales.; info:eu-repograntAgreement/INTA/PNIND-1108062/AR./Introduccion de variabilidad y mejora genética continua de los cultivos industriales.; info:eu-repograntAgreement/INTA/REDGEN-1137021/AR./PLAN DE GESTIÓN RED DE RECURSOS FITOGENÉTICOS; info:eu-repograntAgreement/INTA/CORDO-1262205/AR./Proyecto regional del territorio agrícola ganadero central de la provincia de Córdoba.; Boletín de divulgación técnica / EEA Manfredi; no. 2 (Séptima edición) (marzo 2022); http://hdl.handle.net/20.500.12123/12519Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Grasas y Aceites; Vol. 72 No. 4 (2021); e427 ; Grasas y Aceites; Vol. 72 Núm. 4 (2021); e427 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2021.v72.i4

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1913/2841Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1913/2842Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1913/2843Test; Benedito J, Garcia-Perez JU, Dobarganes MC, Mulet A. 2007. Rapid evaluation of frying oil degradation using ultrasonic technology. Food Res. Int. 40, 406-414. https://doi.org/10.1016/j.foodres.2006.10.017Test; Benedito J, Mulet A, Velasco J, Dobarganes MC. 2002. Ultrasonic Assessment of oil quality during frying. J. Agri. Food Chem. 50, 4531-4536. https://doi.org/10.1021/jf020230sTest PMid:12137472; Brkić Bubola K, Klisović D, Lukić I, Novoselić A. 2020. Vegetable species significantly affects the phenolic composition and oxidative stability of extra virgin olive oil used for roasting. LWT 129, 109628. https://doi.org/10.1016/j.lwt.2020.109628Test; David William G. 2008. The Chemistry of essential oil, 2nd ed, Micelle press, UK, 248-316.; Fasina OO, Hallman H, Craig Schmidt M, Clements C. 2006. Predicting temperature - dependence viscosity of vegetable oils from fatty acid composition. J. Am. Oil Chem. Soc. 83 (10), 899-903. https://doi.org/10.1007/s11746-006-5044-8Test; Hemmat Esfe M, Sadati Tilebon SM. 2020. Statistical and artificial based optimization on thermo-physical properties of an oil based hybrid nanofluid using NSGA-II and RSM. Physica A. 537, 122126. https://doi.org/10.1016/j.physa.2019.122126Test; Heying M, Corti DS. 2004. Scaled Particle Theory Revisited: New conditions and improved predictions of the properties of the hard sphere fluid. J. Phy. Chem. B. 108, 19756 -19768. https://doi.org/10.1021/jp040398bTest; Izbaim D, Faiz BA, Mouden A, Taifi N, Aboudaoud I. 2010. Evaluation of the performance of the frying oils using an ultrasonic technique. Grasas Aceites 61 (2), 151-156. https://doi.org/10.3989/gya.087709Test; Jacobson B, Heedman PA. 1953. Intermolecular Free Lengths in the Liquid State. Acta Chem. Scand. 7, 705-712. https://doi.org/10.3891/acta.chem.scand.07-0705Test; Kiełczynski P, Szalewski M, Balcerzak A, Wieja K, Malanowski A, Kościesza R, Tarakowski R, Rostocki AJ, Siegoczynski RM. 2014. Determination of physicochemical properties of diacylglycerol oil at high pressure by means of ultrasonic methods. Ultrasonics 54 (8), 2134 - 40. https://doi.org/10.1016/j.ultras.2014.06.013Test PMid:25017363; Lebowitz JL. 1964. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres. Phy. Rev. 113, A895 - A899. https://doi.org/10.1103/PhysRev.133.A895Test; Lennard-Jones JE. 1924. On the Determination of Molecular Fields. -II. From the Equation of State of a Gas. Proc. Royal Society London A. 106 (738), 463-477. https://doi.org/10.1098/rspa.1924.0082Test; Mandell MJ, Reiss H. 1975. Scaled Particle Theory: Solution to the Complete Set of Scaled Particle Theory Conditions: Applications to Surface Structure and Dilute Mixtures. J. Stat. Phys. 13 (2), 113 - 128. https://doi.org/10.1007/BF01221372Test; Mansoori GA, Carnahan NF, Starling KE, Leland TW. 1971. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres. J. Chem. Phy. 54 (4), 1523-1525. https://doi.org/10.1063/1.1675048Test; McClements JD, Gunasekaran S. 1997. Ultrasonic Characterization of Foods and Drinks: Principles, Methods, and Applications. Crit. Rev. Food Sc. Nutrit. 37 (1), 1-46. https://doi.org/10.1080/10408399709527766Test PMid:9067087; Pandey JD, Kumar V, Saxena MC. 1979. Evaluation of Jacobson's Constant and Intermolecular Free-Length as a Function of Pressure and Temperature for Cryogenic Liquids. Ultrasonics 17 (4), 153-158. https://doi.org/10.1016/0041-624XTest(79)90032-5; Percus JK, Yevick GJ. 1958. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110 (1), 1-13. https://doi.org/10.1103/PhysRev.110.1Test; Ravi S, Amoros J, Arockia Jayalatha K. 2008. Effective method of characterizing specific liquid Fluorocarbon interactions using ultrasound. J. Phys. Chem. B. 112, 6420-6425. https://doi.org/10.1021/jp800812cTest PMid:18422360; Reidoon Shahidi. 2005. Bailey's Industrial oil and Fat Products, 6th ed, Wiley- Inter science Publication, vol 2. chapter 12, New york. https://doi.org/10.1002/047167849XTest; Reiss H, Frisch HL, Lebowitz JL. 1959. Statistical Mechanics of Rigid Spheres. J. Chem. Phys. 31 (2), 369-380. https://doi.org/10.1063/1.1730361Test; Rodenbush CM, Hsieh FH, Viswanatha DS. 1999. Density and Viscosity of Vegetable Oils. J. Am. Oil Chem. Soc. 76 (12), 1415-1419. https://doi.org/10.1007/s11746-999-0177-1Test; Rubalya Valantina S, Phebee Angeline DR, Uma S, Jeya Prakash BG. 2017. Estimation of Dielectric Constant of Oil Solution in the Quality Analysis of Heated Vegetable Oil. J. Mol. Liq. 238, 136-144. https://doi.org/10.1016/j.molliq.2017.04.107Test; Rubalya Valantina S, Susan D, Bavasri S, Priyadarshini V, Ramya Saraswathi R, Suriya M. 2016. Experimental investigation of electro-rheological properties of modeled vegetable oils. J. Food Sci. Tech. 53 (2), 1328-1337. https://doi.org/10.1007/s13197-015-2050-6Test PMid:27162414 PMCid:PMC4837714; Rubalya Valantina S, Chandiramouli R, Neelamegam P. 2013. Detection of adulteration in olive oil using rheological and ultrasonic parameters. Inter. Food Res. J. 20 (6), 3197-3202.; Sakai T, Hirano F. 1985. Effect of molecular weight distribution of mineral oils on their boiling heat transfer behaviour. Wear 104, 259-281. https://doi.org/10.1016/0043-1648Test(85)90052-3; Sanaeifar A, Jafari A. 2019. Determination of the oxidative stability of olive oil using an integrated system based on dielectric spectroscopy and computer vision, Inform. Process. Agric. 6, 20-25. https://doi.org/10.1016/j.inpa.2018.08.008Test; Sankarappa T, Prashant Kumar M, Ahmad A. 2005. Ultrasound Velocity and Density Studies in Some Refined and Unrefined Edible Oils. Phy. Chem. Liq. 43 (6), 507-514. https://doi.org/10.1080/00319100500192889Test; Schössler K, Jäger H, Knorr D. 2012. Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Sci. Emer. Tech. 16, 113-120. https://doi.org/10.1016/j.ifset.2012.05.010Test; Stanciu I. 2019. A new mathematical model for the viscosity of vegetable oils based on freely sliding molecules. Grasas Aceites 70 (3), e318. https://doi.org/10.3989/gya.0824182Test; Thiele E. 1963. Equation of state for hard spheres. J. Chem. Phy. 39 (2), 474. https://doi.org/10.1063/1.1734272Test; Valdes AF, Garcia AB. 2006. A study of the evolution of the physicochemical and structural characteristics of olive and sunflower oils after heating at frying temperaturas. Food Chem. 98, 214-219. https://doi.org/10.1016/j.foodchem.2005.05.061Test; Wen P, Tie W, Wang L, Lee MH, Li XD. 2009. Ultrasonic synthesis of 4,4'-dihydroxychalcone and its photochemical properties. Mat. Chem. Phy. 117, 1-3. https://doi.org/10.1016/j.matchemphys.2009.02.055Test; Wertheim MS. 1963. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Let. 10 (8), 321-323. https://doi.org/10.1103/PhysRevLett.10.321Test; Yarnell JL, Katz MJ, Wenzel RG, Koenig SH. 1973. Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K. Phys. Rev. A. 7 (6), 2130-2144. https://doi.org/10.1103/PhysRevA.7.2130Test; Yu YX, Wu J. 2002. Structures of Hard-Sphere Fluids from a Modified Fundamental-Measure Theory. J. Chem. Phys. 117 (22), 10156-10164. https://doi.org/10.1063/1.1520530Test; Zhang L, Zhou C, Wang B, Yagoub AEA, Ma H, Zhang X, Wu M. 2016. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultra. Sono. 37, 106 - 113. https://doi.org/10.1016/j.ultsonch.2016.12.034Test PMid:28427612; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1913Test

  8. 8
    دورية أكاديمية

    المصدر: Grasas y Aceites; Vol. 71 No. 3 (2020); e367 ; Grasas y Aceites; Vol. 71 Núm. 3 (2020); e367 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2020.v71.i3

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1834/2621Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1834/2622Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1834/2623Test; Al-Farga A, Zhang H, Azhari S. 2014. In Vitro Antioxidant Activity and Total Phenolic and Flavonoid Contents of Alhydwan (Boerhavia elegana Choisy) Seeds. J. Food Nutr. Res. 2, 215-220. https://doi.org/10.12691/jfnr-2-5-2Test; Al-Farga A, Zhang H, Azhari S, Chamba MVM, Nabil QA. 2015. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy) seeds. Grasas Aceites 66 (3) e090. https://doi.org/10.3989/gya.0944142Test; Alyas SA, Abdulah A, Idris NA. 2006. Oil Palm Res. (Special Issue), pp. 99-102; AOCS. 1997. Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed. AOCS Press, Champaign, USA.; Aparicio R, Roda L, Albi MA, Gutierrez F. 1999. Effect of vari­ous compounds on virgin olive oil stability measured by Rancimat. J. Agric. Food Chem. 47, 4150-4155. https://doi.org/10.1021/jf9812230Test PMid:10552782; Azhari S, Wenshui X. 2015. Oxidative stability, chemical com­position and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China. J. Food Sci. Technol. 12, 8172-8179. https://doi.org/10.1007/s13197-015-1889-xTest PMid:26604391 PMCid:PMC4648891; Eromosele IC, Eromosele CO, Innazo P, Njerim P. 1997. Studies on some seeds and seed oils. Bioresource Technol. 64, (3) 245-247. https://doi.org/10.1016/S0960-8524Test(97)00163-6; Fatnassi S, Nehdi I, Zarrouk H. 2009. Chemical compo­sition and profile characteristics of Osage orange Maclurapomifera (Rafin.) Schneider seed and seed oil. Ind. Crops Prod. 29, 1-8. https://doi.org/10.1016/j.indcrop.2008.04.013Test; He ZY, Xia WS. 2007. Nutritional composition of the kernels from Canarium album L. Food Chem. 102, 808-811. https://doi.org/10.1016/j.foodchem.2006.06.017Test; Jamieson GS, Baughman WF, Brauns DH. 1921. The chemi­cal composition of peanut oil. J. Am. Oil Chem. Soc. 43, 1372-1381. https://doi.org/10.1021/ja01439a020Test; Kyriakidis NB, Katsiloulis T. 2000. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: comparison with the relevant American Oil Chemists Society Method. J. Am. Oil Chem. Soc. 77, 1235-1238. https://doi.org/10.1007/s11746-000-0193-3Test; Mariod AA, Matthäus B. 2007. Fatty acids, tocopherols, ste­rols, phenolic profiles and oxidative stability of Cucumis melo var. agrestis oil. J. Food Lipids 15, 56-67. https://doi.org/10.1111/j.1745-4522.2007.00102.xTest; Oomah BD, Ladet S, Godfrey DV, Liang J, Girard B. 2000. Characteristics of raspberry (Rubusidaeus L.) seed oil. Food Chem. 69, 187-193. https://doi.org/10.1016/S0308-8146Test(99)00260-5; Özcan M, Seven S. 2003. Physical and chemical analyses and fatty acid composition of peanut, peanut oil and peanut butter from ÇOM and NC-7 cultivars. Grasas Aceites 54 (1), 12-18. https://doi.org/10.3989/gya.2003.v54.i1.270Test; Pandey MK. 2012. Advances in Arachis genomics for peanut improvement. Biotechnol. Adv. 30, 639-651. https://doi.org/10.1016/j.biotechadv.2011.11.001Test PMid:22094114; Pandurangan MK, Murugesan S, Gajivaradhan P. 2014. Physicochemical properties of groundnut oil and their blends with other vegetable oils. J. Chem. Pharm. Res. 6, 60-66.; Reyes-Hernandez J, Dibildox-Alvarado E, Charo-Alonso M, Toro-Vazquez J. 2007. J. Am. Oil Chem. Soc. 84, 1081-1093. https://doi.org/10.1007/s11746-007-1141-6Test; SAS. 2002. Statistical analysis system. User manual SAS/STAT 9 version. SAS Institute Inc., NC, USA.; Silva Araujo F da, Araujo IC, Costa ICG, Rodarte de Moura CV, Chaves MH, Araujo ECE. 2014. Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states. Renewable Energy 71, 495-501. https://doi.org/10.1016/j.renene.2014.06.001Test; Snedecor GW, Cochran WG. 1980. Statistical Methods. 7Ed. Iowa State University Press, Ames, Iowa.; Su MH, Shih MC, Lin KH. 2014. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 156, 369-373. https://doi.org/10.1016/j.foodchem.2014.02.016Test PMid:24629982; Wahida Karmally RD. 2005. Balancing unsaturated fatty acids: what's the evidence for cholesterol lowering. J. Am. Diet Assoc. 105, 1068-1070. https://doi.org/10.1016/j.jada.2005.05.189Test PMid:15983522; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1834Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية