دورية أكاديمية

Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms

التفاصيل البيبلوغرافية
العنوان: Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms
المؤلفون: Chen Li, Rong Zhao, Hui Yang, Li Ren
المصدر: International Journal of Molecular Sciences; Volume 24; Issue 8; Pages: 6999
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: bone marrow, hypoxic microenvironment, cell culturing, bone disease bone-on-a-chip platform
جغرافية الموضوع: agris
الوصف: The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
العلاقة: Molecular Biology; https://dx.doi.org/10.3390/ijms24086999Test
DOI: 10.3390/ijms24086999
الإتاحة: https://doi.org/10.3390/ijms24086999Test
حقوق: https://creativecommons.org/licenses/by/4.0Test/
رقم الانضمام: edsbas.B6FE3ABD
قاعدة البيانات: BASE