يعرض 1 - 10 نتائج من 561 نتيجة بحث عن '"Wool fiber"', وقت الاستعلام: 1.29s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    وصف الملف: 24 páginas; application/pdf

    العلاقة: Case Studies in Construction Materials; [1] G. Minke, Earth construction handbook: the building material earth in modern architecture, WIT Press,, Southampton, 2000.; [2] A.E.O. ¨ Ozbay, ¨ O. Erkek, S. Çeribas¸ı, The effect of polypropylene, steel, and macro synthetic fibers on mechanical behavior of cementitious composites, Rev. De. La Constr. 20 (2021) 591–601, https://doi.org/10.7764/RDLC.20.3.591Test.; [3] J.V. Jenifer, D. Brindha, Development of hybrid steel-basalt fiber reinforced concrete - in aspects of flexure, fracture and microstructure, Rev. De. La Constr. 20 (2021) 62–90, https://doi.org/10.7764/RDLC.20.1.62Test.; [4] S. Zhao, R. Liu, J. Liu, L. Yang, Comparative study on the effect of steel and plastic synthetic fibers on the dynamic compression properties and microstructure of ultra-high-performance concrete (UHPC), Compos Struct. (2023), 117570, https://doi.org/10.1016/j.compstruct.2023.117570Test.; [5] P. Melia, G. Ruggieri, S. Sabbadini, G. Dotelli, Environmental impacts of natural and conventional building materials: a case study on earth plasters, J. Clean. Prod. 80 (2014) 179–186, https://doi.org/10.1016/j.jclepro.2014.05.073Test.; [6] J. Concha-Riedel, G. Araya-Letelier, F.C. Antico, U. Reidel, A. Glade, Influence of Jute Fibers to Improve Flexural Toughness, Impact Resistance and Drying Shrinkage Cracking in Adobe Mixes, in: B.V.V. Reddy, M. Mani, P. Walker (Eds.), Earthen Dwellings and Structures, Springer, Singapore, 2019, https://doiTest. org/10.1007/978-981-13-5883-8.; [7] G. Araya-Letelier, F.C. Antico, C. Burbano-Garcia, J. Concha-Riedel, J. Norambuena-Contreras, J. Concha, E.I. Saavedra Flores, Experimental evaluation of adobe mixtures reinforced with jute fibers, Constr. Build. Mater. 276 (2021), 122127, https://doi.org/10.1016/j.conbuildmat.2020.122127Test.; [8] G. Araya-Letelier, H. Gonzalez-Calderon, S. Kunze, C. Burbano-Garcia, U. Reidel, C. Sandoval, F. Bas, Waste-based natural fiber reinforcement of adobe mixtures: physical, mechanical, damage and durability performance assessment, J. Clean. Prod. 273 (2020), https://doi.org/10.1016/j.jclepro.2020.122806Test.; [9] J. Concha-Riedel, F.C. Antico, G. Araya-Letelier, Mechanical and damage similarities of adobe blocks reinforced with natural and industrial fibres, Rev. Mater. 25 (2020), https://doi.org/10.1590/S1517-707620200004.1206Test.; [10] F.A. Salem Allafi, M.S. Hossain, M.O. Ab Kadir, M.A. Hakim Shaah, J. Lalung, M.I. Ahmad, Waterless processing of sheep wool fiber in textile industry with supercritical CO2: Potential and challenges, J. Clean. Prod. 285 (2021), 124819, https://doi.org/10.1016/J.JCLEPRO.2020.124819Test.; [11] 02 Wool Notes, n.d.; [12] materials-15–01638, (n.d.).; [13] I.A. Wani, R. ul Rehman Kumar, Experimental investigation on using sheep wool as fiber reinforcement in concrete giving increment in overall strength, Mater. Today Proc. 45 (2021) 4405–4409, https://doi.org/10.1016/J.MATPR.2020.11.938Test.; [14] MEAT MARKET REVIEW Emerging trends and outlook 2022, n.d.; [15] A. Matiz-Villamil, K.J. M´endez-Carranza, A.F. Pascagaza-Pulido, T. Rendon-Rend ´ on, ´ J. Noriega-Noriega, A. Pulido-Villamarín, Trends in the management of organic swine farm waste by composting: A systematic review, Heliyon 9 (2023), https://doi.org/10.1016/j.heliyon.2023.e18208Test.; [16] K.S. Lin, N.V. Mdlovu, C.D. Aberdeen, S.S. Dwitya, Y.T. Kuo, Hydrogen generation by gasification of pig hair biowaste over NiO/Al2O3 nanocatalyst, Mater. Today Sustain. 24 (2023), https://doi.org/10.1016/j.mtsust.2023.100495Test.; [17] M. Manjunatha, B. Kvgd, J. Vengala, L.R. Manjunatha, K. Shankara, C. Kumar Patnaikuni, Experimental study on the use of human hair as fiber to enhance the performance of concrete: A novel use to reduce the disposal challenges, in: Mater Today Proc, Elsevier Ltd, 2021, pp. 3966–3972, https://doi.org/10.1016/jTest. matpr.2021.04.039.; [18] United Nations, Global Issues: Population, 〈Https://Www.Un.Org/En/Global-Issues/PopulationTest〉. (2023).; [19] N. Bheel, P. Awoyera, O. Aluko, S. Mahro, A. Viloria, C.A.S. Sierra, Sustainable composite development: Novel use of human hair as fiber in concrete, Case Stud. Constr. Mater. 13 (2020), https://doi.org/10.1016/j.cscm.2020.e00412Test.; [20] Future Market Insights, Pet grooming market outlook, (2023).; [21] H. Awais, Y. Nawab, A. Amjad, A. Anjang, H. Md Akil, M.S. Zainol Abidin, Environmental benign natural fibre reinforced thermoplastic composites: A review, Compos. Part C: Open Access 4 (2021), 100082, https://doi.org/10.1016/J.JCOMC.2020.100082Test.; [22] H. Gonzalez-Calderon, G. Araya-Letelier, S. Kunze, C. Burbano-Garcia, U. Reidel, C. Sandoval, R. Astroza, F. Bas, Biopolymer-waste fiber reinforcement for earthen materials: capillarity, mechanical, impact and abrasion performance, Under Review in Polymers. (2020).; [23] F.C. Antico, P. Rojas, F. Briones, G. Araya-Letelier, Animal fibers as water reservoirs for internal curing of mortars and their limits caused by fiber clustering, Constr. Build. Mater. 267 (2021), https://doi.org/10.1016/j.conbuildmat.2020.120918Test.; [24] G. Araya-Letelier, F.C. Antico, P.F. Parra, M. Carrasco, Fiber-Reinforced Mortar Incorporating Pig Hair, Adv. Eng. Forum 21 (2017), https://doi.org/10.4028Test/ www.scientific.net/aef.21.219.; [25] G. Araya-Letelier, J. Concha-Riedel, F.C. Antico, C. Vald´es, G. C´ aceres, Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior, Constr. Build. Mater. 174 (2018) 645–655, https://doi.org/10.1016/J.CONBUILDMAT.2018.04.151Test.; [26] T. H. Silva, J. Mesquita-Guimar˜ aes, B. Henriques, F.S. Silva, M.C. Fredel, The potential use of oyster shell waste in new value-added by-product, Resources 8 (2019), https://doi.org/10.3390/resources8010013Test.; [27] M.S. Khan, A. Fuzail Hashmi, M. Shariq, S.M. Ibrahim, Effects of incorporating fibres on mechanical properties of fibre-reinforced concrete: A review, Mater. Today Proc. (2023), https://doi.org/10.1016/j.matpr.2023.05.106Test.; [28] N. Banthia, M. Azzabi, M. Pigeon, Restrained shrinkage cracking in fibre-reinforced cementitious composites, Mater. Struct. 26 (1993) 405–413.; [29] B. Ali, A. Hawreen, N. Ben Kahla, M. Talha Amir, M. Azab, A. Raza, A critical review on the utilization of coir (coconut fiber) in cementitious materials, Constr. Build. Mater. 351 (2022), https://doi.org/10.1016/j.conbuildmat.2022.128957Test.; [30] C. Burbano-Garcia, G. Araya-Letelier, R. Astroza, Y.F. Silva, Adobe mixtures reinforced with fibrillated polypropylene fibers: Physical/mechanical/fracture/ durability performance and its limits due to fiber clustering, Constr. Build. Mater. 343 (2022), https://doi.org/10.1016/j.conbuildmat.2022.128102Test.; [31] J. Bai, Fiber-reinforced polymer types and properties, in: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Elsevier, 2022, pp. 93–99, https://doi.org/10.1016/B978-0-12-820346-0.00014-9Test.; [32] S.F. Brena, ˜ R.M. Bramblett, M.A. Benouaich, S.L. Wood, M.E. Kreger, Preliminary Review Copy Use of Carbon Fiber Reinforced Polymer Composites to Increase 13. Type of Report and Period Covered Unclassified Unclassified, 2001.; [33] S. Dasari, S. Lohani, R.K. Prusty, An assessment of mechanical behavior of glass fiber/epoxy composites with secondary short carbon fiber reinforcements, J. Appl. Polym. Sci. 139 (2022), https://doi.org/10.1002/app.51841Test.; [34] H. Yao, G. Zhou, W. Wang, M. Peng, Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites, Compos Struct. 195 (2018) 288–296, https://doi.org/10.1016/j.compstruct.2018.04.082Test.; [35] B.R. Babu, R. Thenmozhi, Behaviour of sintered fly ash aggregates and steel fibers on rein-forced concrete slabs subjected to punching, Rev. De. La Constr. 21 (2022) 228–247, https://doi.org/10.7764/RDLC.21.2.228Test.; [36] A. Seyhan, B.N. Gunaydin, Y. Polat, A. Kilic, A. Demir, H. Avci, Improvement of polyethylene fiber wettability and mechanical properties through an environmentally sustainable spinning process, Int J. Adhes. Adhes. 119 (2022), https://doi.org/10.1016/j.ijadhadh.2022.103250Test.; [37] G. Martínez-Barrera, O. Gencel, M. Martínez-Lopez, ´ Polyester polymer concrete modified by polyester fibers and gamma rays, Constr. Build. Mater. 356 (2022), https://doi.org/10.1016/j.conbuildmat.2022.129278Test.; [38] A. Kumar Maurya, S. Kumar, M. Singh, G. Manik, Polyamide fiber reinforced polymeric composites: A short review, Mater. Today Proc. 80 (2023) 98–103, https://doi.org/10.1016/j.matpr.2022.10.171Test.; [39] P. Bazan, P. Nosal, A. Wierzbicka-Miernik, S. Kuciel, A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: Mechanical and thermal investigation, Compos B Eng. 223 (2021), https://doi.org/10.1016/j.compositesb.2021.109125Test.; [40] I. Kilic, S.G. Gok, Strength and durability of roller compacted concrete with different types and addition rates of polypropylene fibers, Rev. De. La Constr. 20 (2021) 205–214, https://doi.org/10.7764/RDLC.20.2.205Test.; [41] Y. Xu, C. Wan, X. Liang, H. Yang, The reinforcement effects of PVA, PE, and steel fibers on AAS material, Case Stud. Constr. Mater. 17 (2022), https://doi.orgTest/ 10.1016/j.cscm.2022.e01386.; [42] M. Kaya, F. Koksal, ¨ Influences of high temperature on mechanical properties of fly ash based geopolymer mortars reinforced with PVA fiber, Rev. De. La Constr. 20 (2021) 393–406, https://doi.org/10.7764/RDLC.20.2.393Test.; [43] M. Jamshidi, A.A. Ramezanianpour, Laboratory and industrial investigations on hybrid of acrylic and glass short fibers as an alternative for substituting asbestos in Hatschek process, Constr. Build. Mater. 25 (2011) 298–302, https://doi.org/10.1016/j.conbuildmat.2010.06.026Test.; [44] A. Srikavi, M. Mekala, Characterization of Sunn hemp fibers as a substitute for synthetic fibers in composites and various applications, Ind. Crops Prod. 192 (2023), https://doi.org/10.1016/j.indcrop.2022.116135Test.; [45] A. Saribiyik, G. Gurbuz, Effects of glass fiber reinforced polymer pipe waste powder usage on concrete properties, Rev. De. La Constr. 20 (2021) 463–478, https://doi.org/10.7764/RDLC.20.3.463Test.; [46] G. Araya-Letelier, P. Maturana, M. Carrasco, F.C. Antico, M.S. Gomez, ´ Mechanical-damage behavior of mortars reinforced with recycled polypropylene fibers, Sustainability (Switzerland) 11 (2019), https://doi.org/10.3390/su11082200Test.; [47] Future Market Insights, 〈https://www.futuremarketinsights.com/reports/concrete-fibers-marketTest〉, (2022).; [48] S. Olalekan Odeyemi, Z. Tolu Giwa, Thermal resistance of raffia palm reinforced concrete, Rev. De. La Constr. 20 (2021) 5–14, https://doi.org/10.7764Test/ RDLC.20.1.5.; [49] M.H. Nensok, M.A.O. Mydin, H. Awang, Optimization of mechanical properties of cellular lightweight concrete with alkali treated banana fiber, Rev. De. La Constr. 20 (2021) 491–511, https://doi.org/10.7764/RDLC.20.3.491Test.; [50] S.S. Nunayon, K.W. Mui, L.T. Wong, Mapping the knowledge pattern of ultraviolet germicidal irradiation for cleaner indoor air through the lens of bibliometrics, J. Clean. Prod. 391 (2023), https://doi.org/10.1016/j.jclepro.2023.135974Test.; [51] J.K. Singh, A.K. Rout, K. Kumari, A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites, Carbohydr. Polym. 262 (2021), 117929, https://doi.org/10.1016/J.CARBPOL.2021.117929Test.; [52] R.M. kozłowski, M. Mackiewicz-Talarczyk, Introduction to natural textile fibres, Handb. Nat. Fibres (2012) 1–8, https://doi.org/10.1533/9780857095503.1Test.; [53] M. Sood, G. Dwivedi, Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review, Egypt. J. Pet. 27 (2018) 775–783, https://doi.org/10.1016/J.EJPE.2017.11.005Test.; [54] G. Rajeshkumar, S. Arvindh Seshadri, G.L. Devnani, M.R. Sanjay, S. Siengchin, J. Prakash Maran, N.A. Al-Dhabi, P. Karuppiah, V.A. Mariadhas, N. Sivarajasekar, A. Ronaldo Anuf, Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review, J. Clean. Prod. 310 (2021), 127483, https://doi.org/10.1016/J.JCLEPRO.2021.127483Test.; [55] M.F. Ali, M.S. Hossain, S. Ahmed, A.M. Sarwaruddin Chowdhury, Fabrication and characterization of eco-friendly composite materials from natural animal fibers, Heliyon 7 (2021), https://doi.org/10.1016/J.HELIYON.2021.E06954Test.; [56] S. Parashar, V.K. Chawla, A systematic review on sustainable green fibre reinforced composite and their analytical models, Mater. Today Proc. 46 (2021) 6541–6546, https://doi.org/10.1016/J.MATPR.2021.03.739Test.; [57] A. Gholampour, T. Ozbakkaloglu, A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, J. Mater. Sci. 55 (2019) 829–892, https://doi.org/10.1007/S10853-019-03990-YTest.; [58] G.V. Guinea, M. Elices, J. P´erez-Rigueiro, G.R. Plaza, Structure and properties of spider and silkworm silk for tissue scaffolds, in: Advances in Silk Science and Technology, 2015. https://doi.org/10.1016/B978Test–1-78242–311-9.00010–0.; [59] S.S. Kiran, B.M. Rajaprakash, Physical and Mechanical Characteristics of Feather Fiber based Filled Circular Tube, (n.d.). 〈www.ijert.org〉 (accessed January 26, 2023).; [60] N. Reddy, Y. Yang, Animal Hair Fibers, 209–209, Innov. Biofibers Renew. Resour. (2015), https://doi.org/10.1007/978-3-662-45136-6_46Test.; [61] C. Az´emard, A. Zazzo, A. Marie, S. Lepetz, C. Debaine-Francfort, A. Idriss, S. Zirah, Animal fibre use in the Keriya valley (Xinjiang, China) during the Bronze and Iron Ages: a proteomic approach, J. Archaeol. Sci. 110 (2019), 104996, https://doi.org/10.1016/J.JAS.2019.104996Test.; [62] B.A. McGregor, Physical, chemical, and tensile properties of cashmere, mohair, alpaca, and other rare animal fibers, Handb. Prop. Text. Tech. Fibres (2018) 105–136, https://doi.org/10.1016/B978-0-08-101272-7.00004-3Test.; [63] D.S. Jacks, From boom to bust: a typology of real commodity prices in the long run, Cliometrica (Berl. ) 13 (2019), https://doi.org/10.1007/s11698-018-0173Test- 5.; [64] Food and Agriculture Organization of the United Nations, (2023). 〈https://www.fao.org/home/enTest/〉 (accessed March 5, 2023).; [65] A.M. Varghese, V. Mittal, Surface modification of natural fibers, Biodegrad. Biocompatible Polym. Compos.: Process., Prop. Appl. (2018) 115–155, https://doiTest. org/10.1016/B978-0-08-100970-3.00005-5.; [66] J.M. Cardamone, A. Nunez, ˜ R.A. Garcia, M. Aldema-Ramos, Characterizing wool keratin, Res. Lett. Mater. Sci. 2009 (2009), https://doi.org/10.1155/2009Test/ 147175.; [67] J.G. Rouse, M.E. Van Dyke, A Review of Keratin-Based Biomaterials for Biomedical Applications, 2010, Vol. 3, Pages 999-1014, Materials 3 (2010) 999–1014, https://doi.org/10.3390/MA3020999Test.; [68] C.H. Bae, I.C. Um, The effect of ultrasonication on the micro-splitting of wool fiber, 2012 13:7, Fibers Polym. 13 (2012) 943–947, https://doi.org/10.1007Test/ S12221-012-0943-9.; [69] P. Bazan, P. Nosal, A. Wierzbicka-Miernik, S. Kuciel, A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: mechanical and thermal investigation, Compos B Eng. 223 (2021), https://doi.org/10.1016/j.compositesb.2021.109125Test.; [70] T.M. Tiza, S.K. Singh, L. Kumar, M.P. Shettar, S.P. Singh, Assessing the potentials of Bamboo and sheep wool fiber as sustainable construction materials: a review, Mater. Today Proc. 47 (2021) 4484–4489, https://doi.org/10.1016/J.MATPR.2021.05.322Test.; [71] M.C.M. Parlato, S.M.C. Porto, F. Valenti, Assessment of sheep wool waste as new resource for green building elements, Build. Environ. 225 (2022), 109596, https://doi.org/10.1016/J.BUILDENV.2022.109596Test.; [72] S. Huda, Y. Yang, Feather fiber reinforced light-weight composites with good acoustic properties, J. Polym. Environ. 17 (2009), https://doi.org/10.1007Test/ s10924-009-0130-2.; [73] H. yan Cheung, M. po Ho, K. tak Lau, F. Cardona, D. Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Compos B Eng. 40 (2009), https://doi.org/10.1016/j.compositesb.2009.04.014Test.; [74] J.R. Barone, W.F. Schmidt, Polyethylene reinforced with keratin fibers obtained from chicken feathers, Compos Sci. Technol. 65 (2005), https://doi.orgTest/ 10.1016/j.compscitech.2004.06.011.; [75] C.K. Hong, R.F. Wool, Development of a bio-based composite material from soybean oil and keratin fibers, J. Appl. Polym. Sci. 95 (2005), https://doi.orgTest/ 10.1002/app.21044.; [76] J.R. BARONE, W.F. SCHMIDT, COMPOSITIONS AND FILMS COMPRISED OF AVIAN FEATHER KERATIN, (2005).; [77] N. Reddy, Y. Yang, Structure and properties of chicken feather barbs as natural protein fibers, J. Polym. Environ. 15 (2007), https://doi.org/10.1007/s10924Test- 007-0054-7.; [78] A.L. Martínez-Hernandez, ´ C. Velasco-Santos, M. De Icaza, V.M. Castano, ˜ Microstructural characterisation of keratin fibres from chicken feathers, Int J. Environ. Pollut. 23 (2005), https://doi.org/10.1504/ijep.2005.006858Test.; [79] M. Biron, Application Examples, Ind. Appl. Renew. Plast. (2017) 463–518, https://doi.org/10.1016/B978-0-323-48065-9.00008-XTest.; [80] N. Johri, R. Mishra, H. Thakur, Design parameter optimization of Jute-chicken fiber reinforced polymeric hybrid composites, Mater. Today Proc. (2018), https://doi.org/10.1016/j.matpr.2018.06.351Test.; [81] R.A. Kurien, A. Biju, K.A. Raj, A. Chacko, B. Joseph, C.P. Koshy, Chicken feather fiber reinforced composites for sustainable applications, Mater. Today Proc. 58 (2022), https://doi.org/10.1016/j.matpr.2021.10.400Test.; [82] S. SM, S. Jayakrishna, Effect of fiber composition on physical and mechanical properties of turkey, duck, chicken feather and goat hair fiber reinforced polymer composites, EDXJL Int. J. Innov. Adv. Res. 01 (2023) 22–27, https://doi.org/10.59599/edxjl-ijiar.2022.1104Test.; [83] U. Soykan, Development of turkey feather fiber-filled thermoplastic polyurethane composites: Thermal, mechanical, water-uptake, and morphological characterizations, J. Compos Mater. 56 (2022) 339–355, https://doi.org/10.1177/00219983211056137Test.; [84] S. Mishra, C. Kunchi, K. Venkateshan, R.C. Gundakaram, R.B. Adusumalli, Nanoindentaion and tensile testing of human hair fibres, J. Mater. Sci. 51 (2016), https://doi.org/10.1007/s10853-016-0246-4Test.; [85] J.E. Plowman, D.P. Harland, S. Deb-Choudhury, eds., The Hair Fibre: Proteins, Structure and Development, 1054 (2018). https://doi.org/10.1007/978Test–981- 10–8195-8.; [86] A. Gupta, Human Hair “Waste” and Its Utilization: Gaps and Possibilities, J. Waste Manag. 2014 (2014), https://doi.org/10.1155/2014/498018Test.; [87] Achal Agrawal, Abhishek Shrivastava, Siddharth Pastariya, Anant Bhardwaj, (PDF) A Concept of Improving Strength of Concrete using Human Hair as Fiber Reinforcement, Int J. Innov. Res Sci. Eng. Technol. (2007). 〈https://www.researchgate.net/publication/321245366_A_Concept_of_Improving_Strength_of_Test Concrete_using_Human_Hair_as_Fiber_Reinforcement〉 (accessed January 26, 2023).; [88] D.A.S. Kanagalakhmi, B. Indhuja, U. Rithisri, R.P. Kowsalya Devi, STUDY ON HUMAN HAIR IN CONCRETE AS A FIBER REINFORCEMENT, JETIR- Journal of Emerging Technology and Innovative Research. 8 (2021). 〈www.jetir.org〉 (accessed January 26, 2023).; [89] B. Bhushan, Introduction—Human Hair, Skin, and Hair Care Products, in: 2010. https://doi.org/10.1007/978Test–3-642–15901-5_1.; [90] M.V.R. Velasco, T.C. De, S.´ a Dias, A.Z. De Freitas, N.D.V. Júnior, C.A.S.D.O. Pinto, T.M. Kaneko, A.R. Baby, Hair fiber characteristics and methods to evaluate hair physical and mechanical properties, Braz. J. Pharm. Sci. 45 (2009), https://doi.org/10.1590/S1984-82502009000100019Test.; [91] T.B. Vishnu, Laboratory investigation on the fatigue performance of asphalt mixes reinforced with human hair fiber in pavement application, Mater. Today Proc. (2023) 1–5, https://doi.org/10.1016/j.matpr.2023.01.070Test.; [92] N.H. Mohan, L.K. Nayak, M.K. Tamuli, A. Das, Pig hair fibre utilization in India: Present status and future perspectives, Indian J. Anim. Sci. 84 (2014).; [93] N.H. Mohan, L. Ammayappan, D.K. Sarma, S. Debnath, M.K. Tamuli, Characterization of thermal properties of pig hair fiber, J. Nat. Fibers 14 (2017), https:// doi.org/10.1080/15440478.2016.1250023.; [94] N.H. Mohan, S. Debnath, R.K. Mahapatra, L.K. Nayak, S. Baruah, A. Das, S. Banik, M.K. Tamuli, Tensile properties of hair fibres obtained from different breeds of pigs, Biosyst. Eng. 119 (2014), https://doi.org/10.1016/j.biosystemseng.2014.01.003Test.; [95] N.H. Mohan, M. Choudhury, L. Ammayappan, P. Pathak, S. Chakraborty, R. Thomas, S. Debnath, M. Paul, D.K. Sarma, Characterization of secondary structure of pig hair fiber using fourier-transform infrared spectroscopy, J. Nat. Fibers 19 (2022), https://doi.org/10.1080/15440478.2020.1856272Test.; [96] UN Statistics Division, United Nations Statistics Division - Commodity Trade Statistics Database (COMTRADE), Un Comtrade. (2012).; [97] A. Barth, Infrared spectroscopy of proteins, Biochim Biophys. Acta Bioenerg. 1767 (2007), https://doi.org/10.1016/j.bbabio.2007.06.004Test.; [98] M.S. Boll, K.C. Doty, R. Wickenheiser, I.K. Lednev, Differentiation of hair using ATR FT-IR spectroscopy: A statistical classification of dyed and non-dyed hairs, Forensic Chem. 6 (2017), https://doi.org/10.1016/j.forc.2017.08.001Test.; [99] S. Ling, Z. Qi, D.P. Knight, Z. Shao, X. Chen, Synchrotron FTIR microspectroscopy of single natural silk fibers, Biomacromolecules 12 (2011), https://doi.orgTest/ 10.1021/bm2006032.; [100] J.D. dos Santos, H.G.M. Edwards, L.F.C. de Oliveira, Raman spectroscopy and electronic microscopy structural studies of Caucasian and Afro human hair, Heliyon 5 (2019), https://doi.org/10.1016/j.heliyon.2019.e01582Test.; [101] J. Prachayawarakorn, W. Hwansanoet, Effect of silk protein fibers on properties of thermoplastic rice starch, 2012 13:5. 13, Fibers Polym. (2012) 606–612, https://doi.org/10.1007/S12221-012-0606-XTest.; [102] L. Valentini, S. Bittolo Bon, L. Mussolin, N.M. Pugno, Silkworm silk fibers vs PEEK reinforced rubber luminescent strain gauge and stretchable composites, Compos Sci. Technol. 156 (2018) 254–261, https://doi.org/10.1016/j.compscitech.2017.12.031Test.; [103] L.C. Hao, S.M. Sapuan, M.R. Hassan, R.M. Sheltami, R.M. Sheltami, Natural fiber reinforced vinyl polymer composites, Nat. Fiber Reinf. Vinyl Este Vinyl Polym. Compos.: Dev., Charact. Appl. (2018) 27–70, https://doi.org/10.1016/B978-0-08-102160-6.00002-0Test.; [104] K.M. Babu, Silk fibres – structure, properties and applications, Handbook of Natural Fibres: Second Edition. 1 (2020) 385–416. https://doi.org/10.1016Test/ B978–0-12–818398-4.00013-X.; [105] T.H. Luong, T.N. Ngoc Dang, O.P.T. Ngoc, T.H. Dinh-Thuy, T.H. Nguyen, V. VanToi, H.T. Duong, H. Le Son, Investigation of the silk fiber extraction process from the vietnam natural Bombyx mori silkworm cocoon, IFMBE Proc. 46 (2015) 325–328, https://doi.org/10.1007/978-3-319-11776-8_79/COVERTest.; [106] C.R. Robbins, Chemical Composition of Different Hair Types, in: Chemical and Physical Behavior of Human Hair, 2012. https://doi.org/10.1007/978Test–3- 642–25611-0_2.; [107] S. Ramamoorthy, M. Ramadoss, R. Ramasamy, K. Thangavel, Analysis of physical and thermal properties of chiengora fibers, J. Nat. Fibers 17 (2020), https:// doi.org/10.1080/15440478.2018.1479996.; [108] A. Ragaiˇsiene, J. Rusinaviˇciute, Comparitive investigation of mechanical indices of sheep’s wool and dog hair fibre, Fibres Text. East. Eur. 95 (2012).; [109] R.J. Hernandez, S.E. Selke, S.A. Lawal, Packaging: Papers for Sacks and Bags ☆, in: Reference Module in Materials Science and Materials Engineering, 2018. https://doi.org/10.1016/b978Test–0-12–803581-8.11223–8.; [110] F.W. Howay, The dog’s hair blankets of the Coast Salish, Wash. Hist. Q. 9 (1918).; [111] S.Z. Rogovina, E.V. Prut, A.A. Berlin, Composite materials based on synthetic polymers reinforced with natural fibers, Polym. Sci. - Ser. A 61 (2019), https:// doi.org/10.1134/S0965545×19040084.; [112] D. Yao, J. Wu, G. Wang, P. Wang, J.J. Zheng, J. Yan, L. Xu, Y. Yan, Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism, Acta Geotech. 16 (2021), https://doi.org/10.1007/s11440-020-01112-6Test.; [113] L. Hunter, Mohair, cashmere and other animal hair fibres, in: Handbook of Natural Fibres: Second Edition, 2020. https://doi.org/10.1016/B978Test–0-12–818398- 4.00012–8.; [114] Atlas of Fibre Fracture and Damage to Textiles %7C ScienceDirect, (n.d.). 〈https://www.sciencedirect.com/book/9781855733190/atlas-of-fibre-fracture-anddamage-to-textilesTest〉 (accessed June 13, 2023).; [115] M. Biron, Application Examples, Ind. Appl. Renew. Plast. (2017) 463–518, https://doi.org/10.1016/B978-0-323-48065-9.00008-XTest.; [116] Natural fibers and their composites, Tribology of Natural Fiber Polymer Composites. (2008) 1–58. https://doi.org/10.1533/9781845695057.1Test.; [117] E. Le Bourhis, F. Touchard, Mechanical Properties of Natural Fiber Composites, Encycl. Mater.: Compos. 3 (2021) 135–148, https://doi.org/10.1016/B978-0Test- 12-819724-0.00009-4.; [118] M. Maher, M. Prasad, M. Raviv, Organic soilless media components, Soil. Cult.: Theory Pract. (2008) 459–504, https://doi.org/10.1016/B978-044452975Test- 6.50013-7.; [119] R.J. Hernandez, S.E. Selke, Packaging: Papers for Sacks and Bags, Encycl. Mater.: Sci. Technol. (2001) 6642–6646, https://doi.org/10.1016/B0-08-043152-6Test/ 01174-8.; [120] P.K. Mallick, Thermoset matrix composites for lightweight automotive structures, Mater., Des. Manuf. Lightweight Veh. (2021) 229–263, https://doi.orgTest/ 10.1016/B978-0-12-818712-8.00006-9.; [121] B. Mahltig, Basalt Fibers, Inorganic and Composite Fibers: Production, Properties, and Applications. (2018) 195–217. https://doi.org/10.1016/B978Test–0- 08–102228-3.00009–8.; [122] J.N. Akhtar, Sh. Ahmad, The Effect of Randomly Oriented Hair Fiber On Mechanical Properties of Fly-Ash Based Hollow Block For Low Height Masonry Structures, (2009) 221–228. 〈https://es.scribd.com/document/371185872/The-Effect-of-Randomly-Oriented-HairTest-Fiber-on-Mechanical-Properties-of-FlyAsh-Based-Hollow-Block-for-Low-Height-Masonry-Structures#〉 (accessed February 28, 2023).; [123] G. Araya-Letelier, F.C. Antico, M. Carrasco, P. Rojas, C.M. García-Herrera, Effectiveness of new natural fibers on damage-mechanical performance of mortar, Constr. Build. Mater. 152 (2017), https://doi.org/10.1016/j.conbuildmat.2017.07.072Test.; [124] L. Prabhu, V. Krishnaraj, S. Sathish, S. Gokulkumar, N. Karthi, L. Rajeshkumar, D. Balaji, N. Vigneshkumar, K.S. Elango, A review on natural fiber reinforced hybrid composites: chemical treatments, manufacturing methods and potential applications, Mater. Today Proc. 45 (2021) 8080–8085, https://doi.orgTest/ 10.1016/J.MATPR.2021.01.280.; [125] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int J. Polym. Sci. 2015 (2015), https://doi.org/10.1155/2015/243947Test.; [126] S. Sathish, N. Karthi, L. Prabhu, S. Gokulkumar, D. Balaji, N. Vigneshkumar, T.S. Ajeem Farhan, A. Akilkumar, V.P. Dinesh, A review of natural fiber composites: Extraction methods, chemical treatments and applications, Mater. Today Proc. 45 (2021) 8017–8023, https://doi.org/10.1016/JTest. MATPR.2020.12.1105.; [127] R.M. Luqman, M. Azlan Suhot, M. Zaki Hassan, Effect of alkaline treatment on the single natural fiber strength using Weibull analysis probabilistic model, Mater. Today Proc. (2023) 1–5, https://doi.org/10.1016/j.matpr.2023.01.108Test.; [128] S.I. Magagula, M.J. Mochane, G.G. Lenetha, J.S. Sefadi, T.H. Mokhothu, T.C. Mokhena, The effect of alkaline treatment on natural fibers/biopolymer composites, Surf. Treat. Methods Nat. Fibres Their Eff. Biocomposites (2022) 19–45, https://doi.org/10.1016/B978-0-12-821863-1.00002-8Test.; [129] S.B.T. Youbi, N.R.S. Tagne, O. Harzallah, P.W.M. Huisken, T.T. Stanislas, E. Njeugna, J.Y. Drean, S. Bistac-Brogly, Effect of alkali and silane treatments on the surface energy and mechanical performances of Raphia vinifera fibres, Ind. Crops Prod. 190 (2022), https://doi.org/10.1016/j.indcrop.2022.115854Test.; [130] Y. Liu, X. Lv, J. Bao, J. Xie, X. Tang, J. Che, Y. Ma, J. Tong, Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites, Carbohydr. Polym. 218 (2019) 179–187, https://doi.org/10.1016/j.carbpol.2019.04.088Test.; [131] M. Mohammed, R. Rahman, A.M. Mohammed, T. Adam, B.O. Betar, A.F. Osman, O.S. Dahham, Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement, Polym. Test. 115 (2022), https://doi.org/10.1016/j.polymertesting.2022.107707Test.; [132] V. Tserki, N.E. Zafeiropoulos, F. Simon, C. Panayiotou, A study of the effect of acetylation and propionylation surface treatments on natural fibres, Compos Part A Appl. Sci. Manuf. 36 (2005) 1110–1118, https://doi.org/10.1016/j.compositesa.2005.01.004Test.; [133] A. Hasan, M.S. Rabbi, M. Maruf Billah, Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review, Clean. Mater. 4 (2022), https://doi.org/10.1016/j.clema.2022.100078Test.; [134] P.E. Imoisili, T.C. Jen, Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa paradisiacal) fibre/epoxy biocomposites, J. Mater. Res. Technol. 9 (2020) 8705–8713, https://doi.org/10.1016/j.jmrt.2020.05.121Test.; [135] A. Kuzuhara, Analysis of internal structure changes in black human hair keratin fibers resulting from bleaching treatments using Raman spectroscopy, J. Mol. Struct. 1047 (2013) 186–193, https://doi.org/10.1016/J.MOLSTRUC.2013.04.079Test.; [136] A. Patrucco, L. Visai, L. Fassina, G. Magenes, C. Tonin, Keratin-based matrices from wool fibers and human hair, Mater. Biomed. Eng.: Biopolym. Fibers (2019) 375–403, https://doi.org/10.1016/B978-0-12-816872-1.00013-3Test.; [137] P. Srivastava, C. Kumar Garg, S. Sinha, The Influence of Chemical Treatment on the Mechanical Behaviour of hair Fibre-Reinforced Composites, Mater. Today Proc. 5 (2018) 22922–22930, https://doi.org/10.1016/J.MATPR.2018.11.019Test.; [138] P. Srivastava, S. Sinha, Effect of surface treatment on hair fiber as reinforcement of HDPE composites: Mechanical properties and water absorption kinetics, 2018 35:5, Korean J. Chem. Eng. 35 (2018) 1209–1218, https://doi.org/10.1007/S11814-018-0011-2Test.; [139] S. Kumar, M.S. Shamprasad, Y.S. Varadarajan, M.A. Sangamesha, Coconut coir fiber reinforced polypropylene composites: Investigation on fracture toughness and mechanical properties, Mater. Today Proc. 46 (2021) 2471–2476, https://doi.org/10.1016/J.MATPR.2021.01.402Test.; [140] D.N. Rao, G. Mukesh, A. Ramesh, T. Anjaneyulu, Investigations on the mechanical properties of hybrid goat hair and banana fiber reinforced polymer composites, Mater. Today Proc. 27 (2020) 1703–1707, https://doi.org/10.1016/J.MATPR.2020.03.586Test.; [141] A.A. Ansari, S.K. Dhakad, P. Agarwal, Investigation of mechanical properties of sisal fibre and human hair reinforced with epoxy resin hybrid polymer composite, Mater. Today Proc. 26 (2020) 2400–2404, https://doi.org/10.1016/J.MATPR.2020.02.513Test.; [142] N. Kumar, A. Singh, R. Ranjan, Fabrication and mechanical characterization of horse hair (HH) reinforced polypropylene (PP) composites, Mater. Today Proc. 19 (2019) 622–625, https://doi.org/10.1016/J.MATPR.2019.08.078Test.; [143] A. Elbehiry, M. Mostafa, Finite element analysis of beams reinforced with Banana Fiber Bars (BFB), Fibers 8 (2020), https://doi.org/10.3390/FIB8080052Test.; [144] A. Elbehiry, O. Elnawawy, M. Kassem, A. Zaher, N. Uddin, M. Mostafa, Performance of concrete beams reinforced using banana fiber bars, Case Stud. Constr. Mater. 13 (2020), https://doi.org/10.1016/j.cscm.2020.e00361Test.; [145] J. Ahmad, Z. Zhou, Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review, Constr. Build. Mater. 333 (2022), 127353, https://doi.org/10.1016/J.CONBUILDMAT.2022.127353Test.; [146] J. Weerheijm, K. Van Breugel, Introduction to concrete: a resilient material system, Underst. Tensile Prop. Concr. (2013) 1–15, https://doi.org/10.1533Test/ 9780857097538.1.; [147] P. Zhang, Y. Yang, J. Wang, M. Jiao, Y. Ling, Fracture models and effect of fibers on fracture properties of cementitious composites—a review, Materials 13 (2020), https://doi.org/10.3390/ma13235495Test.; [148] D.L. Rocha, L.U.D.T. Júnior, M.T. Marvila, E.C. Pereira, D. Souza, A.R.G. de Azevedo, A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History, Polym. (Basel) 14 (2022), https://doi.org/10.3390/POLYM14102043Test.; [149] H. Rajabinejad, I.I. Bucis¸canu, S.S. Maier, Current approaches for raw wool waste management and unconventional valorization: A review, Environ. Eng. Manag J. 18 (2019), https://doi.org/10.30638/eemj.2019.136Test.; [150] R. Alyousef, K. Aldossari, O. Ibrahim, H. Al Jabr, H. Alabduljabbar, A. Mustafa Mohamed, A. Siddika, Effect of sheep wool fiber on fresh and hardened sproperties of fiber reinforced concrete, Int. J. Civ. Eng. Technol. (IJCIET) 10 (2019).; [151] V. Fiore, G. Di Bella, A. Valenza, Effect of sheep wool fibers on thermal insulation and mechanical properties of cement-based composites, J. Nat. Fibers 17 (2020), https://doi.org/10.1080/15440478.2019.1584075Test.; [152] R. Alyousef, H. Mohammadhosseini, A.A.K. Ebid, H. Alabduljabbar, An integrated approach to using sheep wool as a fibrous material for enhancing strength and transport properties of concrete composites, Materials 15 (2022), https://doi.org/10.3390/ma15051638Test.; [153] V. Gadgihalli, M. Y.R, Chandana, P.H. Dinakar, Analysis of properties of concrete using sheep wool dipping in salt water as fibre reinforcement admixture, Int. J. Res. -Granthaalayah 5 (2017), https://doi.org/10.29121/granthaalayah.v5.i11.2017.2328Test.; [154] D. Gelana, G. Kebede, L. Feleke, Investigation on Effects of Sheep Wool fiber on Properties of C-25 Concrete, Saudi J. Civ. Eng. 03 (2019), https://doi.orgTest/ 10.36348/sjce.2019.v03i06.001.; [155] A.P. Fantilli, S. Sicardi, F. Dotti, The use of wool as fiber-reinforcement in cement-based mortar, Constr. Build. Mater. 139 (2017) 562–569, https://doi.orgTest/ 10.1016/J.CONBUILDMAT.2016.10.096.; [156] Y. Liu, R. Yin, W. Yu, Preparation and characterization of keratin-K2Ti6O13 whisker composite film, Afr. J. Biotechnol. 9 (2010).; [157] M.N. Acda, Waste chicken feather as reinforcement in cement-bonded composites, Philos. J. Sci. 139 (2010).; [158] D. Jain, A. Kothari, Hair Fibre Reinforced Concrete, Res J. Recent Sci. 1 (2012) 128–133. 〈www.isca.in〉. accessed January 26, 2023.; [159] R. Alyousef, Assessing the influence of human hair on the mechanical properties of fibred reinforced concrete matrix, Int. J. Civ. Eng. Technol. 9 (2018).; [160] J. Gagan, B. Lejano, Evaluation of the Effects of Combining Pig-Hair Fiber as Fiber Reinforcement and Green Mussel Shells as Partial Cement Substitute to the Properties of Concrete, DLSU Res. Congr. 4 (2016).; [161] R. Alyousef, H. Alabduljabbar, H. Mohammadhosseini, A.M. Mohamed, A. Siddika, F. Alrshoudi, A. Alaskar, Utilization of sheep wool as potential fibrous materials in the production of concrete composites, J. Build. Eng. 30 (2020), https://doi.org/10.1016/j.jobe.2020.101216Test.; [162] R. Alyousef, Enhanced acoustic properties of concrete composites comprising modified waste sheep wool fibers, J. Build. Eng. 56 (2022), https://doi.orgTest/ 10.1016/j.jobe.2022.104815.; [163] T. Zhang, E. Dieckmann, S. Song, J. Xie, Z. Yu, C. Cheeseman, Properties of magnesium silicate hydrate (M-S-H) cement mortars containing chicken feather fibres, Constr. Build. Mater. 180 (2018) 692–697, https://doi.org/10.1016/j.conbuildmat.2018.05.292Test.; [164] M.N. Acda, Waste Chicken Feather as Reinforcement in Cement-Bonded Composites, (2010).; [165] S.L. Meghwar, G.B. Khaskheli, A. Kumar, Human Scalp Hair as Fiber Reinforcement in Cement Concrete, Mehran Univ. Res. J. Eng. Technol. 39 (2020) 443–452, https://doi.org/10.22581/muet1982.2002.20Test.; [166] H. Kanwal, M.S. Aslam, T.L. Mughal, M. Asim, R.M. Memon, Human Hair as Fiber Reinforced Concrete for Enhancement of Tensile Strength of Concrete, Mehran Univ. Res. J. Eng. Technol. 39 (2020) 63–70, https://doi.org/10.22581/muet1982.2001.07Test.; [167] H. Lutz, H.P. Weitzel, W. Huster, Aqueous Emulsion Polymers, in: Polymer Science: A Comprehensive Reference, 10 Volume Set (2012). https://doi.org/10Test. 1016/B978–0-444–53349-4.00280–6.; [168] Yan Li, Shuxia Ren, Gypsum Decorative Materials, in: Building Decorative Materials (2011). https://doi.org/10.1533/9780857092588.54Test.; [169] F. Iucolano, B. Liguori, P. Aprea, D. Caputo, Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster, Compos B Eng. 138 (2018), https:// doi.org/10.1016/j.compositesb.2017.11.037.; [170] F. Iucolano, D. Caputo, F. Leboffe, B. Liguori, Mechanical behavior of plaster reinforced with abaca fibers, Constr. Build. Mater. 99 (2015), https://doi.orgTest/ 10.1016/j.conbuildmat.2015.09.020.; [171] F. Iucolano, L. Boccarusso, A. Langella, Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour, Compos B Eng. 175 (2019), https://doi.org/10.1016/j.compositesb.2019.107073Test.; [172] A.P. Fantilli, D. Jo´´zwiak-Nied´zwiedzka, P. Denis, Bio-fibres as a reinforcement of gypsum composites, Materials 14 (2021), https://doi.org/10.3390Test/ ma14174830.; [173] E. Dawood, The Properties of Fiber Reinforced Gypsum Plaster, J. Sci. Res Rep. 3 (2014), https://doi.org/10.9734/jsrr/2014/7356Test.; [174] A.F. Wodag, Development of False Ceiling Board Using Indigenous Sheep Wool Fiber Reinforcement/Gypsum Matrix Composite, J. Text. Sci. Fash. Technol. 8 (2021), https://doi.org/10.33552/jtsft.2021.08.000677Test.; [175] V. Guna, M. Ilangovan, H.R. Vighnesh, B.R. Sreehari, S. Abhijith, H.E. Sachin, C.B. Mohan, N. Reddy, Engineering Sustainable Waste Wool Biocomposites with High Flame Resistance and Noise Insulation for Green Building and Automotive Applications, J. Nat. Fibers 18 (2021), https://doi.org/10.1080Test/ 15440478.2019.1701610.; [176] V. Guna, C. Yadav, B.R. Maithri, M. Ilangovan, F. Touchaleaume, B. Saulnier, Y. Grohens, N. Reddy, Wool and coir fiber reinforced gypsum ceiling tiles with enhanced stability and acoustic and thermal resistance, J. Build. Eng. 41 (2021), https://doi.org/10.1016/j.jobe.2021.102433Test.; [177] E.Arvelo Reynoso, El uso de Plumas para Aumentar la Tenacidad del Yeso Uso de Plumas de Pollo en el Yeso, Editorial Acad´emica Espanola. ˜ (2011).; [178] M. Ouakarrouch, K. El Azhary, N. Laaroussi, M. Garoum, F. Kifani-Sahban, Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste, Therm. Sci. Eng. Prog. 19 (2020), https://doi.org/10.1016/j.tsep.2020.100642Test.; [179] A. Korjenic, V. Petranek, ´ J. Zach, J. Hroudova, ´ Development and performance evaluation of natural thermal-insulation materials composed of renewable resources, Energy Build. 43 (2011), https://doi.org/10.1016/j.enbuild.2011.06.012Test.; [180] S. Amziane, Overview on biobased building material made with plant aggregate, : Sustain. Constr. Mater. Technol. (2016), https://doi.org/10.21809Test/ rilemtechlett.v1.9.; [181] M. Hall, Y. Djerbib, Rammed earth sample production: context, recommendations and consistency, Constr. Build. Mater. 18 (2004), https://doi.org/10.1016/jTest. conbuildmat.2003.11.001.; [182] G. Calatan, A. Hegyi, C. Dico, C. Mircea, Experimental research on the recyclability of the clay material used in the fabrication of adobe bricks type masonry units, Procedia Eng. (2017), https://doi.org/10.1016/j.proeng.2017.02.402Test.; [183] S. Deboucha, R. Hashim, A review on bricks and stabilized compressed earth blocks, Sci. Res. Essays 6 (2011).; [184] S. Contreras, M. Bahamondez, M. Hurtado, J. Vargas, N. Jorquera, La arquitectura en tierra frente al sismo del 27 de febrero de 2010: conclusiones y reflexiones tras el sismo en Chile, Conserva (2011).; [185] A. Vatani Oskouei, M. Afzali, M. Madadipour, Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests, Constr. Build. Mater. 142 (2017), https://doi.org/10.1016/j.conbuildmat.2017.03.065Test.; [186] S. Verbeke, A. Audenaert, Thermal inertia in buildings: a review of impacts across climate and building use, Renew. Sustain. Energy Rev. 82 (2018), https:// doi.org/10.1016/j.rser.2017.08.083.; [187] T. Padfield, The role of absorbent building materials in moderating changes of relative humidity, 1998.; [188] M. Cataldo-Born, G. Araya-Letelier, C. Pabon, ´ Obstacles and motivations for earthbag social housing in Chile: Energy, environment, economic and codes implications, Rev. De. La Constr. 15 (2016), https://doi.org/10.4067/S0718-915Test×2016000300002.; [189] Gernot Minke, Building with Earth: Design and Technology of a Sustainable Architecture Fourth and revised edition, Birkhauser. ¨ (2021). 〈https://booksTest. google.com.ec/books?id=kuiecB-9Gs0C&printsec=copyright#v=onepage&q&f=false〉 (accessed March 1, 2023).; [190] H.H. Hubert guillaud, Trait´e de construction en terre, 2015.; [191] F. Luciano, E. Garay, N.R. Mercanti, J.C. Tirner, El tema de la tierra en iberoam´erica en el siglo XX., Construir Con Tierra Ayer y Hoy: V Seminario Iberoamericano de Construccion ´ Con Tierra; I Seminario Argentino de Arquitectura y Constricion ´ Con Tierra, 14 al 17 de Junio de 2006, Mendoza, Argentina, 2006, ISBN 9789506920678, P´ ag. 19. (2006) 19. 〈https://dialnet.unirioja.es/servlet/articulo?codigo=4499987Test〉 (accessed March 1, 2023).; [192] S¸ . Yetgin, O. ¨ ÇAVDAR, A. Çavdar, The effects of the fiber contents on the mechanic properties of the adobes, Constr. Build. Mater. 22 (2008), https://doi.orgTest/ 10.1016/j.conbuildmat.2006.08.022.; [193] A. Romano, S. Grammatikos, M. Riley, A. Bras, Determination of specific heat capacity of bio-fibre earth mortars stabilised at different relative humidities using Differential Scanning Calorimetry, J. Build. Eng. 41 (2021), 102738, https://doi.org/10.1016/J.JOBE.2021.102738Test.; [194] M. Jerman, I. Palomar, V. Koˇcí, R. Cerný, ˇ Thermal and hygric properties of biomaterials suitable for interior thermal insulation systems in historical and traditional buildings, Build. Environ. 154 (2019) 81–88, https://doi.org/10.1016/J.BUILDENV.2019.03.020Test.; [195] J. Zach, A. Korjenic, V. Petranek, ´ J. Hroudova, ´ T. Bednar, Performance evaluation and research of alternative thermal insulations based on sheep wool, Energy Build. 49 (2012), https://doi.org/10.1016/j.enbuild.2012.02.014Test.; [196] J. Zhao, J. Grunewald, U. Ruisinger, S. Feng, Evaluation of capillary-active mineral insulation systems for interior retrofit solution, Build. Environ. 115 (2017), https://doi.org/10.1016/j.buildenv.2017.01.004Test.; [197] X. Zhou, J. Carmeliet, D. Derome, Influence of envelope properties on interior insulation solutions for masonry walls, Build. Environ. 135 (2018), https://doiTest. org/10.1016/j.buildenv.2018.02.047.; [198] A. Abdul Hamid, P. Wallent´en, Hygrothermal assessment of internally added thermal insulation on external brick walls in Swedish multifamily buildings, Build. Environ. 123 (2017), https://doi.org/10.1016/j.buildenv.2017.05.019Test.; [199] H. Gonzalez-Calderon, G. Araya-Letelier, S. Kunze, C. Burbano-Garcia, Ú. Reidel, C. Sandoval, R. Astroza, F. Bas, Biopolymer-waste fiber reinforcement for earthen materials: Capillary, mechanical, impact, and abrasion performance, Polymers (Basel) 12 (2020), https://doi.org/10.3390/polym12081819Test.; [200] M.R. Abdi, A. Parsapajouh, M.A. Arjomand, Effects of Random Fiber Inclusion on Consolidation, Hydraulic Conductivity, Swelling, Shrinkage Limit and Desiccation Cracking of Clays, Int. J. Civ. Eng. 6 (2008).; [201] S. Ziegler, D. Leshchinsky, H.I. Ling, E.B. Perry, Effect of short polymeric fibers on crack development in clays, Soils Found. 38 (1998), https://doi.orgTest/ 10.3208/sandf.38.247.; [202] R.R. Pillai, A. Ramanathan, An Innovative Technique of Improving the Soil Using Human Hair Fibers., Third International Conference on Construction In Developing Countries (ICCIDC–III) “Advancing Civil, Architectural and Construction Engineering & Management.” (2012).; [203] A. R, P. Bhuyan, R. Jain, Comparative Studies on Performance of Human Hair and Coir Fibers against Synthetic Fibers in Soil Reinforcement, in: 2014. https:// doi.org/10.5176/2301–394x_ace14.86.; [204] W.A. Butt, B.A. Mir, J.N. Jha, Strength Behavior of Clayey Soil Reinforced with Human Hair as a Natural Fibre, Geotech. Geol. Eng. 34 (2016), https://doi.orgTest/ 10.1007/s10706-015-9953-x.; [205] M.S. Basson, R. Ayothiraman, Effect of human hair fiber reinforcement on shrinkage cracking potential of expansive clay, Bull. Eng. Geol. Environ. 79 (2020), https://doi.org/10.1007/s10064-019-01685-xTest.; [206] N. Ramawat, N. Sharma, P. Yamba, M.A.T. Sanidhi, Recycling of polymer-matrix composites used in the aerospace industry-a comprehensive review, Mater. Today Proc. (2023), https://doi.org/10.1016/j.matpr.2023.05.386Test.; [207] N.S. Nor Arman, R.S. Chen, S. Ahmad, Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction, Constr. Build. Mater. 302 (2021), https://doi.org/10.1016/j.conbuildmat.2021.124174Test.; [208] T.P. Naik, I. Singh, A.K. Sharma, Processing of polymer matrix composites using microwave energy: a review, Compos Part A Appl. Sci. Manuf. 156 (2022), https://doi.org/10.1016/j.compositesa.2022.106870Test.; [209] M. Asim, M. Jawaid, N. Saba, Ramengmawii, M. Nasir, M.T.H. Sultan, Processing of hybrid polymer composites-a review, Elsevier Ltd,, 2017, https://doi.orgTest/ 10.1016/B978-0-08-100789-1.00001-0.; [210] M.Z. Rahman, Mechanical and damping performances of flax fibre composites – a review, Compos. Part C: Open Access 4 (2021), https://doi.org/10.1016/jTest. jcomc.2020.100081.; [211] X. Liu, L. Wang, X. Wang, Evaluating the softness of animal fibers, Text. Res. J. 74 (2004), https://doi.org/10.1177/004051750407400612Test.; [212] J. Manivannan, S. Rajesh, K. Mayandi, N. Rajini, S.O. Ismail, F. Mohammad, M.K. Kuzman, H.A. Al-Lohedan, Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites, J. Nat. Fibers 19 (2022), https://doi.org/10.1080Test/ 15440478.2020.1848743.; 20; https://hdl.handle.net/11323/10939Test; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.coTest/

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية