يعرض 1 - 10 نتائج من 716 نتيجة بحث عن '"V. and Kuznetsova"', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 1 (2024); 72–81 ; Медицинский Совет; № 1 (2024); 72–81 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8081/7141Test; Principi N, Daleno C, Esposito S. Human rhinoviruses and severe respiratory infections: Is it possible to identify at-risk patients early? Expert Rev Anti Infect Ther. 2014;12(4):423–430. https://doi.org/10.1586/14787210.2014.890048Test.; Kenmoe S, Bowo-Ngandji A, Kengne-Nde C, Ebogo-Belobo JT, Mbaga DS, Mahamat G et al. Association between early viral LRTI and subsequent wheezing development, a meta-analysis and sensitivity analyses for studies comparable for confounding factors. PLoS ONE. 2021;16:e0249831. https://doi.org/10.1371/journal.pone.0249831Test.; Jensen ME, Mailhot G, Alos N, Rousseau E, White JH, Khamessan A, Ducharme FM. Vitamin D intervention in preschoolers with viral-i nduced asthma (DIVA): a pilot randomised controlled trial. Trials. 2016;17(1):353. https://doi.org/10.1186/s13063-016-1483-1Test.; Blanken MO, Rovers MM, Molenaar JM, Winkler-Seinstra PL, Meijer A, Kimpen JL, Bont L. Dutch RSV Neonatal Network. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791–1799. https://doi.org/10.1056/NEJMoa1211917Test.; Tibrewal C, Modi NS, Bajoria PS, Dave PA, Rohit RK, Patel P et al. Therapeutic Potential of Vitamin D in Management of Asthma: A Literature Review. Cureus. 2023;15(7):e41956. https://doi.org/10.7759/cureus.41956Test.; Jat KR, Khairwa A. Vitamin D and asthma in children: A systematic review and meta-analysis of observational studies. Lung India. 2017;34(4):355–363. https://doi.org/10.4103/0970-2113.209227Test.; Liu J, Dong YQ, Yin J, Yao J, Shen J, Sheng GJ et al. Meta-analysis of vitamin D and lung function in patients with asthma. Respir Res. 2019;20(1):161. https://doi.org/10.1186/s12931-019-1072-4Test.; Tareke AA, Hadgu AA, Ayana AM, Zerfu TA. Prenatal vitamin D supplementation and child respiratory health: A systematic review and meta-analysis of randomized controlled trials. World Allergy Organ J. 2020;13(12):100486. https://doi.org/10.1016/j.waojou.2020.100486Test.; Esposito S, Ballarini S, Argentiero A, Ruggiero L, Rossi GA, Principi N. Microbiota profiles in pre-school children with respiratory infections: Modifications induced by the oral bacterial lysate OM-85. Front Cell Infect Microbiol. 2022;12:789436. https://doi.org/10.3389/fcimb.2022.789436Test.; White JH. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity. Nutrients. 2022;14(2):284. https://doi.org/10.3390/nu14020284Test.; Захарова ИН, Мальцев СВ, Заплатников АЛ, Климов ЛЯ, Пампура АН, Курьянинова ВА и др. Влияние витамина D на иммунный ответ организма. Педиатрия. Consilium Medicum. 2020;(2):29–37. https://doi.org/10.26442/26586630.2020.2.200238Test.; Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D. Autoimmune Disease and Rheumatoid Arthritis. Calcif Tissue Int. 2020;106(1):58–75. https://doi.org/10.1007/s00223-019-00577-2Test.; Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461Test.; Chow KT, Gale M Jr, Loo YM. RIG-I and Other RNA Sensors in Antiviral Immunity. Annu Rev Immunol. 2018;36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309Test.; Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A, Sarab GA. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Front Immunol. 2023;14:950465. https://doi.org/10.3389/fimmu.2023.950465Test.; Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7(6):4240–4270. https://doi.org/10.3390/nu7064240Test.; Климов ЛЯ, Курьянинова ВА, Захарова ИН, Долбня СВ, Касьянова АН, Анисимов ГС и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал имени Г.Н. Сперанского. 2017;96(4):171–179. https://doi.org/10.24110/0031403X-2017-96-4-171-179Test.; Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011;6(10):e25333. https://doi.org/10.1371/journal.pone.0025333Test.; Singh D, Vaughan R, Kao CC. LL-37 peptide enhancement of signal transduction by Toll-like receptor 3 is regulated by pH: identification of a peptide antagonist of LL-37. J Biol Chem. 2014;289(40):27614–27624. https://doi.org/10.1074/jbc.M114.582973Test.; Scheenstra MR, van Harten RM, Veldhuizen EJA, Haagsman HP, Coorens M. Cathelicidins Modulate TLR-Activation and Inflammation. Front Immunol. 2020;11:1137. https://doi.org/10.3389/fimmu.2020.01137Test.; Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4(9):1151–1165. https://doi.org/10.2217/fmb.09.87Test.; Xu H, Soruri A, Gieseler RK, Peters JH. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand J Immunol. 1993;38(6):535–540. https://doi.org/10.1111/j.1365-3083.1993.tb03237.xTest.; Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal. 2014;20(17):2695–2709. https://doi.org/10.1089/ars.2013.5353Test.; Lee YH, Lai CL, Hsieh SH, Shieh CC, Huang LM, Wu-Hsieh BA. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res. 2013;178(2):411–422. https://doi.org/10.1016/j.virusres.2013.09.011Test.; Bryson KJ, Nash AA, Norval M. Does vitamin D protect against respiratory viral infections? Epidemiol Infect. 2014;142(9):1789–1801. https://doi.org/10.1017/S0950268814000193Test.; Zhou L, Lin Q, Sonnenberg GF. Metabolic control of innate lymphoid cells in health and disease. Nat Metab. 2022;4(12):1650–1659. https://doi.org/10.1038/s42255-022-00685-8Test.; Greiller CL, Suri R, Jolliffe DA, Kebadze T, Hirsman AG, Griffiths CJ et al. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. J Steroid Biochem Mol Biol. 2019;187:152–159. https://doi.org/10.1016/j.jsbmb.2018.11.013Test.; Nicolae M, Mihai CM, Chisnoiu T, Balasa AL, Frecus CE, Mihai L et al. Immunomodulatory Effects of Vitamin D in Respiratory Tract Infections and COVID-19 in Children. Nutrients. 2023;15(15):3430. https://doi.org/10.3390/nu15153430Test.; de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–1207. https://doi.org/10.1038/nm1477Test.; Khare D, Godbole NM, Pawar SD, Mohan V, Pandey G, Gupta S et al. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur J Nutr. 2013;52(4):1405–1415. https://doi.org/10.1007/s00394-012-0449-7Test.; Khoo AL, Chai LY, Koenen HJ, Sweep FC, Joosten I, Netea MG, van der Ven AJ. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol. 2011;164(1):72–79. https://doi.org/10.1111/j.1365-2249.2010.04315.xTest.; Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S et al. Interactions of Autophagy and the Immune System in Health and Diseases. Autophagy Rep. 2022;1(1):438–515. https://doi.org/10.1080/27694127.2022.2119743Test.; Richetta C, Faure M. Autophagy in antiviral innate immunity. Cell Microbiol. 2013;15(3):368–376. https://doi.org/10.1111/cmi.12043Test.; Mrad MF, El Ayoubi NK, Esmerian MO, Kazan JM, Khoury SJ. Effect of vitamin D replacement on immunological biomarkers in patients with multiple sclerosis. Clin Immunol. 2017;181:9–15. https://doi.org/10.1016/j.clim.2017.05.017Test.; Balla M, Merugu GP, Konala VM, Sangani V, Kondakindi H, Pokal M et al. Back to basics: re-view on vitamin D and respiratory viral infections including COVID-19. J Community Hosp Intern Med Perspect. 2020;10(6):529–536. https://doi.org/10.1080/20009666.2020.1811074Test.; Konijeti GG, Arora P, Boylan MR, Song Y, Huang S, Harrell F et al. Vitamin D supplementation modulates T cell-mediated immunity in humans: results from a randomized control trial. J Clin Endocrinol Metab. 2016;101(2):533–538. https://doi.org/10.1210/jc.2015-3599Test.; Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci. 2016;53(2):132–145. https://doi.org/10.3109/10408363.2015.1094443Test.; Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). https://doi.org/10.1002/rmv.1909Test.; Pfeffer PE, Hawrylowicz CM. Vitamin D in asthma: mechanisms of action and considerations for clinical trials. Chest. 2018;153(5):1229–1239. https://doi.org/10.1016/j.chest.2017.09.005Test.; Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11(1):29–36. https://doi.org/10.1007/s11882-010-0161-8Test.; Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc. 2010;69(3):286–289. https://doi.org/10.1017/S0029665110001722Test.; Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020;20(2):e12. https://doi.org/10.4110/in.2020.20.e12Test; Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest. 2010;120(9):3242–3254. https://doi.org/10.1172/JCI42388Test.; Arshi S, Fallahpour M, Nabavi M, Bemanian MH, Javad-Mousavi SA, Nojomi M et al. The effects of vitamin D supplementation on airway functions in mild to moderate persistent asthma. Ann Allergy Asthma Immunol. 2014;113(4):404–409. https://doi.org/10.1016/j.anai.2014.07.005Test.; Staeva-Vieira TP, Freedman LP. 1,25-dihydroxyvitamin D3 inhibits IFN-gamma and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J Immunol. 2002;168(3):1181–1189. https://doi.org/10.4049/jimmunol.168.3.1181Test.; Terrier B, Derian N, Schoindre Y, Chaara W, Geri G, Zahr N et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res Ther. 2012;14(5):R221. https://doi.org/10.1186/ar4060Test.; He W, Deng Y, Luo X. Bibliometric analysis of the global research status and trends of the association between Vitamin D and infections from 2001 to 2021. Front Public Health. 2022;10:934106. https://doi.org/10.3389/fpubh.2022.934106Test.; Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther. 2017;39(5):894–916. https://doi.org/10.1016/j.clinthera.2017.03.021Test.; Souto Filho JTD, de Andrade AS, Ribeiro FM, Alves PAS, Simonini VRF. Impact of vitamin D deficiency on increased blood eosinophil counts. Hematol Oncol Stem Cell Ther. 2018;11(1):25–29. https://doi.org/10.1016/j.hemonc.2017.06.003Test.; Slack MA, Ogbogu PU, Phillips G, Platts-Mills TA, Erwin EA. Serum vitamin D levels in a cohort of adult and pediatric patients with eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2015;115(1):45–50. https://doi.org/10.1016/j.anai.2015.04.016Test.; Murdaca G, Allegra A, Tonacci A, Musolino C, Ricciardi L, Gangemi S. Mast cells and vitamin D status: a clinical and biological link in the onset of allergy and bone diseases. Biomedicines. 2022;10(8):1877. https://doi.org/10.3390/biomedicines10081877Test.; Hall SC, Fischer KD, Agrawal DK. The impact of vitamin D on asthmatic human airway smooth muscle. Expert Rev Respir Med. 2016;10(2):127–135. https://doi.org/10.1586/17476348.2016.1128326Test.; Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol. 2016;83(2):83–91. https://doi.org/10.1111/sji.12403Test.; Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011–3021. https://doi.org/10.3390/nu7043011Test.; Jolliffe DA, Greenberg L, Hooper RL, Griffiths CJ, Camargo CA Jr, Kerley CP et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017;5(11):881–890. https://doi.org/10.1016/S22132600Test(17)30306-5.; Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020;5(1):e10405. https://doi.org/10.1002/jbm4.10405Test.; Hartmann B, Heine G, Babina M, Steinmeyer A, Zügel U, Radbruch A, Worm M. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. Allergy. 2011;66(4):540–548. https://doi.org/10.1111/j.1398-9995.2010.02513.xTest.; Rosser FJ, Han YY, Forno E, Bacharier LB, Phipatanakul W, Guilbert TW et al. Effect of vitamin D supplementation on total and allergen-s pecific IgE in children with asthma and low vitamin D levels. J Allergy Clin Immunol. 2022;149(1):440–444.e2. https://doi.org/10.1016/j.jaci.2021.05.037Test.; Ali NS, Nanji K. A Review on the role of vitamin D in asthma. Cureus. 2017;9(5):e1288. https://doi.org/10.7759/cureus.1288Test.; Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020;12(5):1233. https://doi.org/10.3390/nu12051233Test.; Feng L, Meng T, Qi Y, Athari SS, Chen X. Study effect of vitamin D on the immunopathology responses of the bronchi in murine model of asthma. Iran J Allergy Asthma Immunol. 2021;20(5):509–519. https://doi.org/10.18502/ijaai.v20i5.7399Test.; Banerjee A, Panettieri R Jr. Vitamin D modulates airway smooth muscle function in COPD. Curr Opin Pharmacol. 2012;12(3):266–274. https://doi.org/10.1016/j.coph.2012.01.014Test.; Gupta A, Sjoukes A, Richards D, Banya W, Hawrylowicz C, Bush A, Saglani S. Relationship between serum vitamin D, disease severity, and airway remodeling in children with asthma. Am J Respir Crit Care Med. 2011;184(12):1342–1349. https://doi.org/10.1164/rccm.201107-1239OCTest.; Lai G, Wu C, Hong J, Song Y. 1,25-Dihydroxyvitamin D3 (1,25-(OH)(2) D(3)) attenuates airway remodeling in a murine model of chronic asthma. J Asthma. 2013;50(2):133–140. https://doi.org/10.3109/02770903.2012.738269Test.; Johnson LA, Sauder KL, Rodansky ES, Simpson RU, Higgins PD. CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts. Exp Mol Pathol. 2012;93(1):91–98. https://doi.org/10.1016/j.yexmp.2012.04.014Test.; Berraies A, Hamzaoui K, Hamzaoui A. Link between vitamin D and airway remodeling. J Asthma Allergy. 2014;7:23–30. https://doi.org/10.2147/JAA.S46944Test.; Salmanpour F, Kian N, Samieefar N, Khazeei Tabari MA, Rezaei N. Asthma and vitamin D deficiency: occurrence, immune mechanisms, and new perspectives. J Immunol Res. 2022;2022:6735900. https://doi.org/10.1155/2022/6735900Test.; Telcian AG, Zdrenghea MT, Edwards MR, Laza-Stanca V, Mallia P, Johnston SL, Stanciu LA. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017;137:93–101. https://doi.org/10.1016/j.antiviral.2016.11.004Test.; Schögler A, Muster RJ, Kieninger E, Casaulta C, Tapparel C, Jung A et al. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur Respir J. 2016;47(2):520–530. https://doi.org/10.1183/13993003.00665-2015Test.; Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090–7099. https://doi.org/10.4049/jimmunol.181.10.7090Test.; Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-kappaBlinked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010;184(2):965–974. https://doi.org/10.4049/jimmunol.0902840Test.; Stoppelenburg AJ, von Hegedus JH, Huis in’t Veld R, Bont L, Boes M. Defective control of vitamin D receptor-mediated epithelial STAT1 signalling predisposes to severe respiratory syncytial virus bronchiolitis. J Pathol. 2014;232(1):57–64. https://doi.org/10.1002/path.4267Test.; Cantorna MT. Vitamin D and lung infection. Infect Immun. 2016;84(11): 3094–3096. https://doi.org/10.1128/IAI.00679-16Test.; Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS ONE. 2014;9(1):e86755. https://doi.org/10.1371/journal.pone.0086755Test.; Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J Immunol. 2016;196(7):2965–2972. https://doi.org/10.4049/jimmunol.1500460Test.; Maxwell CS, Carbone ET, Wood RJ. Better newborn vitamin D status lowers RSV-associated bronchiolitis in infants. Nutr Rev. 2012;70:548–552. https://doi.org/10.1111/j.1753-4887.2012.00517.xTest.; Grant CC, Kaur S, Waymouth E, Mitchell EA, Scragg R, Ekeroma A et al. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial. Acta Paediatrica. 2015;104(4):396–404. https://doi.org/10.1111/apa.12819Test.; Karatekin G, Kaya A, Salihoğlu O, Balci H, Nuhoğlu A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr. 2009;63(4):473–477. https://doi.org/10.1038/sj.ejcn.1602960Test.; Bodin J, Mihret A, Holm-Hansen C, Dembinski JL, Trieu MC, Tessema B et al. Vitamin D deficiency is associated with increased use of antimicrobials among preschool girls in Ethiopia. Nutrients. 2019;11(3):575. https://doi.org/10.3390/nu11030575Test.; Захарова ИН, Цуцаева АН, Курьянинова ВА, Климов ЛЯ, Долбня СВ, Заплатников АЛ и др. Влияние комплаенса приема холекальциферола на частоту респираторных инфекций у детей раннего возраста. Медицинский совет. 2020;(18):142–150. https://doi.org/10.21518/2079701X-2020-18-142-150Test.; Захарова ИН, Климов ЛЯ, Долбня СВ, Курьянинова ВА, Мальцев СВ, Малявская СИ и др. Пролонгированный прием холекальциферола – основа эффективной профилактики гиповитаминоза D в раннем возрасте. Медицинский совет. 2020;(10):16–26. https://doi.org/10.21518/2079-701X-2020-10-16-26Test.; Hurwitz JL, Jones BG, Penkert RR, Gansebom S, Sun Y, Tang L et al. Low retinol-binding protein and vitamin D levels are associated with severe outcomes in children hospitalized with lower respiratory tract infection and respiratory syncytial virus or human metapneumovirus detection. J Pediatr. 2017;187:323–327. https://doi.org/10.1016/j.jpeds.2017.04.061Test.; Brett NR, Lavery P, Agellon S, Vanstone CA, Goruk S, Field CJ, Weiler HA. Vitamin D status and immune health outcomes in a cross-s ectional study and a randomized trial of healthy young children. Nutrients. 2018;10(6):680. https://doi.org/10.3390/nu10060680Test.; Saraf R, Jensen BP, Camargo CA, Morton SMB, Jing M, Sies CW, Grant CC. Vitamin D status at birth and acute respiratory infection hospitalisation during infancy. Paediatr Perinat Epidemiol. 2021;35(5):540–548. https://doi.org/10.1111/ppe.12755Test.; Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255–1260. https://doi.org/10.3945/ajcn.2009.29094Test.; Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. https://doi.org/10.1136/bmj.i6583Test.; Jolliffe DA, Camargo CA Jr, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–292. https://doi.org/10.1016/S2213-8587Test(21)00051-6.; Majak P, Olszowiec-Chlebna M, Smejda K, Stelmach I. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol. 2011;127(5):1294–1296. https://doi.org/10.1016/j.jaci.2010.12.016Test.; Jartti T, Ruuskanen O, Mansbach JM, Vuorinen T, Camargo CA. Low serum 25-hydroxyvitamin D levels are associated with increased risk of viral coinfections in wheezing children. J Allergy Clin Immunol. 2010;126(5):1074-1076.e4. https://doi.org/10.1016/j.jaci.2010.09.004Test.; Camargo CA, Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, Gold DR et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr. 2007;85(3):788–795. https://doi.org/10.1093/ajcn/85.3.788Test.; Anderson LN, Chen Y, Omand JA, Birken CS, Parkin PC, To T, Maguire JL. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. J Dev Orig Health Dis. 2015;6(4):308–316. https://doi.org/10.1017/S2040174415001063Test.; Wei Z, Zhang J, Yu X. Maternal vitamin D status and childhood asthma, wheeze, and eczema: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2016;27(60):612–619. https://doi.org/10.1111/pai.12593Test.; Christensen N, Sondergaard J, Fisker N, Christesen HT. Infant respiratory tract infections or wheeze and maternal vitamin D in pregnancy: a systematic review. Pediatr Infect Dis J. 2017;36(4):384–391. https://doi.org/10.1097/INF.0000000000001452Test.; Pacheco-Gonzalez RM, Garcia-Marcos L, Morales E. Prenatal vitamin D status and respiratory and allergic outcomes in childhood: a metaanalysis of observational studies. Pediatr Allergy Immunol. 2018;29(3):243–253. https://doi.org/10.1111/pai.12876Test.; Shen SY, Xiao WQ, Lu JH, Yuan MY, He JR, Xia HM et al. Early life vitamin D status and asthma and wheeze: a systematic review and meta-analysis. BMC Pulm Med. 2018;18(1):120. https://doi.org/10.1186/s12890-018-0679-4Test.; Toivonen L, Hasegawa K, Ajami NJ, Celedón JC, Mansbach JM, Petrosino JF, Camargo CA Jr. Circulating 25-hydroxyvitamin D, nasopharyngeal microbiota, and bronchiolitis severity. Pediatr Allergy Immunol. 2018;29(8):877–880. https://doi.org/10.1111/pai.12977Test.; Balan KV, Babu US, Godar DE, Calvo MS. Vitamin D and respiratory infections in infants and toddlers: a nutri-shine perspective. In: Watson RR (ed.). Handbook of vitamin D in human health. Wageningen: Wageningen Academic Publishers; 2013, pp. 276–297. Available at: https://link.springer.com/chapter/10.3920/978-90-8686-7653_16#Abs00161Test.; Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y et al. TARGet Kids! Collaboration. Effect of high-dose vs standard-dose wintertime vitamin D supplementation on viral upper respiratory tract infections in young healthy children. JAMA. 2017;318(3):245–254. https://doi.org/10.1001/jama.2017.8708Test.; Pham H, Waterhouse M, Baxter C, Duarte Romero B, McLeod DSA, Armstrong BK et al. The effect of vitamin D supplementation on acute respiratory tract infection in older Australian adults: an analysis of data from the D-Health Trial. Lancet Diabetes Endocrinol. 2021;9(2):69–81. https://doi.org/10.1016/S2213-8587Test(20)30380-6.; Camargo CA, Sluyter J, Stewart AW, Khaw KT, Lawes CMM, Toop L et al. Effect of monthly high-dose vitamin D supplementation on acute respiratory infections in older adults: a randomized controlled trial. Clin Infect Dis. 2020;71(2):311–317. https://doi.org/10.1093/cid/ciz801Test.; Ganmaa D, Uyanga B, Zhou X, Gantsetseg G, Delgerekh B, Enkhmaa D et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N Engl J Med. 2020;383(4):359–368. https://doi.org/10.1056/NEJMoa1915176Test.; Lee MD, Lin CH, Lei WT, Chang HY, Lee HC, Yeung CY et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A systematic review and meta-analysis. Nutrients. 2018;10(4):409. https://doi.org/10.3390/nu10040409Test.; Yakoob MY, Salam RA, Khan FR, Bhutta ZA. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst Rev. 2016;11(11):CD008824. https://doi.org/10.1002/14651858.CD008824.pub2Test.; Beigelman A, Castro M, Schweiger TL, Wilson BS, Zheng J, Yin-DeClue H et al. Vitamin D Levels Are Unrelated to the Severity of Respiratory Syncytial Virus Bronchiolitis Among Hospitalized Infants. J Pediatric Infect Dis Soc. 2015;4(3):182–188. https://doi.org/10.1093/jpids/piu042Test.; Myint A, Sauk JS, Limketkai BN. The role of vitamin D in inflammatory bowel disease: A guide for clinical practice. Expert Rev Gastroenterol Hepatol. 2020;14(7):539–552. https://doi.org/10.1080/17474124.2020.1775580Test.; https://www.med-sovet.pro/jour/article/view/8081Test

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Finance: Theory and Practice; Том 27, № 6 (2023); 6-16 ; Финансы: теория и практика/Finance: Theory and Practice; Том 27, № 6 (2023); 6-16 ; 2587-7089 ; 2587-5671

    وصف الملف: application/pdf

    العلاقة: https://financetp.fa.ru/jour/article/view/2507/1298Test; https://financetp.fa.ru/jour/article/view/2507/1316Test; Стенли Э. Восхождение ЦВЦБ: более половины мировых центральных банков изучают или разрабатывают цифровые валюты. Международный валютный фонд. Сентябрь 2022 г. URL: https://www.imf.org/ru/Publications/fandd/issues/2022/09/Picture-this-The-ascent-of-CBDCsTest Stanley A. The ascent of CBDCs: More than half of the world’s central banks are exploring or developing digital currencies. International Monetary Fund. Sep. 2022. URL: https://www.imf.org/en/Publications/fandd/issues/2022/09/Picture-this-The-ascent-of-CBDCsTest; Кривошея Е., Семерикова Е. Цифровые валюты центральных банков: типология, дизайн и российская специфика. Сколково: Московская школа управления Сколково; 2021. 85 с. URL: https://sk.skolkovo.ru/storage/file_storage/2f8b8f7c-289b-4634Test–9595-e612deb07a1d/fin_%D0%9E%D1%82%D1%87%D0%B5%D1%82_%D0%A6%D0%92%D0%A6%D0%91_%D0%A4%D0%B8%D0%BD%D1%86%D0%B5%D0%BD%D1%82%D1%80_%D0%A1%D0%9A%D0%9E%D0%9B%D0%9A%D0%9E%D0%92%D0%9E_%D0%A0%D0%AD%D0%A8_after_peer_review_and_copy_edit.pdf Krivosheya E., Semerikova E. Digital currencies of central banks: Typology, design and Russian specifics. Skolkovo: Moscow School of Management Skolkovo; 2021.85 p. URL: https://sk.skolkovo.ru/storage/file_storage/2f8b8f7c-289b-4634Test–9595-e612deb07a1d/fin_%D0%9E%D1%82%D1%87%D0%B5%D1%82_%D0%A6%D0%92%D0%A6%D0%91_%D0%A4%D0%B8%D0%BD%D1%86%D0%B5%D0%BD%D1%82%D1%80_%D0%A1%D0%9A%D0%9E%D0%9B%D0%9A%D0%9E%D0%92%D0%9E_%D0%A0%D0%AD%D0%A8_after_peer_review_and_copy_edit.pdf (In Russ.).; Kosse A., Mattei I. Gaining momentum — results of the 2021 BIS survey on central bank digital currencies. BIS Papers. 2022;(125). URL: https://www.bis.org/publ/bppdf/bispap125.pdfTest; Сахаров Д.М. Цифровые валюты центральных банков: ключевые характеристики и влияние на финансовую систему. Финансы: теория и практика. 2021;25(5):133–149. DOI:10.26794/2587–5671–2021–25–5-133–149 Sakharov D.M. Central bank digital currencies: Key aspects and impact on the financial system. Finance: Theory and Practice. 2021;25(5):133–149. DOI:10.26794/2587–5671–2021–25–5–133–149; Ситник А.А. Цифровые валюты центральных банков. Вестник Университета имени О.Е. Кутафина (МГЮА). 2020;(9):180–186. DOI:10.17803/2311–5998.2020.73.9.180–186 Sitnik A.A. Digital currencies of central banks. Vestnik Universiteta imeni O.E. Kutafina (MGYuA) = Courier of the Kutafin Moscow State Law University (MSAL). 2020;(9):180–186. (In Russ.). DOI:10.17803/2311–5998.2020.73.9.180–186; Синельникова-Мурылева Е.В. Цифровые валюты центральных банков: потенциальные риски и выгоды. Вопросы экономики. 2020;(4):147–159. DOI:10.32609/0042–8736–2020–4–147–159 Sinelnikova-Muryleva E.V. Central banks digital currencies: Potential risks and benefits. Voprosy ekonomiki. 2020;(4):147–159. (In Russ.). DOI:10.32609/0042–8736–2020–4–147–159; Michel N. Central bank digital currencies and freedom are incompatible. CATO Institute. Jul. 18, 2022. URL: https://www.cato.org/commentary/central-bank-digital-currencies-freedom-are-incompatible#:~:text=The%20real%20danger%20in%20CBDCs,out%20of%E2%80%93every%20personTest’s%20account; Boar C., Claessens S., Kosse A., Leckow R., Rice T. Interoperability between payment systems across borders. BIS Bulletin. 2021;(49). URL: https://www.bis.org/publ/bisbull49.pdfTest; Vučinić M. Fintech and financial stability potential influence of FinTech on financial stability, risks and benefits. Journal of Central Banking Theory and Practice. 2020;9(2):43–66. DOI:10.2478/jcbtp-2020–0013; Aramonte S., Huang W., Schrimpf A. DeFi risks and the decentralisation illusion. BIS Quarterly Review. 2021;(Dec.):21–36. URL: https://www.bis.org/publ/qtrpdf/r_qt2112b.pdfTest; Makarov I., Schoar A. Cryptocurrencies and decentralized finance. NBER Working Paper. 2022;(30006). URL: https://www.nber.org/system/files/working_papers/w30006/w30006.pdfTest; Barr M.S. Managing the promise and risk of financial innovation: Remarks at D.C. Fintech Week. Washington, DC, Oct. 12, 2022. URL: https://www.federalreserve.gov/newsevents/speech/files/barr20221012a.pdfTest; Shin H.S. The future monetary system. Speech by Hyun Song Shin, Economic Adviser and Head of Research, Bank for International Settlements, on the occasion of the Bank’s Annual General Meeting in Basel on 26 June 2022. Basel: BIS; 2022. 11 p. URL: https://www.bis.org/speeches/sp220626b.pdfTest; Ehrentraud J., Evans J.L., Monteil A., Restoy F. Big tech regulation: In search of a new framework. Financial Stability Institute Occasional Paper. 2022;(20). URL: https://www.bis.org/fsi/fsipapers20.pdfTest; Кузнецова В.В., Ларина О.И. Эволюция роли национальных центральных банков. Финансы: теория и практика. 2022;26(2):62–73. DOI:10.26794/2587–5671–2022–26–2–62–73 Kuznetsova V.V., Larina O. I. The evolving role of national central banks. Finance: Theory and Practice. 2022;26(2):62–73. DOI:10.26794/2587–5671–2022–26–2–62–73; https://financetp.fa.ru/jour/article/view/2507Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية