يعرض 1 - 10 نتائج من 812 نتيجة بحث عن '"V. A. Fedotov"', وقت الاستعلام: 1.02s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The study was not sponsored, Исследование не имело спонсорской поддержки

    المصدر: Urology Herald; Том 11, № 2 (2023); 164-170 ; Вестник урологии; Том 11, № 2 (2023); 164-170 ; 2308-6424 ; 10.21886/2308-6424-2023-11-2

    وصف الملف: application/pdf

    العلاقة: https://www.urovest.ru/jour/article/view/731/477Test; Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006;49(5):798-805. DOI:10.1016/j.eururo.2005.11.035; Kenney PA, Vikram R, Prasad SR, Tamboli P, Matin SF, Wood CG, Karam JA. Mucinous tubular and spindle cell carcinoma (MTSCC) of the kidney: a detailed study of radiological, pathological and clinical outcomes. BJU Int. 2015;116(1):85-92. DOI:10.1111/bju.12992; Ged Y, Chen YB, Knezevic A, Donoghue MTA, Carlo MI, Lee CH, Feldman DR, Patil S, Hakimi AA, Russo P, Voss MH, Motzer RJ. Mucinous Tubular and Spindle-Cell Carcinoma of the Kidney: Clinical Features, Genomic Profiles, and Treatment Outcomes. Clin Genitourin Cancer. 2019;17(4):268-274.e1. DOI:10.1016/j.clgc.2019.04.006; Ferlicot S, Allory Y, Compérat E, Mege-Lechevalier F, Dimet S, Sibony M, Couturier J, Vieillefond A. Mucinous tubular and spindle cell carcinoma: a report of 15 cases and a review of the literature. Virchows Arch. 2005;447(6):978-83. DOI:10.1007/s00428-005-0036-x; Rakozy C, Schmahl GE, Bogner S, Störkel S. Low-grade tubular-mucinous renal neoplasms: morphologic, immunohistochemical, and genetic features. Mod Pathol. 2002;15(11):1162-71. DOI:10.1097/01.MP.0000031709.40712.46; Zhong M, Zhang Z, Qi W, Zhou Y, Lv G, Jiang X. Mucin-poor mucinous tubular and spindle cell carcinoma of the kidney: one case report and review of the literature. J Surg Case Rep. 2022;2022(4):rjac185. DOI:10.1093/jscr/rjac185; Zhao M, He XL, Teng XD. Mucinous tubular and spindle cell renal cell carcinoma: a review of clinicopathologic aspects. Diagn Pathol. 2015;10:168. DOI:10.1186/s13000-015-0402-1; Fine SW, Argani P, DeMarzo AM, Delahunt B, Sebo TJ, Reuter VE, Epstein JI. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney. Am J Surg Pathol. 2006;30(12):1554-60. DOI:10.1097/01.pas.0000213271.15221.e3; Ursani NA, Robertson AR, Schieman SM, Bainbridge T, Srigley JR. Mucinous tubular and spindle cell carcinoma of kidney without sarcomatoid change showing metastases to liver and retroperitoneal lymph node. Hum Pathol. 2011;42(3):444-8. DOI:10.1016/j.humpath.2010.07.018; Sahni VA, Hirsch MS, Sadow CA, Silverman SG. Mucinous tubular and spindle cell carcinoma of the kidney: imaging features. Cancer Imaging. 2012;12(1):66-71. DOI:10.1102/1470-7330.2012.0008; Nathany S, Monappa V. Mucinous Tubular and Spindle Cell Carcinoma: A Review of Histopathology and Clinical and Prognostic Implications. Arch Pathol Lab Med. 2020;144(1):115-118. DOI:10.5858/arpa.2017-0506-RS; Bharti JN, Choudhary GR, Madduri VKS, Yadav T. Mucinous tubular and spindle cell carcinoma: A difficult diagnosis. Urol Ann. 2021;13(2):180-182. DOI:10.4103/UA.UA_44_20; Cossu-Rocca P, Eble JN, Delahunt B, Zhang S, Martignoni G, Brunelli M, Cheng L. Renal mucinous tubular and spindle carcinoma lacks the gains of chromosomes 7 and 17 and losses of chromosome Y that are prevalent in papillary renal cell carcinoma. Mod Pathol. 2006;19(4):488-93. DOI:10.1038/modpathol.3800565; Uchida S, Suzuki K, Uno M, Nozaki F, Li CP, Abe E, Yamauchi T, Horiuchi S, Kamo M, Hattori K, Nagashima Y. Mucin-poor and aggressive mucinous tubular and spindle cell carcinoma of the kidney: Two case reports. Mol Clin Oncol. 2017;7(5):777-782. DOI:10.3892/mco.2017.1400; Thway K, du Parcq J, Larkin JM, Fisher C, Livni N. Metastatic renal mucinous tubular and spindle cell carcinoma. Atypical behavior of a rare, morphologically bland tumor. Ann Diagn Pathol. 2012;16(5):407-10. DOI:10.1016/j.anndiagpath.2011.04.001; https://www.urovest.ru/jour/article/view/731Test

  5. 5
    دورية أكاديمية

    المساهمون: The study was not sponsored, Спонсорская поддержка отсутствовала

    المصدر: PULMONOLOGIYA; Том 33, № 6 (2023); 792-797 ; Пульмонология; Том 33, № 6 (2023); 792-797 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4144/3583Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4144/1526Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4144/1527Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4144/1528Test; Segal L.N., Alekseyenko A.V., Clemente J.C. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome. 2013; 1 (1): 19. https://doi.org/10.1186/2049-2618-1-19Test.; Man W.H., de Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017; 15 (5): 259-270. https://doi.org/10.1038/nrmicro.2017.14Test.; Moffatt M.F., Cookson W.O. The lung microbiome in health and disease. Clin. Med. (Lond.). 2017; 17 (6): 525-529. https://doi.org/10.7861/clinmedicine.17-6-525Test.; Charlson E.S., Bittinger K., Chen J. et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One. 2012; 7 (9): e42786. https://doi.org/10.1371/journal.pone.0042786Test.; Charlson E.S., Bittinger K., Haas A.R. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 2011; 184 (8): 957-963. https://doi.org/10.1164/rccm.201104-0655OCTest.; Bassis C.M., Erb-Downward J.R., Dickson R.P. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015; 6 (2): e00037. https://doi.org/10.1128/mBio.00037-15Test.; Huffnagle G.B., Dickson R.P., Lukacs N.W. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017; 10 (2): 299-306. https://doi.org/10.1038/mi.2016.108Test.; Brunworth J.D., Garg R., Mahboubi H. et al. Detecting nasopharyngeal reflux: a novel pH probe technique. Ann. Otol. Rhinol. Laryngol. 2012; 121 (7): 427-430. https://doi.org/10.1177/000348941212100701Test.; Keck T., Lindemann J. Numerical simulation and nasal air-conditioning. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2010; 9: Doc08. https://doi.org/10.3205/cto000072Test.; Hatch T.F. Distribution and deposition of inhaled particles in respiratory tract. Bacteriol. Rev. 1961; 25 (3): 237-240. https://doi.org/10.1128/br.25.3.237-240.1961Test.; Ubags N.D.J., Marsland B.J. Mechanistic insight into the function of the microbiome in lung diseases. Eur. Respir. J. 2017; 50 (3): 1602467. https://doi.org/10.1183/13993003.02467-2016Test.; Segal L.N., Rom W.N., Weiden M.D. Lung microbiome for clinicians. New discoveries about bugs in healthy and diseased lungs. Ann. Am. Thorac. Soc. 2014; 11 (1): 108-116. https://doi.org/10.1513/AnnalsATS.201310-339FRTest.; Fujimura K.E., Demoor T., Rauch M. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. USA. 2014; 111 (2): 805-810. https://doi.org/10.1073/pnas.1310750111Test.; Wang J., Li F., Wei H. et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J. Exp. Med. 2014; 211 (12): 2397-2410. https://doi.org/10.1084/jem.20140625Test.; Wu B.G., Sulaiman I., Tsay J.J. et al. Episodic aspiration with oral commensals Induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae. Am. J. Respir. Crit. Care Med. 2021; 203 (9): 1099-1111. https://doi.org/10.1164/rccm.202005-1596OCTest.; Nembrini C., Sichelstiel A., Kisielow J. et al. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax. 2011; 66 (9): 755-763. https://doi.org/10.1136/thx.2010.152512Test.; Ege M.J., Mayer M., Normand A.C. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 2011; 364 (8): 701-709. https://doi.org/10.1056/NEJMoa1007302Test.; Ege M.J., Bieli C., Frei R. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol. 2006; 117 (4): 817-823. https://doi.org/10.1016/j.jaci.2005.12.1307Test.; Roduit C., Wohlgensinger J., Frei R. et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J. Allergy Clin. Immunol. 2011; 127 (1): 179-185. https://doi.org/10.1016/j.jaci.2010.10.010Test.; Marsland B.J., Trompette A., Gollwitzer E.S. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc. 2015; 12 (Suppl. 2): S150-156. https://doi.org/10.1513/AnnalsATS.201503-133AWTest.; McKenzie A.N. Type-2 innate lymphoid cells in asthma and allergy. Ann. Am. Thorac. Soc. 2014; 11 (Suppl. 5): S263-270. https://doi.org/10.1513/annalsats.201403-097awTest.; Molyneaux P.L., Mallia P., Cox M.J. et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 188 (10): 1224-1231. https://doi.org/10.1164/rccm.201302-0341OCTest.; Lynch S.V., Bruce K.D. The cystic fibrosis airway microbiome. Cold Spring Harb. Perspect. Med. 2013; 3 (3): a009738. https://doi.org/10.1101/cshperspect.a009738Test.; Prevaes S.M., de Steenhuijsen Piters W.A., de Winter-de Groot K.M. et al. Concordance between upper and lower airway microbiota in infants with cystic fibrosis. Eur. Respir. J. 2017; 49 (3):1602235. https://doi.org/10.1183/13993003.02235-2016Test.; Coburn B., Wang P.W., Diaz Caballero J. et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci. Rep. 2015; 5: 10241. https://doi.org/10.1038/srep10241Test.; Huffnagle G.B., Dickson R.P. The bacterial microbiota in inflammatory lung diseases. Clin. Immunol. 2015; 159 (2): 177-182. https://doi.org/10.1016/j.clim.2015.05.022Test.; Dickson R.P., Erb-Downward J.R., Huffnagle G.B. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir. Med. 2014; 2 (3): 238-246. https://doi.org/10.1016/S2213-2600Test(14)70028-1.; Angus D.C., van der Poll T. Severe sepsis and septic shock. N. Engl. J. Med. 2013; 369 (9): 840-851. https://doi.org/10.1056/NEJMra1208623Test.; Flume P.A., Chalmers J.D., Olivier K.N. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet. 2018; 392 (10150): 880-890. https://doi.org/10.1016/S0140-6736Test(18)31767-7.; Aksamit T.R., O’Donnell A.E., Barker A. et al. Adult patients with bronchiectasis: a first look at the US bronchiectasis research registry. Chest. 2017; 151 (5): 982-992. https://doi.org/10.1016/j.chest.2016.10.055Test.; Ferreira-Coimbra J., Sarda C., Rello J. Burden of community-acquired pneumonia and unmet clinical needs. Adv. Ther. 2020; 37 (4): 1302-1318. https://doi.org/10.1007/s12325-020-01248-7Test.; Kolditz M., Ewig S. Community-acquired pneumonia in adults. Dtsch. Arztebl. Int. 2017; 114 (49): 838-848. https://doi.org/10.3238/arztebl.2017.0838Test.; Невзорова В.А., Туркутюков В.Б., Мартыненко И.М. и др. Микробиологические аспекты диагностики внебольничной пневмонии. Бюллетень физиологии и патологии дыхания. 2004; (18): 15-17. Доступно на: https://cyberleninka.ru/article/n/mikrobiologicheskie-aspekty-diagnostiki-vnebolnichnoy-pnevmonii/viewerTest.; Бруснигина Н.Ф., Мазепа В.Н., Самохина Л.П. и др. Этиологическая структура внебольничной пневмонии. Медицинский альманах. 2009; 7 (2): 118-121. Доступно на: https://cyberleninka.ru/article/n/etiologicheskaya-struktura-vnebolnichnoy-pnevmonii?ysclid=l9zd81fvx139158914Test.; Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Российское респираторное общество (РРО), Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ). Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых. Пульмонология. 2014; (4): 13-48. https://doi.org/10.18093/0869-0189-2014-0-4-13-48Test.; Куликов П.В., Жоголев С.Д., Аминев Р.М. и др. Эпидемиологическая и этиологическая характеристика внебольничной пневмонии у военнослужащих по призыву в современный период. Сравнительная оценка эффективности пневмококковых вакцин. Журнал инфектологии. 2019; 11 (2): 116-123. https://doi.org/10.22625/2072-6732-2019-11-2-116-123Test.; Авдеев С.Н., Дехнич А.В., Зайцев А.А. и др. Внебольничная пневмония: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022; 32 (3): 295-355. https://doi.org/10.18093/0869-0189-2022-32-3-295-355Test.; Герасимова А.С., Челбаева Е.А., Тарасеева Г.Н., Олейников В.Э. Структура бактериальных возбудителей и рациональная фармакотерапия внебольничной пневмонии. Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2016; 40 (4): 40-50. https://doi.org/10.21685/2072-3032-2016-4-5Test.; Баранов А.А., Намазова-Баранова Л.С., Брико Н.И. и др. Вакцинопрофилактика пневмококковой инфекции у детей. Педиатрическая фармакология. 2018; 15 (3): 200-211. https://doi.org/10.15690/pf.v15i3.1899Test.; French N., Gordon S.B., Mwalukomo T. et al. A trial of a 7-valent pneumococcal conjugate vaccine in HIV-infected adults. N. Engl. J. Med. 2010; 362 (9): 812-822. https://doi.org/10.1056/NEJMoa0903029Test.; Pollard A.J., Perrett K.P., Beverley P.C. Maintaining protection against invasive bacteria with protein polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009; 9 (3): 213-220. https://doi.org/10.1038/nri2494Test.; Theilacker C., Fletcher M.A., Jodar L., Gessner B.D. PCV13 vaccination of adults against pneumococcal disease: what we have learned from the community-acquired pneumonia immunization trial in adults (CAPiTA). Microorganisms. 2022; 10 (1): 127. https://doi.org/10.3390/microorganisms10010127Test.; Feldman C., Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumonia infections. F1000Res. 2020; 9 (F1000 Faculty Rev.): 338. https://doi.org/10.12688/f1000research.22341.1Test.; Костинов М.П., Протасов А.Д., Жестков А.В. и др. Влияние разных схем вакцинации против пневмококковой инфекции на клиническое течение хронической обструктивной болезни легких: фокус на изменении микробиоценоза мокроты. Туберкулез и болезни легких. 2021; 99 (7): 7-17. https://doi.org/10.21292/2075-1230-2021-99-7-7-17Test.; Харит С. М., Фридман И. В., Павлюкова А. Н. и др. Клиническая эффективность пневмококковой конъюгированной 13-валентной вакцины у детей раннего возраста. Педиатрическая фармакология. 2016; 13 (5): 443-447. https://doi.org/10.15690/pf.v13i5.1639Test.; Чучалин А.Г., Брико Н.И., Авдеев С.Н. и др. Федеральные клинические рекомендации по вакцинопрофилактике пневмококковой инфекции у взрослых. Пульмонология. 2019; 29 (1): 19-34. https://doi.org/10.18093/0869-0189-2019-29-1-19-34Test.; Брико Н.И., Фельдблюм И.В., Бикмиева А.В. и др. Вакцинопрофилактика взрослого населения против пневмококковой инфекции. Антибиотики и химиотерапия. 2019; 64 (1-2): 37-43. https://doi.org/10.24411/0235W2990W2019W10007Test.; https://journal.pulmonology.ru/pulm/article/view/4144Test

  6. 6
    دورية أكاديمية

    المساهمون: The authors declare that this work has not been funded, Авторы сообщают об отсутствии финансирования данной работы. Статья размещена при поддержке компании АстраЗенека

    المصدر: PULMONOLOGIYA; Том 33, № 1 (2023); 109-118 ; Пульмонология; Том 33, № 1 (2023); 109-118 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4183/3501Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4183/1796Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4183/1797Test; Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2022 Report. Available at: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdfTest [Accessed: July 18, 2022].; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022; 32 (3): 356–392. DOI:10.18093/0869-0189-2022-32-3-356-392.; Avdeev S., Aisanov Z., Arkhipov V. et al. Withdrawal of inhaled corticosteroids in COPD patients: rationale and algorithms. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 1267–1280. DOI:10.2147/copd.s207775.; Aisanov Z., Avdeev S., Arkhipov V. et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 183–187. DOI:10.2147/copd.s153770.; Calzetta L., Matera M.G., Rogliani P., Cazzola M. The role of triple therapy in the management of COPD. Expert Rev. Clin. Pharmacol. 2020; 13 (8): 865–874. DOI:10.1080/17512433.2020.1787830.; Cazzola M., Rogliani P., Laitano R. et al. Beyond dual bronchodilation – triple therapy, when and why. Int. J. Chron. Obstruct. Pulmon. Dis. 2022; 17: 165–180. DOI:10.2147/COPD.S345263.; Lipson D.A., Barnhart F., Brealey N. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 2018; 378 (18): 1671–1680. DOI:10.1056/NEJMoa1713901.; Papi A., Vestbo J., Fabbri L. et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018; 391 (10125): 1076–1084. DOI:10.1016/S0140-6736(18)30206-X.; Rabe K.F., Martinez F.J., Ferguson G.T. et al. Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N. Engl. J. Med. 2020; 383 (1): 35–48. DOI:10.1056/NEJMoa1916046.; Oba Y., Sarva S., Dias S. Efficacy and safety of long-acting β-agonist/long-acting muscarinic antagonist combinations in COPD: a network meta-analysis. Thorax. 2016; 71 (1): 15–25. DOI:10.1136/thoraxjnl-2014-206732.; Cazzola M., Rogliani P., Calzetta L., Matera M.G. Triple therapy versus single and dual long-acting bronchodilator therapy in COPD: a systematic review and meta-analysis. Eur. Respir. J. 2018; 52 (6): 1801586. DOI:10.1183/13993003.01586-2018.; Langham S., Lewis J., Pooley N. et al. Single-inhaler triple therapy in patients with chronic obstructive pulmonary disease: a systematic review. Respir. Res. 2019; 20 (1): 242. DOI:10.1186/s12931-019-1213-9.; Calzetta L., Ritondo B.L., de Marco P. et al. Evaluating triple ICS/LABA/LAMA therapies for COPD patients: a network meta-analysis of ETHOS, KRONOS, IMPACT, and TRILOGY studies. Expert Rev. Respir. Med. 2021; 15 (1): 143–152. DOI:10.1080/17476348.2020.1816830.; Magnussen H., Disse B., Rodriguez-Roisin R. et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014; 371 (14): 1285–1294. DOI:10.1056/NEJMoa1407154.; Chapman K.R., Hurst J.R., Frent S.M. et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with chronic obstructive pulmonary disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am. J. Respir. Crit. Care Med. 2018; 198 (3): 329–339. DOI:10.1164/rccm.201803-0405OC.; Calzetta L., Matera M.G., Braido F. et al., Withdrawal of inhaled corticosteroids in COPD: a meta-analysis. Pulm. Pharmacol. Ther. 2017; 45: 148–158. DOI:10.1016/j.pupt.2017.06.002.; Williams N.P., Coombs N.A., Johnson M.J. et al. Seasonality, risk factors and burden of community-acquired pneumonia in COPD patients: a population database study using linked health care records. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 313–322. DOI:10.2147/COPD.S121389.; Izquierdo J.L., Cosio B.G. The dose of inhaled corticosteroids in patients with COPD: when less is better. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 3539–3547. DOI:10.2147/COPD.S175047.; Donaldson G.C., Seemungal T.A., Bhowmik A., Wedzicha J.A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002; 57 (10): 847–852. DOI:10.1136/thorax.57.10.847.; Kanner R.E., Anthonisen N.R., Connett J.E. Lower respiratory illnesses promote FEV(1) decline in current smokers but not exsmokers with mild chronic obstructive pulmonary disease: results from the lung health study. Am. J. Respir. Crit. Care Med. 2001; 164 (3): 358–364. DOI:10.1164/ajrccm.164.3.2010017.; Dransfield M.T., Crim C., Criner G.J. et al. Risk of exacerbation and pneumonia with single-inhaler triple versus dual therapy in IMPACT. Ann. Am. Thorac. Soc. 2020; 18 (5): 788–798. DOI:10.1513/AnnalsATS.202002-096OC.; European Medicines Agency. Inhaled corticosteroids (ICS) containing medical products indicated in the treatment of chronic obstructive pulmonary disease (COPD). Assessment report EMA/330021/2016. London, UK: European Medicines Agency; 2016. Available at: https://www.ema.europa.eu/en/documents/referral/inhaled-corticosteroids-article-31-referral-prac-assessment-report_en.pdfTest [Assecced: Jule 11, 2022].; Nici L., Mammen M.J., Charbek E. et al. Pharmacologic management of chronic obstructive pulmonary disease. An Official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020; 201 (9): e56–69. DOI:10.1164/rccm.202003-0625ST.; Chronic obstructive pulmonary disease in over 16s: diagnosis and management. 2018. Available at: https://www.nice.org.uk/guidance/ng115Test [Accessed: July 30, 2022].; Bourbeau J., Bhutani M., Hernandez P. et al. Canadian Thoracic Society Clinical practice guideline on pharmacotherapy in patients with COPD – 2019 update of evidence. Can. J. Respir. Crit. Care. Sleep Med. 2019; 3 (4): 210–232. DOI:10.1080/24745332.2019.1668652.; Chalmers J.D., Laska I.F., Franssen .FM.E. et al. Withdrawal of inhaled corticosteroids in COPD: a European Respiratory Society guideline. Eur. Respir. J. 2020; 55 (6): 2000351. DOI:10.1183/13993003.00351-2020.; https://journal.pulmonology.ru/pulm/article/view/4183Test

  7. 7
    دورية أكاديمية
  8. 8
  9. 9
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Том 32, № 6 (2022); 862-868 ; Пульмонология; Том 32, № 6 (2022); 862-868 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/2423/3482Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/997Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/998Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/999Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/1000Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/1001Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/1003Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2423/1339Test; Федотов В.Д., Шония М.Л., Белоусько Н.И. Клинико-прогностические аспекты взаимоотношений хронической обструктивной болезни легких профессиональной этиологии и хронического необструктивного бронхита. Медицина труда и промышленная экология. 2020; 60 (1): 53-58. DOI:10.31089/1026-94282020-60-1-53-58.; Shaw J.G., Vaughan А., Dent A.G. et al. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J. Thorac. Dis. 2014; 6 (11): 1532-1547. DOI:10.3978/j.issn.2072-1439.2014.11.33.; Hillas G., Perlikos F., Tzanakis N. Acute exacerbation of COPD: is it the “stroke of the lungs”? Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11 (1): 1579-1586. DOI:10.2147/COPD.S106160.; Barnes P.J., Chowdhury B., Kharitonov S.A. et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006; 174 (1): 6-14. DOI:10.1164/rccm.200510-1659PP.; Agusti А., Edwards L.D., Rennard S.I. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012; 7 (5): e37483. DOI:10.1371/journal.pone.0037483.; Ritchie A.I., Wedzicha J.A. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin. Chest Med. 2020; 41 (3): 421-438. DOI:10.1016/j.ccm.2020.06.007.; Chilosi M., Poletti V., Rossi A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir. Res. 2012; 13 (1): 3. DOI:10.1186/1465-9921-13-3.; R0nnow S.R., Bulow S.J.M., Langholm L.L. et al. Type IV collagen turnover is predictive of mortality in COPD: a comparison to fibrinogen in a prospective analysis of the ECLIPSE cohort. Respir Res. 2019; 20 (1): 63. DOI:10.1186/s12931-019-1026-x.; Singh D., Wedzicha J.A., Siddiqui S., de la Hoz A. Blood eosinophils as a biomarker of future COPD exacerbation risk: pooled data from 11 clinical trials. Respir. Res. 2020; 21 (1): 240. DOI:10.1186/s12931-020-01482-1.; Ormiston M.L., Slaughter G.R., Deng Y. et al. The enzymatic degradation of hyaluronan is associated with disease progression in experimental pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 298 (2): 148-157. DOI:10.1152/ajplung.00097.2009.; Eurlings I.M., Dentener M.A., Mercken E.M. et al. A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-а. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014; 307 (7): L557-565. DOI:10.1152/ajplung.00116.2014.; Федотов В.Д., Блинова Т.В., Страхова Л.А. и др. Гиалуроновая кислота как маркер ремоделирования бронхолегочной системы у пациентов с патологией легких профессиональной этиологии. Пульмонология. 2019; 29 (6): 679-684. DOI:10.18093/0869-01892019-29-6-679-684.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Российское респираторное общество. Федеральные клинические рекомендации по диагностике и лечению хронической обструктивной болезни легких. Пульмонология. 2018; (3): 15-54. DOI:10.18093/0869-0189-2014-0-3-15-54.; Измеров Н.Ф., Чучалин А.Г., ред. Профессиональные заболевания органов дыхания: национальное руководство. М.: ГЭОТАР-Медиа; 2015.; Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2021 Report. Available at: https://goldcopd.org/wp-content/uploads/2020/11/gold-report-2021-v1.1-25Nov20_WMV.pdfTest [Accessed: June 10, 2021].; Меньшиков В.В., ред. Методики клинических лабораторных исследований: справочное пособие. М.: Лабора; 2009. Т. 1.; Органов Р.Г., ред. Национальные рекомендации по диагностике и лечению метаболического синдрома. 3-е изд. М.: Солицея-Полигра; 2010.; Garantziotis S., Brezina M., Castelnuovo P. et al. The role of hyaluronan in the pathobiology and treatment of respiratory disease. J. Physiol. Lung Cell. Mol. Physiol. 2016; 310 (9): L785-795. DOI:10.1152/ajplung.00168.2015.; Lipson D.A., Barnhart F., Brealey N. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 2018; 378 (18): 1671-1680. DOI:10.1056/NEJMoa1713901.; https://journal.pulmonology.ru/pulm/article/view/2423Test

  10. 10
    دورية أكاديمية