يعرض 1 - 10 نتائج من 199 نتيجة بحث عن '"V. A. Deev"', وقت الاستعلام: 1.30s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: This research was funded by the Russian Science Foundation (Project No. 21-79-10432, https://rscf.ru/project/21-79-10432Test/)., Исследование выполнено за счет гранта Российского научного фонда № 21-79-10432, https://rscf.ru/project/21-79-10432Test/

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 6 (2022); 32-41 ; Известия вузов. Цветная металлургия; № 6 (2022); 32-41 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1427/617Test; Mortensen A., Llorca J. Metal matrix composites. Annu. Rev. Mater. Res. 2010. Vol. 40. P. 243—270. DOI:10.1146/annurev-matsci-070909-104511.; Mavhungu S.T., Akinlabi E.T., Onitiri M.A., Varachia F.M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI:10.1016/j.promfg.2016.12.045.; Pramanik S., Cherusseri J., Baban N.S., Sowntharya L., Kar K.K. Metal matrix composites: Theory, techniques, and applications. In: Composite Materials (Ed. Kar K.). Berlin, Heidelberg: Springer, 2017. Р. 369—411. DOI:10.1007/978-3-662-49514-8_11.; Прусов Е.С., Панфилов А.А., Кечин В.А. Роль порошковых прекурсоров при получении композиционных сплавов жидкофазными методами. Известия вузов. Порошковая металлургия и функциональные покрытия. 2016. No. 2. С. 47—58. Prusov E.S., Panfilov A.A., Kechin V.A. Role of powder precursors in production of composite alloys using liquidphase methods. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No 3. P. 308—316. DOI:10.3103/S1067821217030154.; Kala H., Mer K.K.S., Kumar S. A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Proc. Mater. Sci. 2014. Vol. 6. P. 1951—1960. DOI:10.1016/j.mspro.2014.07.229.; Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process. 2020. Vol. 59. P. 131—152. DOI:10.1016/j.jmapro.2020.09.010.; Prusov E.S., Panfilov A.A. Properties of cast aluminumbased composite alloys reinforced by endogenous and exogenous phases. Russ. Metall. (Met.). 2011. No. 7. P. 670—674. DOI:10.1134/S0036029511070123.; Панфилов А.А., Прусов Е.С., Кечин В.А. Металлургия алюмоматричных композиционных сплавов: Монография. Владимир: Изд-во ВлГУ, 2017. Panfilov A.A., Prusov E.S., Kechin V.A. Metallurgy of aluminum matrix composite alloys: monograph. Vladimir: Vladimirskii gosudarstvennii universitet im. A.G. imeni N.G. Stoletovych, 2017 (In Russ.).; Delannay F., Froyen L., Deruyttere A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J. Mater. Sci. 1987. Vol. 22. P. 1—16.; Malaki M., Fadaei Tehrani A., Niroumand B., Gupta M. Wettability in metal matrix composites. Metals. 2021. Vol. 11. Iss. 7. Art. 1034. DOI:10.3390/met11071034.; Eustathopoulos N., Voytovych R. The role of reactivity in wetting by liquid metals: A review. J. Mater. Sci. 2016. Vol. 51. P. 425—437. DOI:10.1007/s10853-015-9331-3.; Hashim J., Looney L., Hashmi M.S.J. The wettability of SiC particles by molten aluminium alloy. J. Mater. Process. Technol. 2001. Vol. 119. P. 324—328. DOI:10.1016/S0924-0136(01)00975-X.; Egry I., Ricci E., Novakovic R., Ozawa S. Surface tension of liquid metals and alloys — Recent developments. Adv. Colloid Interface Sci. 2010. Vol. 159. P. 198—212.; Carotenuto G., Gallo A., Nicolais L. Degradation of SiC particles in aluminium-based composites. J. Mater. Sci. 1994. Vol. 29. P. 4967—4974.; Chernyshova T.A., Rebrov A.V. Interaction kinetics of boron carbide and silicon carbide with liquid aluminium J. Less-Comm. Met. 1986. Vol. 117. Iss. 1-2. P. 203—207.; Pech-Canul M.I., Katz R.N., Makhlouf M.M. Optimum parameters for wetting silicon carbide by aluminum alloys. Metal. Mater. Trans. A: Phys. Metal. Mater. Sci. 2000. Vol. 31. Iss. 2. P. 565—573.; Prusov E.S., Deev V.B., Shurkin P.K., Arakelian S.M. The effect of alloying elements on the interaction of boron carbide with aluminum melt. Non-Ferr. Metals. 2021. Vol. 50. No. 1. P. 27—33. DOI:10.17580/nfm.2021.01.04.; Shi R., Luo A.A. Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad. 2018. Vol. 62. P. 1—17. DOI:10.1016/j.calphad. 2018.04.009.; Jung J.-G., Cho Y.-H., Lee J.-M., Kim H.-W., Euh K. Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad. 2019. Vol. 64. P. 236—247. DOI:10.1016/j.calphad.2018.12.010.; Belov N.A., Naumova E.A., Akopyan T.K., Doroshenko V.V. Phase diagram of the Al—Ca—Fe—Si system and its application for the design of aluminum matrix composites. JOM. 2018. Vol. 70. P. 2710—2715. DOI:10.1007/s11837-018-2948-3.; Prusov E., Deev V., Shunqi M. Thermodynamic assessment of the Al—Mg—Si—Ti phase diagram for metal matrix composites design. Mater. Today: Proc. 2019. Vol. 19. Pt. 5. P. 2005—2008. DOI:10.1016/j.matpr.2019.07.061.; Viala J.C., Fortier P., Bouix J. Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide. J. Mater. Sci. 1990. Vol. 25. Iss. 3. P. 1842—1850. DOI:10.1007/BF01045395.; Schuster J.C., Palm M. Reassessment of the binary aluminum-titanium phase diagram. J. Phase Equilib. Diffus. 2006. Vol. 27. P. 255—277. DOI:10.1361/154770306X109809.; Toptan F., Kilicarslan A., Kerti I. The effect of ti addition on the properties of Al—B4C interface: A microstructural study. Mater. Sci. Forum. 2010. Vol. 636—637. P. 192—197. DOI:10.4028/www.scientific.net/msf.636-637.192.; Zhang Z., Fortin K., Charette A., Chen X.-G. Effect of titanium on microstructure and fluidity of Al—B4C composites. J. Mater. Sci. 2011. Vol. 46. P. 3176—3185. DOI:10.1007/s10853-010-5201-1.; https://cvmet.misis.ru/jour/article/view/1427Test

  2. 2
    دورية أكاديمية

    المساهمون: All metallographic studies were conducted in the common use center of the Altai State Technical University (Barnaul), Все металлографические исследования выполнены в Центре коллективного пользования АлтГТУ (г. Барнаул)

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 1 (2022); 60-66 ; Известия вузов. Цветная металлургия; № 1 (2022); 60-66 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1326/574Test; Baruwa A.D., Akinlabi E.T., Oladijo O.P. Surface coating processes: from conventional to the advanced methods (A short review). In: Selected articles from ICMMPE 2019. Advances manufacturing engineering. Lecture notes in mechanical engineering. Singapore: Springer, 2020. P. 483—494. https://doi.org/10.1007/978-981-15-5753-8_44Test.; Ovcharenko P.G., Makhneva T.M., Shabanova I.N., Terebova N.S. Composition of surface layers of titanium alloy after electrospark alloying. Metal Sci. Heat Treat. 2020. Vol. 62. P 195—198. DOI:10.1007/s11041-020-00553-w.; Hossam A. Kishawy, Ali Hosseini. Machining difficult-to-cut materials. Basic principles and challenges. Springer Intern. Publ. AG. Part of Springer Nature, 2019. https://doi.org/10.1007/978-3-319-95966-5Test.; Тюрнина З.Г., Тюрнина Н.Г. Формирование износостойких и коррозионно-стойких покрытий на титане. Физика и химия стекла. 2012. Т. 38. No. 6S. С. 905—909.; Li C., Li M.S., Zhou Y.C. Improving the surface hardness and wear resistance of Ti3SiC2 by boronizing treatment. Surface Coat. Technol. 2007. No. 201. Р. 6005—6011. DOI:10.1016/j.surfcoat.2006.11.008.; Lizhi Liu. Surface hardening of titanium alloys by gas phase nitridation under kinetic control: Diss. of PhD. Cleveland: Case Western Reserve University, 2005. URL: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=case1094223428&disposition=inlineTest (accessed: 29.07.2021).; Liu Y., Xu X., Xiao Y., Niu T., Tabie T., Li Chong, Li Chen. High-temperature oxidation behavior of Al-modified boronized coating prepared on Ti—6Al—4V by thermal diffusion. J. Mater. Eng. Perform. 2020. Vol. 29. P. 6503—6512. DOI:10.1007/s11665-020-05170-5.; Matsushita M. Boronization and carburization of superplastic stainless steel and titanium-based alloys. Materials. 2011. Vol. 4. Р. 1309—1320. DOI:10.3390/ma4071309.; Li Y., Su K., Bai P. Effect of TiBCN content on microstructure and properties of laser cladding Ti/TiBCN composite coatings. Met. Mater. Int. 2019. Vol. 25. P. 1366—1377. DOI:10.1007/s12540-019-00287-2.; Kobeleva L.I., Bolotova L.K., Kalashnikov I.E., Mikheev R.S., Kolmakov A.G. Effect of microcrystalline boron particles on structure and tribological properties of welded B83 babbitt layers. Inorg. Mater.: Appl. Res. 2020. Vol. 11. P. 1—6. DOI:10.1134/S2075113320010207.; Ivanov S.G., Guriev A.M., Starostenkov M.D., Ivanova T.G., Levchenko A.A. Special features of preparation of saturating mixtures for diffusion chromoborating. Russ. Phys. J. 2014. Vol. 57. P. 266—269.; Ivanov S.G., Guriev M.A., Loginova M.V., Deev V.B., Guriev A.M. Boriding of titanium OT4 from powder saturating media. Russ. J. Non-Ferr. Met. 2017. Vol. 58. P. 244—249. DOI:10.3103/S1067821217030051.; Guryev A., Ivanov S., Guryev M., Mei S., Quan Z. Complex diffusion saturation of carbon steel 1045 with boron, chromium, titanium and silicon. IOP Conf. Ser.: Mat. Sci. Eng. 2021. Vol. 1100. P. 012048. DOI:10.1088/1757-899X/1100/1/012048.; Garmaeva I.A., Guriev A.M., Ivanova T.G. Comparative study of saturating power boriding media of different composition. Lett. Mater. 2016. Vol. 6. P. 262—265. DOI:10.22226/2410-3535-2016-4-262-265.; Hüseyin Ç., Kemal Ö.M., Hasan A., Mehmet L.A. Boriding titanium alloys at lower temperatures using electrochemical methods. Thin Solid Films. 2007. No. 515. Р. 5348—5352. DOI:10.1016/j.tsf.2007.01.020.; Song Jz., Tang W., Huang Jw., Wang Zk., Fan Xm., Wang Kh. Effects of boronizing treatment on microstructural development and mechanical properties of additively manufactured TC4 titanium alloys. J. Iron Steel Res. Int. 2019. Vol. 26. P. 329—334. DOI:10.1007/s42243-018-0216-y.; Fenghua L., Xiaohong Y., Jinglei Z., Zhanguo F., Dianting G., Zhengping X. Growth kinetics of titanium boride layers on the surface of Ti6Al4V. Acta Metall. Sin. A. 2010. Vol. 23. Р. 293—300.; Иванов С.Г., Гурьев М.А., Гурьев А.М., Романенко В.В. Фазовый анализ боридных комплексных диффузионных слоев на углеродистых сталях при помощи цветного травления. Фундам. пробл. современного материаловедения. 2020. Т. 17. No. 1. С. 74—77.; Kazakov A.A., Ryaboshuk S.V., Lyubochko D.A., Chigintsev L.S. Research on the origin of nonmetallic inclusions in high-strength low-alloy steel using automated feature analysis. Microsc. Microanal. 2015. Vol. 21. P. 1755—1756. DOI:10.1017/S1431927615009551.; Vander Voort G.F., Pakhomova O., Kazakov A. Evaluation of normal versus non-normal grain size distributions. Mater. Perform. Character. 2016. Vol. 5. P. 521—534. DOI:10.1520/MPC20160001.; ASM Handbook. Vol. 9: Metallography and microstructures. Ed. G.F. Vander Voort. ASM International, 2004. DOI:10.31399/asm.hb.v09.9781627081771.; Kazakov A., Kiselev D. Industrial application of thixomet image analyzer for quantitative description of steel and alloy’s microstructure. Metallogr. Microstruct. Anal. 2016. Vol. 5. P. 294—301. DOI:10.1007/s13632-016-0289-6.; Vander Voort G.F. Computer-aided microstructural analysis of specialty steels. Mater. Character. 1991. Vol. 27. P. 241—260. DOI:10.1016/1044-5803(91)90040-B.; Kazakov A.A., Kiselev D.V., Kazakova E.I. Methodological features of microstructural heterogeneity estimation by the thickness of steel plates. Chernye Metally. 2021. No. 7. P. 65—75. DOI:10.17580/chm.2021.07.06.; Kazakov A., Kovalev P., Ryaboshuk S. Metallurgical expertise as the base for determination of nature of defects in metal products. CIS Iron Steel Rev. 2007. Vol. 1—2. P. 7.; Liu Y., Chai L., Ma X., Cui Y., Chen Z., Xiang Z. Effect of boron addition methods on microstructure and mechanical properties of a near-α titanium alloy. In: Physics and engineering of metallic materials. CMC 2018. Springer proceedings in physics. Vol. 217. Singapore: Springer, 2019. DOI:10.1007/978-981-13-5944-6_6.; Chkhartishvili L., Tsagareishvili O., Mikeladze A., Chedia R., Kvatchadze V., Ugrekhelidze V. Highly stable boron carbide based nanocomposites. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham., 2020. DOI:10.1007/978-3-030-11155-7_81-1.; Jiancheng G. High-pressure sintering of boron carbidetitanium diboride composites and its densification mechanism. J. Wuhan Univer. Technol-Mater. Sci. 2020. Vol. 35. DOI:10.1007/s11595-020-2264-y.; Biplab Sarma. Accelerated kinetics and mechanism of growth of boride layers on titanium under isothermal and cyclic diffusion: Diss. of PhD. Utah: University of Utah, 2011. URL: https://www.proquest.com/docview/858204585Test (accessed: 29.07.2021).; Huang Y.G., Chen J.R., Zhang M.L., Zhong X.X., Wang H.Q., Li Q.Yu. Electrolytic boronizing of titanium in Na2B4O7—20%K2CO3. Mater. Manufact. Proces. A. 2013. Vol. 28. P. 1310—1313.; Vadchenko S.G. Dependence of the burning rates of tapes of Ti + xB mixtures on boron concentration. Combus. Explos. Shock Waves. 2019. Vol. 55. P. 177—183. DOI:10.1134/S0010508219020060.; Aich S., Chandran K.S., Ravi Ch. TiB Whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall. Mater. Trans. 2002. Vol. 33A. Р. 3489—3498.; Malkin I., Klyuev V., Popov D., Ryazantseva A., Savenko V. Physical and chemical mechanics of the synthesis of boron-containing composite powders. Russ. J. Phys. Chem. A. 2020. Vol. 94. P. 490—495. DOI:10.1134/S0036024420030206.; Sanders A., Tikekar N., Lee C., Chandran K. Surface hardening of titanium articles with titanium boride layers and its effect on substrate shape and surface texture. J. Manuf. Sci. Eng. 2010. Vol. 131. Р. 1—8.; https://cvmet.misis.ru/jour/article/view/1326Test

  3. 3
    دورية أكاديمية

    المساهمون: This research was funded by the Russian Science Foundation (Project № 20-19-00687), Исследование выполнено за счет гранта Российского научного фонда (проект № 20-19-00687)

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 3 (2022); 30-37 ; Известия вузов. Цветная металлургия; № 3 (2022); 30-37 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1375/589Test; Mortensen A., Llorca J. Metal matrix composites. Annu. Rev. Mater. Res. 2010. Vol. 40. Iss. 1. P. 243—270. DOI:10.1146/annurev-matsci-070909-104511.; Rohatgi P. K., Ajay Kumar P., Chelliah N. M., Rajan T. P. D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. No. 8. P. 2912—2926. DOI:10.1007/s11837-020-04253-x.; Mavhungu S. T., Akinlabi E. T., Onitiri M. A., Varachia F. M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI:10.1016/j.promfg.2016.12.045.; Georgatis E., Lekatou A., Karantzalis A. E., Petropoulos H., Katsamakis S., Poulia A. Development of a cast Al—Mg 2 Si—Si in situ composite: Microstructure, heat treatment, and mechanical properties. J. Mater. Eng. Perform. 2013. Vol. 22. P. 729—741.; Moharami A., Razaghian A., Babaei B. Role of Mg 2 Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al—Mg 2 Si composite. DOI:10.1177/0021998320925528.; Liu Z., Xie M., Liu X. M. Microstructure and properties of insitu Al—Si—Mg 2 Si composite prepared by melt superheating. Appl. Mech. Mater. 2011. Vol. 52. P. 750—754. DOI:10.4028/www.scientific.net/AMM.52-54.750.; Nordin N. A., Farahany S., Ourdjini A., Abu Bakar T. A., Hamzah E. Refinement of Mg 2 Si reinforcement in a commercial Al—20%Mg 2 Si insitu composite with bismuth, antimony and strontium. Mater. Charact. 2013. Vol. 86. P. 97—107.; Si Y., Kevluzov D. S. Research on the long-lasting and remelting properties of Nd modification effect on cast Al—Mg 2 Si metal matrix composite. Mater. Sci. Forum. 2020. Vol. 1001. P. 196—201. DOI:10.4028/www.scientific.net/msf.1001.196.; Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J. The study of Li on the microstructure and tensile properties of cast Al—Mg 2 Si metal matrix composite. J. Alloys Compd. 2011. Vol. 509. P. 9026—9033.; Zhao Y. G., Qin Q. D., Zhou W., Liang Y. H. Microstructure of the Cemodified in situ Mg 2 Si/Al—Si—Cu composite. J. Alloys Compd. 2005. Vol. 389. P. L1—L4.; Deev V. B., Prusov E. S., Kutsenko A. I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metall. Ital. 2018. No. 2. P. 16—24.; Konovalov S. V., Danilov V. I., Zuev L. B., Filip’ev R. A., Gromov V. E. On the influence of the electrical potential on the creep rate of aluminum. Phys. Solid State. 2007. Vol. 49 (8). P. 1457—1459. DOI:10.1134/S1063783407080094.; Aryshenskii E., Hirsch J., Yashin V., Konovalov S., Kawalla R. Influence of local inhomogeneity of thermomechanical treatment conditions on microstructure evolution in aluminum alloys. J. Mater. Eng. Perform. 2018. Vol. 27 (12). P. 6780—6799. DOI:10.1007/s11665-018-3733-8.; Nordin N. A., Abubakar T., Hamzeh E., Farahany S., Ourdjini A. Effect of superheating melt treatment on Mg 2 Si particulate reinforcement in Al—Mg 2 Si—Cu in situ composite. Procedia Eng. 2017. Vol. 184. P. 595—603.; Zhang J. T., Zhao Y. G., Xu X. F., Liu X. B. Effect of ultrasonic on morphology of primary Mg 2 Si in insitu Mg 2 Si/Al composite. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. P. 2852—2856.; Деев В. Б. Модифицирование литейных алюминиевых сплавов системы Al—Mg—Si обработкой жидкой фазы наносекундными электромагнитными импульсами / В. Б. Деев [и др.] // Известия вузов. Цветная металлургия. – 2021. – Т. 27. – No. 4. – С. 32—41 / Deev V. B., Ri E. H., Prusov E. S., Ermakov M. A., Goncharov A. V. Grain refinement of casting aluminum alloys of the Al—Mg—Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russ. J. Non-Ferr. Met. 2021. Vol. 62. No. 5. P. 522—530.; Li J., An Q., Wu S., Li F., Lü S., Guo W. Relationship of Mg 2 Si morphology with Mg 2 Si content and its effect on properties of in-situ Mg 2 Si/Al—Cu composites. J. Alloy Compd. 2019. Vol. 808. Paper 151771.; Li C., Wu Y. Y., Li H., Liu X. F. Morphological evolution and growth mechanism of primary Mg 2 Si phase in Al—Mg 2 Si alloys. Acta Mater. 2011. Vol. 59. P. 1058—1067. DOI:10.1016/j.actamat.2010.10.036.; Li C., Wang C., Ju H., Xue X., Zha M., Wang H. Prediction of modified morphology for primary Mg 2 Si induced by trace-element adsorption: A first-principles study. Materialia. 2020. Vol. 14. Paper 100875. DOI:10.1016/j.mtla.2020.100875.; Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al—Mg 2 Si composites. AIP Conf. Proc. 2019. Vol. 2162. Paper 020145. DOI:10.1063/1.5130355.; Deev V., Ri E., Prusov E. Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings. In: Proc. 73-rd World foundry congress «Creative Foundry» (WFC 2018) (Polish Foundrymen’s Association). 2018. P. 155—156.; Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11. No. 6. Paper 954.; Ri E. K., Hosen R., Ermakov M. A., Knyazev G. A., Dzhou B. L.,Ri V. E. Solidification of low-silicon iron under the action of nanosecond electromagnetic pulses. Steel Trans. 2013. Vol. 43. No. 8. P. 471—473.; Krymsky V. V., Shaburova N. A., Litvinova E. V. Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state. Mater. Sci. Forum. 2016. Vol. 843. P. 106—110.; Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application. Mater. Sci. Forum. 2019. Vol. 946. P. 655—660. DOI:10.4028/www.scientific.net/MSF.946.655.; https://cvmet.misis.ru/jour/article/view/1375Test

  4. 4
    دورية أكاديمية

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 2 (2022); 60-70 ; Известия вузов. Цветная металлургия; № 2 (2022); 60-70 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1358/583Test; Bourell D.L., Beaman J.J., Wohlers T., Frazier W., Kuhn H., Seifi M. History of additive manufacturing. In: Additive Manufacturing Processes. Vol. 24. ASM International, 2020. P. 1—8.; Hopkinson N., Hague R.J.M., Dickens P.M. Rapid manufacturing an industrial revolution for the digital age. The Atrium, Southern Gate, Chichester, England: John Wiley & Sons Ltd., 2006.; Attaran М. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons. 2017. Vol. 60. Iss. 5. P. 677—688.; Gradl P., Greene S. E., Protz Ch., Bullard B., Buzzell J. Additive manufacturing of liquid rocket engine combustion devices: A summary of process developments and hot-fire testing results. In: ASEE Joint Propulsion Conference. AIAA 2018-4625. Session: Additive manufacturing for propulsion systems I (July 9—11, 2018, Cincinnati, Ohio, USA). Р. 1—34.; Ngo T. D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites. Pt. B: Engineering. 2018. Vol. 143. No. 15. P. 172—196.; Dutta Bhaskar, Palaniswamy S., Choi Juneho, Song Lijun, Mazumder Jyoti. Additive manufacturing by direct metal deposition. Adv. Mater. Proces. 2011. Vol. 169. Р. 33—36.; Niu X., Singh S., Garg A., Singh H., Panda B., Peng X., Zhang Q. Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Front. Mech. Eng. 2019. No. 14. P. 282—298.; Pinkerton A.J. Laser direct metal deposition: Theory and applications in manufacturing and maintenance. In: Advances in Laser Materials Processing. Coventry, UK, Woodhead Publ., 2010. Р. 461—491.; Хакимов А.М., Жаткин С.С., Щедрин Е.Ю. Исследование структуры и свойств деталей из жаропрочных сплавов, полученных технологией прямого лазерного выращивания. Известия Самарского научного центра РАН. 2020. Т. 22. No. 2. С. 59—66.; Bo Chen, Xin Xi, Tao Gu, Caiwang Tan, Xiaoguo Song. Influence of heat treatment on microstructure evolution and mechanical properties of TiB2/Al 2024 composites fabricated by directed energy deposition. J. Mater. Res. Technol. 2020. Vol. 9. Iss. 6. P. 14223—14236.; Xiaoqiang Zhang, Ze Chai, Huabin Chena, Luming Xu, Hao Lu, Xiaoqi Chen. A novel method to prevent cracking in directed energy deposition of Inconel 738 by in-situ doping Inconel 718. Mater. Design. 2021. Vol. 197. Art.109214.; Гиршов В.Л., Котов С.А., Цеменко В.Н. Современные технологии в порошковой металлургии: Учеб. пос. СПб.: Изд-во Политехн. ун-та, 2010.; Zhi-YuHan, Ping-XiangZhang, Li-MingLei, Shu-Jin Liang, Qing-Xiang Wang, Yun-Jin Lai, Jin-Shan Li. Morphology and particle analysis of the Ni3Al-based spherical powders manufactured by supreme-speed plasma rotating electrode process. J. Mater. Res. Technol. 2020. Vol. 9. Iss. 6. P. 13937—13944.; Kaplanskii Yu.Yu., Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Loginov P.A., Logachev I.A. The structure and properties of pre-alloyed NiAl—Cr(Co,Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. J. Mater. Res. Technol. 2018. Vol. 7. Iss. 4. P. 461—468.; Zhong Ch., Chen J., Linnenbrink S., Gasser A., Sui Sh., Poprawe R. A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder. Mater. Design. 2016. Vol. 107. P. 386—392.; Zhang Y., Li Z., Nie P., Wu Y. Effect of cooling rate on the microstructure of laser-remelted Inconel 718 coating. Metal. Mater. Trans. A. 2013. Vol. 44. Р. 5513—5521.; Lee Y., Nordin M., Babu S.S., Farson Dave F. Effect of fluid convection on dendrite arm spacing in laser deposition. Metal. Mater. Trans. B. 2014. Vol. 45. Р. 1520—1529.; Sui S., Chen J., Ming X.L., Zhang S.P., Lin X., Huang W.D. The failure mechanism of 50 % laser additive manufactured Inconel 718 and the deformation behavior of laves phases during a tensile process. Int. J. Adv. Manuf. Technol. 2017. Vol. 91. Р. 2733—2740.; Lakshmi L. Parimi, Ravi G. A., Daniel Clark, Moataz M. Attallah. Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 2014. Vol. 89. P. 102—111.; Tammas-Williams S., Withers P. J., Todd I., Prangnell P.B. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. 2017. No. 7. P. 1—13.; Farber B., Small K.A., Allen C., Causton R.J., Nichols A., Simbolick J., Taheri M.L. Correlation of mechanical properties to microstructures in Inconel 718 fabricated by direct metal laser sintering. Mater. Sci. Eng. A-Struct. 2018. Vol. 712. Р. 539—547.; Sui S., Tan H., Chen J., Zhong Ch., Li Z., Fan W., Gasser A., Huang W. The influence of laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019. Vol. 164. P. 413—427.; Konovalov S., Osintsev K., Golubeva A., Smelov V., Ivanov Y., Chen X., Komissarova I. Surface modification of Ti-based alloy by selective laser melting of Ni-based superalloy powder. J. Mater. Res. Technol. 2020. Vol. 9 (4). Р. 8796— 8807. DOI:10.1016/j.jmrt.2020.06.016.; Ageev E.V., Ageeva E.V., Altukhov A.Y. A Study of the structure and properties of hardened additive articles obtained from electroerosion cobalt-chromium powder. Metal Sci. Heat Treat. 2021. Vol. 63 (3-4). Р. 210—213. DOI:10.1007/ s11041-021-00672-y.; Qian S., Dai Y., Guo Y., Zhang Y. Microstructure and wear resistance of multi-layer ni-based alloy cladding coating on 316L SS under different laser power. Materials. 2021. Vol. 14 (4). No. 781. Р. 1—15. DOI:10.3390/ ma14040781.; https://cvmet.misis.ru/jour/article/view/1358Test

  5. 5
    دورية أكاديمية

    المساهمون: This research was funded by the Russian Science Foundation (Project № 21-79-10432, https://rscf.ru/project/21-79-10432Test/). The study was carried out using the equipment of the interregional multispecialty and interdisciplinary center for the collective usage of promising and competitive technologies in the areas of development and application in industry/mechanical engineering of domestic achievements in the field of nanotechnology (Agreement No. 075-15-2021-692 of August 5, 2021)., Исследование выполнено за счет гранта Российского научного фонда № 21-79-10432, https://rscf.ru/project/21-79-10432Test/. Исследования проводились с использованием оборудования межрегионального многопрофильного и междисциплинарного Центра коллективного пользования перспективных и конкурентоспособных технологий по направлениям развития и применения в промышленности/машиностроении отечественных достижений в области нанотехнологий (соглашение № 075-15-2021-692 от 5 августа 2021 г).

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 5 (2022); 46-54 ; Известия вузов. Цветная металлургия; № 5 (2022); 46-54 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1414/609Test; Rohatgi P.K., Ajay Kumar P., Chelliah N.M., Rajan T.P.D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. No. 8. P. 2912—2926. DOI:10.1007/ s11837-020-04253-x.; Sharma A.K., Bhandari R., Aherwar A., Rimašauskienė R., Pinca-Bretotean C. A study of advancement in application opportunities of aluminum metal matrix composites. Mater. Today: Proc. 2020. Vol. 26. Pt. 2. P. 2419—2424.; Mavhungu S.T., Akinlabi E.T., Onitiri M.A., Varachia F.M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI:10.1016/j.promfg.2016.12.045.; Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process. 2020. Vol. 59. P. 131—152. DOI:10.1016/j.jmapro.2020.09.010.; Kala H., Mer K.K.S., Kumar S. A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Proc. Mat. Sci. 2014. Vol. 6. P. 1951—1960.; Reddy Sunil Kumar K., Kannan M., Karthikeyan R., Prashanth S., Rohith Reddy B. A review on mechanical and thermal properties of aluminum metal matrix composites. E3S Web Conf. 2020. Vol. 184. Article No. 01033.; Koli D.K., Agnihotri G., Purohit R. Advanced aluminium matrix composites: The critical need of automotive and aerospace engineering fields. Mater. Today: Proc. 2015. Vol. 2. Iss. 4—5. P. 3032—3041.; Surappa M.K. Aluminium matrix composites: challenges and opportunities. Sadhana. 2003. Vol. 28, Iss. 1—2. P. 319—334.; Midling O.T., Grong O. Processing and properties of particle reinforced Al—SiC MMCs. Key Eng. Mater. 1995. Vol. 104—107 (Pt. 1). P. 329—354.; Soltani S., Azari Khosroshahi R., Taherzadeh Mousavian R., Jiang Z., Fadavi Boostani A., Brabazon D. Stir casting process for manufacture of Al—SiC composites. Rare Metals. 2017. Vol. 36. Iss. 7. P. 581—590.; Hashim J., Looney L., Hashmi M.S.J. The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 2001. Vol. 119. Iss. 1—3. P. 329—335.; Cong X.-S., Shen P., Wang Y., Jiang Q. Wetting of polycrystalline SiC by molten Al and Al—Si alloys. Appl. Surf. Sci. 2014. Vol. 317. P. 140—146.; An Q., Cong X.-S., Shen P., Jiang Q.-C. Roles of alloying elements in wetting of SiC by Al. J. Alloys Compd. 2019. Vol. 784. P. 1212—1220.; Yang Y., Li S., Liang Y., Li B. Effect of temperature on wetting kinetics in Al/SiC system: A molecular dynamic investigation. Compos. Interfaces. 2020. Vol. 27. Iss. 6. P. 587—600.; Sijo M.T., Jayadevan K.R. Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review. Proc. Technol. 2016. Vol. 24. P. 379—385. DOI:10.1016/j.protcy.2016.05.052.; Carotenuto G., Gallo A., Nicolais L. Degradation of SiC particles in aluminium-based composites. J. Mater. Sci. 1994. Vol. 29. Iss. 19. P. 4967—4974.; Sijo M.T., Jayadevan K.R. Characterization of stir castaluminium silicon carbide metal matrix composite. Mater. Today: Proc. 2018. Vol. 5. Iss. 11. Pt. 3. P. 23844—23852.; Prabu S.B., Karunamoorthy L., Kathiresan S., Mohan B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 2006. Vol. 171. Iss. 2. P. 268—273.; Prusov E., Panfilov A. Influence of repeated remeltings on formation of structure of castings from aluminum matrix composite alloys. In: METAL 2013: Proc. 22nd Intern. Conf. on metallurgy and materials. 2013. P. 1152—1156.; Шабалдин И.В., Прусов Е.С. Программа для математической оценки степени равномерности распределения армирующих частиц в структуре композиционных материалов. Св-во о регистрации программы для ЭВМ No. 2021619286 (РФ). 2021.; Deng X., Chawla N. Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites. J. Mater. Sci. 2006. Vol. 41. P. 5731—5734.; Hashim J., Looney L., Hashmi M.S.J. Particle distribution in cast metal matrix composites — Part I. J. Mater. Process. Technol. 2002. Vol. 123. Iss. 2. P. 251—257.; Yang Z., Pan L., Han J., Li Z., Wang J., Li X., Li W. Experimental and simulation research on the influence of stirring parameters on the distribution of particles in cast SiCp/A356 composites. J. Eng. 2017. Vol. 2017. Article ID 9413060. P. 1—11. DOI:10.1155/2017/9413060.; Lee J.-C., Byun J.-Y., Park S.-B., Lee H.-I. Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composite. Acta Mater. 1998. Vol. 46. P. 2635—2643.; Lloyd D.J. The solidification microstructure of particulate reinforced aluminium/SiC composites. Compos. Sci. Technol. 1989. Vol. 35. Iss. 2, P. 159—179.; https://cvmet.misis.ru/jour/article/view/1414Test

  6. 6
    دورية أكاديمية

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 2 (2022); 43-59 ; Известия вузов. Цветная металлургия; № 2 (2022); 43-59 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1357/582Test; Xue D., Balachandran P., Hogden J., Theiler J., Xue D., Lookman T. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 2016. Vol. 7. Art. 11241. DOI:10.1038/ncomms11241.; Srinivasan S., Broderick S. R., Zhang R., Mishra A., Sinnott S. B., Saxena S. K., LeBeau J. M., Rajan K. Mapping chemical selection pathways for designing multicomponent alloys: an informatics framework for materials design. Sci. Rep. 2015. Vol. 5. Art. 17960. DOI:10.1038/ srep17960.; Vojtech D. Challenges for research and development of new aluminum alloys. Metalurgija. 2010. Vol. 49. No. 3. P. 181—185.; Mortensen A., Llorca J. Metal matrix composites. Annu. Rev. Mater. Res. 2010. Vol. 40. Iss. 1. P. 243—270. DOI:10.1146/annurev-matsci-070909-104511.; Rohatgi P.K., Ajay Kumar P., Chelliah N.M., Rajan T.P.D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. No. 8. P. 2912—2926. DOI:10.1007/ s11837-020-04253-x.; Mavhungu S.T., Akinlabi E.T., Onitiri M.A., Varachia F.M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI:10.1016/j.promfg.2016.12.045.; Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process. 2020. Vol. 59. P. 131—152. DOI:10.1016/j.jmapro.2020.09.010.; Sijo M.T., Jayadevan K.R. Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review. Proc. Technol. 2016. Vol. 24. P. 379—385. DOI:10.1016/j.protcy.2016.05.052.; Pramanik S., Cherusseri J., Baban N.S., Sowntharya L., Kar K.K. Metal matrix composites: Theory, techniques, and applications. In: Composite materials (Ed. Kar K.). Berlin, Heidelberg: Springer, 2017. Р.369—411. DOI:10.1007/978-3-662-49514-8_11.; Singh L., Singh B., Saxena K.K. Manufacturing techniques for metal matrix composites (MMC): An overview. Adv. Mater. Process. Technol. 2020. Vol. 6. Iss. 2. P. 441—457. DOI:10.1080/2374068X.2020.1729603.; Parikh V.K., Badheka V.J., Badgujar A.D., Ghetiya N.D. Fabrication and processing of aluminum alloy metal matrix composites. Mater. Manuf. Process. 2021. Vol. 36. Iss. 14. P. 1604—1617. DOI:10.1080/10426914.2021.1914848.; Kandpal B.C., Kumar J., Singh H. Manufacturing and technological challenges in stir casting of metal matrix composites: A review. Mater. Today Proc. 2018. Vol. 5. Iss. 1. P. 5—10. DOI:10.1016/j.matpr.2017.11.046.; Suthar J., Patel K.M. Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process. 2018. Vol. 33. Iss. 5. P. 499—527. DOI:10.1080/10426914.2017.1401713.; Madhukar P., Selvaraj N., Rao C.S.P., Mishra S.K. Fabrication of light weight metal matrix nanocomposites using ultrasonic cavitation process: A state of review. Mater. Sci. Forum. 2019. Vol. 969. P. 882—888. DOI:10.4028/www. scientific.net/msf.969.882.; Jiao L., Zhao Y.T., Wang X.L., Wu Y., Yang S.N., Li K.N. The research progress of the in situ metal matrix composites. Key Eng. Mater. 2013. Vol. 575—576. P. 137—141. DOI:10.4028/www.scientific.net/kem.575-576.137.; David Raja Selvam J., Dinaharan I., Vibin Philip S., Mashinini P.M. Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2 + Al2O3) hybrid aluminum matrix composites. J. Alloys Compd. 2018. Vol. 740. P. 529—535. DOI:10.1016/j.jallcom. 2018.01.016.; Panfilov A., Prusov E. Current state and trends of development of aluminum matrix composite alloys. In: Proceedings of 22 nd International Conference on Metallurgy and Materials. (METAL 2013). 2013. P. 1195—1199.; Pramod S.L., Bakshi S.R., Murty B.S. Aluminum-based cast in situ composites: A review. J. Mater. Eng. Perform. 2015. Vol. 24. P. 2185—2207. DOI:10.1007/s11665-015- 1424-2.; Prusov E.S., Panfilov A.A. Properties of cast aluminum-based composite alloys reinforced by endogenous and exogenous phases. Russ. Metall. (Met.). 2011. No. 7. P. 670—674. DOI:10.1134/S0036029511070123.; Deev V.B., Prusov E.S., Kutsenko A.I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metall. Ital. 2018. No. 2. P. 16—24.; Селянин И.Ф., Деев В.Б., Белов Н.А., Приходько О.Г., Пономарева К.В. Физические модифицирующие воздействия и их влияние на кристаллизацию литейных сплавов. Известия вузов. Цветная металлургия. 2015. No. 3. С. 56—59.; Deev V.B., Selyanin I.F., Kutsenko A.I., Belov N.A., Ponomareva K.V. Promising resource saving technology for processing melts during production of cast aluminum alloys. Metallurgist. 2015. Vol. 58. P. 1123—1127. DOI:10.1007/s11015-015-0050-4.; Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application. Mater. Sci. Forum. 2019. Vol. 946. P. 655—660. DOI:10.4028/www.scientific.net/MSF.946.655.; Babu N.H., Fan Z., Eskin D.G. Application of external fields to technology of metal-matrix composite materials. TMS 2013 Annual Meeting. Henry B. Gonzalez Convention Center (San Antonio, Texas. 3—7 March 2013). TMS/Wiley. P. 1037—1044.; Djan E., Madam S.V., Babu N.H., Tamayo-Ariztondo J., Eskin D.G., Fan Z. Processing of Metal matrix composites under external fields and their application as grain refiner (Ed. Grandfield J.). Light Metals. 2014. P. 1401—1404.; Базин Ю.А., Курбатов В.Н., Баум Б.А. Рентгенографические исследования структуры ближнего порядка жидкого свинца. Расплавы. 1999. No. 1. С. 75—80.; Amati M., Balijepalli S.K., Mezzi A., Kaciulis S., Montanari R., Varone A. Temperature dependent phenomena in liquid LBE alloy. Mater. Sci. Forum. 2017. Vol. 884. P. 41— 52. DOI:10.4028/www.scientific.net/msf.884.41.; Popel’ P.S., Sidorov V.E., Calvo-Dahlborg M., Dahlborg U., Molokanov V.V. Effect of heat treatment of a liquid alloy on its properties in the molten state and after amorphization. Russ. Metall. (Met.). 2021. No. 2. P. 88—101. DOI:10.1134/S0036029521020208.; Чикова О.А., Вьюхин В.В., Цепелев В.С. Влияние перегрева расплава на литую структуру сплавов Al—Sn. Известия вузов. Цветная металлургия. 2021. No. 2. С. 40—48.; Deev V.B., Prusov E.S., Vdovin K.N., Bazlova T.A., Temlyantsev M.V. Influence of melting unit type on the properties of middle-carbon cast steel. ARPN J. Eng. Appl. Sci. 2018. Vol. 13. P. 998—1001.; Wang Q.L., Geng H.R., Zhuo M., Long F., Peng X. Effects of melt thermal rate treatment and modification of P and RE on hypereutectic Al—Si—Cu—Mg alloy. Mater. Sci. Technol. 2013. Vol. 29. P. 1233—1240. DOI:10.1179/1743284713Y.0000000267.; Wang Q., Geng H., Zhang S., Jiang H., Zuo M. Effects of melt thermal-rate treatment on Fe-containing phases in hypereutectic Al—Si alloy. Metal. Mater. Trans. A. 2014. Vol. 45. P. 1621—1630. DOI:10.1007/s11661-013-2081-4.; Wang Q., Zhang S., Zhang Z., Yan X., Geng H. Study of melt thermal-rate treatment and low-temperature pouring on Al—15%Si alloy. JOM. 2013. Vol. 65. No. 8. P. 958—966. DOI:10.1007/s11837-013-0657-5.; Deev V., Prusov E., Ri E., Prihodko O., Smetanyuk S., Chen X., Konovalov S. Effect of melt overheating on structure and mechanical properties of Al—Mg—Si cast alloy. Metals. 2021. Vol. 11. No. 9. Art. 1353. DOI:10.3390/met11091353.; Chen H., Jie J., Fu Y., Ma H., Li T. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. Iss. 5. P. 1295—1300. DOI:10.1016/S1003-6326(14)63191-5.; Zhang Y., Cheng X., Zhong H., Xu Z., Li L., Gong Y., Miao X., Song C., Zhai Q. Comparative study on the grain refinement of Al—Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals. 2016. Vol. 6. No. 7. Art. 170. DOI:10.3390/met6070170.; Тимошкин И.Ю., Никитин К.В., Никитин В.И., Деев В.Б. Влияние обработки расплавов электромагнитными акустическими полями на структуру и свойства сплавов системы Al—Si. Известия вузов. Цветная металлургия. 2016. No. 3. С. 28—33.; Arkulis M., Logunova O., Dolgushin D. Influence of magnetic field on formation of short range order regions in liquid metals: Fluctuation hypothesis. Key Eng. Mater. 2018. Vol. 777. P. 316—321. DOI:10.4028/www.scientific. net/kem.777.316.; Deev V., Ri E., Prusov E. Mechanism of influence of nanosecond electromagnetic pulses on crystallization behavior of aluminum alloys. In: Proceedings of 27-th International Conference on Metallurgy and Materials. Ostrava: Tanger Ltd., 2018. P. 1363—1369.; Zhang Y., Rabiger D., Willers B., Eckert S. The effect of pulsed electrical currents on the formation of macrosegregation in solidifying Al—Si hypoeutectic phases. Int. J. Cast Metal. Res. 2016. Vol. 30. P. 13—19. DOI:10.1080/13640461.2016.1174455.; Gromov V.E., Ivanov Yu.F., Stolboushkina O.A., Konovalov S.V. Dislocation substructure evolution on Al creep under the action of the weak electric potential. Mater. Sci. Eng. A. 2010. Vol. 527. Iss. 3. P. 858—861. DOI:10.1016/j. msea.2009.10.045.; Zuev L.B., Danilov V.I., Konovalov S.V., Filip’Ev R.A., Gromov V.E. Influence of contact potential difference and electric potential on the microhardness of metals. Phys. Solid State. 2009. Vol. 51. Iss. 6. P. 1137—1141. DOI:10.1134/S1063783409060092.; Wang X.J., Luo X.X., Cong F.G., Cui J.Z. Research progress of microstructure control for aluminium solidification process. Chin. Sci. Bull. 2013. Vol. 58. No. 4-5. P. 468— 473. DOI:10.1007/s11434-012-5585-1.; Zhao Z., Liu Y., Liu L. Grain refinement induced by a pulsed magnetic field and synchronous solidification. Mater. Manuf. Process. 2011. Vol. 26. Iss. 9. P. 1202—1206. DOI:10.1080/10426914.2011.564251.; Deev V., Ri E., Prusov E., Ermakov M., Slavinskaya N. Structure formation of cast Al—Mg—Si alloys during the melts irradiation with nanosecond electromagnetic pulses. IOP Conf. Ser.: Mater. Sci. Eng. 2020. Vol. 1001. Art. 012054. DOI:10.1088/1757-899X/1001/1/012054.; Kaldre I., Bojarevičs A. Electromagnetic contactless method for metal matrix composite production. Magnetohydrodynamics. 2020. Vol. 56. No. 2-3. P. 325—331. DOI:10.22364/mhd.56.2-3.24.; Zhang L., Li W., Yao J.P., Qiu H. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Mater. Lett. 2012. Vol. 66. Iss. 1. P. 190—192. DOI:10.1016/j.matlet. 2011.08.001.; Bai Q.-W., Ma Y.-L., Xing S.-Q., Feng Y.-F., Bao X.-Y., Yu W.-X. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing. Gongcheng Kexue Xuebao/Chin. J. Eng. 2017. Vol. 39. Iss. 12. P. 1828— 1834. DOI:10.13374/j.issn2095-9389.2017.12.008.; Liotti E., Lui A., Vincent R., Kumar S., Guo Z., Connolley T., Dolbnya I.P., Hart M., Arnberg L., Mathiesen R.H., Grant P.S. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al—15Cu alloy. Acta Mater. 2014. Vol. 70. P. 228—239. DOI:10.1016/j.actamat.2014.02.024.; Bai Q., Wang J., Xing S., Ma Y., Bao X. Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Sci. Rep. 2020. Vol. 10. Art. 10603. DOI:10.1038/s41598-020-67352-4.; Gong Y.-Y., Luo J., Jing J.-X., Xia Z.-Q., Zhai Q.-J. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater. Sci. Eng. A. 2008. Vol. 497. Iss. 1-2. P. 147— 152. DOI:10.1016/j.msea.2008.06.027.; Zi B.-T., Ba Q.-X., Cui J.-Z., Bai Y.-G., Na X.-J. Effect of strong pulsed electromagnetic field on metal’s solidified structure. Wuli Xuebao/Acta Phys. Sin. 2000. Vol. 49. Iss. 5. P. 1013—1014.; Ban C.Y., Cui J.Z., Ba Q.X., Lu G.M., Zhang B.J. Influence of pulsed magnetic field on microstructure and macro-segregation in 2024 Al-alloy. Acta Metall. Sin. (Engl. Lett.). 2002. Vol. 15. No. 4. P. 380—384.; Вдовин К.Н., Дубский Г.А., Деев В.Б., Егорова Л.Г., Нефедьев А.А., Прусов Е.С. Влияние магнитного поля на структурообразование при кристаллизации и физико-механические свойства алюминиевых сплавов. Известия вузов. Цветная металлургия. 2019. No. 2. С. 51—57.; Zhang L., Zhan W., Jin F., Zhou Q. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field. Mater. Sci. Technol. 2018. Vol. 34. Iss. 6. P. 698—702. DOI:10.1080/02670836.2017.1410925.; Eskin D.G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Mater. Sci. Technol. 2017. Vol. 33. Iss. 6. P. 636—645. DOI:10.1080/02670836.2016.1162415.; Sardar S., Karmakar S.K., Das D. Ultrasonic cavitation based processing of metal matrix nanocomposites: An overview. Adv. Mat. Res. 2014. Vol. 1042. P. 58—64. DOI:10.4028/www.scientific.net/amr.1042.58.; Liu Z., Xie M., Liu X.M. Microstructure and properties of in situ Al—Si—Mg2Si composite prepared by melt superheating. Appl. Mech. Mater. 2011. Vol. 52. P. 750— 754. DOI:10.4028/www.scientific.net/AMM.52-54.750.; Wang F., Eskin D., Mi J., Connolley T., Lindsay J., Mounib M. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater. 2016. Vol. 116. P. 354—363. DOI:10.1016/j. actamat.2016.06.056.; Wang H.M., Zhao B., He Y.Q., Zhao Y.N., Li G.R., Zhang Z. Effect of electromagnetic stirring on microstructure of in situ synthesized (Al2O3 + Al3Zr)P/Al composites. Adv. Mat. Res. 2011. Vol. 284-286. P. 94—97. DOI:10.4028/ www.scientific.net/amr.284-286.94.; Vorozhtsov S., Kudryashova O., Promakhov V., Dammer V., Vorozhtsov A. Theoretical and experimental investigations of the process of vibration treatment of liquid metals containing nanoparticles. JOM. 2016. Vol. 68. P. 3094—3100. DOI:10.1007/s11837-016-2147-z.; Прусов Е.С., Панфилов А.А., Кечин В.А. Роль порошковых прекурсоров при получении композиционных сплавов жидкофазными методами. Известия вузов. Порошковая металлургия и функциональные покрытия. 2016. No. 2. С. 47—58.; Malaki M., Fadaei Tehrani A., Niroumand B., Gupta M. Wettability in metal matrix composites. Metals. 2021. Vol. 11. No. 7. Art. 1034. DOI:10.3390/met11071034.; Cong X., Shen P., Wang Y., Jiang Q. Wetting of polycrystalline SiC by molten Al and Al—Si alloys. Appl. Surf. Sci. 2014. 317. P. 140—146. DOI:10.1016/j.apsusc.2014.08.055.; Carotenuto G., Gallo A., Nicolais L. Degradation of SiC particles in aluminium-based composites. J. Mater. Sci. 1994. Vol. 29. P. 4967—4974.; Nordin N.A., Abubakar T.A., Hamzah E., Farahany S., Ourdjini A. Effect of superheating melt treatment on Mg2Si particulate reinforced in Al—Mg2Si—Cu in situ composite. Procedia Eng. 2017. Vol. 184. P. 595—603. DOI:10.1016/j.proeng.2017.04.144.; Qin Q.D., Zhao Y.G., Liang Y.H., Zhou W. Effects of melt superheating treatment on microstructure of Mg2Si/ Al—Si—Cu composite. J. Alloys Compd. 2005. Vol. 399. Iss. 1-2. P. 106—109. DOI:10.1016/j.jallcom.2005.03.015.; Li Y., Shang H., Ma B., Guo X., Li R., Li G. The effect of temperature and sputtered particles on the wettability of Al/Al2O3. Materials. 2021. Vol. 14. No. 9. Art. 2110. DOI:10.3390/ma14092110.; Lamouri S., Hamidouche M., Bouaouadja N., Belhouchet H., Garnier V., Fantozzi G., Trelkat J.F. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Bol. Soc. Esp. Ceram. Vidr. 2017. Vol. 56. Iss. 2. P. 47—54. DOI:10.1016/j.bsecv.2016.10.001.; Casati R., Vedani M. Metal Matrix Composites Reinforced by Nano-particles: A Review. Metals. 2014. Vol. 4. No. 1. P. 65—83. DOI:10.3390/met4010065.; Agrawal S., Ghose A.K., Chakrabarty I. Effect of rotary electromagnetic stirring during solidification of in situ Al—TiB2 composites. Mater. Design. 2017. Vol. 113. P. 195—206. DOI:10.1016/j.matdes.2016.10.007.; Watson I.G., Forster M.F., Lee P.D., Dashwood R.J., Hamilton R.W., Chirazi A. Investigation of the clustering behaviour of titanium diboride particles in aluminium. Compos. Pt. A. Appl. Sci. Manuf. 2005. Vol. 36. Iss. 9. P. 1177—1187. DOI:10.1016/j.compositesa.2005.02.003.; Youssef Y.M., Dashwood R.J., Lee P.D. Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs. Compos. Pt. A. Appl. Sci. Manuf. 2005. Vol. 36. Iss. 6. P. 747—763. DOI:10.1016/j. compositesa.2004.10.027.; Han Y.F., Shu D., Jin L., Wang J., Sun B.D. Microstructure and grain refining performance of a rapidly solidified Al—5Ti—1B master alloy. Mater. Sci. Forum. 2007. Vol. 546-549. P. 755—760. DOI:10.4028/www.scientific. net/msf.546-549.755.; Zhong L.-H., Zhao Y.-T., Zhang S.-L., Chen G., Chen S., Liu Y.-H. Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. Iss. 9. P. 2502—2508. DOI:10.1016/ S1003-6326(13)62761-2.; Zhao Y.-T., Zhang S.-L., Chen G. Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles fabricated via magnetochemistry reaction. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. Iss. 11. P. 2129—2133. DOI:10.1016/S1003-6326(09)60429-5.; Du Y.-H., Zhang P., Zhang W.-Y., Wang Y.-J. Distribution of SiC particles in semisolid electromagnetic-mechanical stir-casting Al—SiC composite. China Foundry. 2018. Vol. 15. P. 351—357. DOI:10.1007/s41230-018-8086-2.; Zhang P., Zhang W., Du Y., Wang Y. High-performance Al—1.5wt.%Si—Al2O3 composite by vortex-free highspeed stir casting. J. Manuf. Process. 2020. Vol. 56. P. 1126—1135. DOI:10.1016/j.jmapro.2020.06.016.; Eskin G.I., Eskin D.G. Ultrasonic melt treatment of light alloy melts. 2nd ed. Boca Raton, FL, CRC Press, 2014.; Eskin G.I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime. Metallurgist. 2010. Vol. 54. Iss. 7-8. P. 505—513. DOI:10.1007/s11015-010-9331-0.; Huang K., Jiang R., Li X., Zhang L., Li Z., Li R. Effects of high-intensity ultrasound on microstructure and mechanical property of in situ TiB2 /2A14 composites. Metals. 2019. Vol. 9. Art. 1210. DOI:10.3390/met9111210.; Chen D., Zhao Y., Li G., Zheng M., Chen G. Mechanism and kinetic model of in situ TiB2 /7055Al nanocomposites synthesized under high intensity ultrasonic field. J. Wuhan Univ. Technol. Mater. Sci. 2011. Vol. 26. Iss. 5. P. 920—925. DOI:10.1007/s11595-011-0337-7.; Choi H., Jones M., Konishi H., Li X. Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and micro-structure of Al— 7Si—0.3Mg alloy. Metall. Mater. Trans. A. 2012. Vol. 43. P. 738—746. DOI:10.1007/s11661-011-0905-7.; Christy Roshini P., Nagasivamuni B., Raj B., Ravi K.R. Ultrasonic-assisted synthesis of graphite-reinforced Al matrix nanocomposites. J. Mater. Eng. Perform. 2015. Vol. 24. P. 2234—2239. DOI:10.1007/s11665-015-1491-4.; Su H., Gao W., Feng Z., Lu Z. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 2012. Vol. 36. P. 590—596. DOI:10.1016/j.matdes.2011.11.064.; Padhi P., Dash B. N., Mohanty P., Satapathy B. K., Kar S. Synthesis of bulk metal matrix nanocomposites by full cavitation solidification method. Key Eng. Mater. 2013. Vol. 545. P. 193—196. DOI:10.4028/www.scientific.net/ KEM.545.193.; Nampoothiri J., Raj B., Ravi K.R. Effect of ultrasonic treatment on microstructure and mechanical property of in situ Al/2TiB2 particulate composites. Mater. Sci. Forum. 2015. Vol. 830-831. P. 463—466. DOI:10.4028/ www.scientific.net/MSF.830-831.463.; Mirihanage W., Xu W., Tamayo-Ariztondo J., Eskin D., Garcia-Fernandez M., Srirangam P., Lee P. Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites. Mater. Lett. 2016. Vol. 164. P. 484—487. DOI:10.1016/j.matlet.2015.11.022.; Afkhami M., Hassanpour A., Fairweather M., Njobuenwu D.O. Reynolds number effects on particle agglomeration in turbulent channel flow. Comput. Aided Chem. Eng. 2014. Vol. 33. P. 967—972. DOI:10.1016/B978-0-444- 63456-6.50162-9.; Liu X., Jia S., Nastac L. Ultrasonic cavitation-assisted molten metal processing of cast A356-nanocomposites. Int. J. Metalcast. 2014. Vol. 8. P. 51—58. DOI:10.1007/ BF03355591.; Jia S., Allison P.G., Rushing T.W., Nastac L. Ultrasonic processing of 6061-based nanocomposites for high performance applications. In: Advances in the science and engineering of casting solidification (Eds. Nastac L. et al.). Springer, 2015. DOI:10.1007/978-3-319-48117-3_5.; Gao Q., Wu S., Lu S., Xiong X., Du R., An P. Improvement of particles distribution of in situ 5 vol.% TiB2 particulates reinforced Al—4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloys Compd. 2017. Vol. 692. P. 1—9. DOI:10.1016/j.jallcom.2016.09.013.; Paul T., Zhang C., Boesl B., Agarwal A. Correlations to predict microstructure and mechanical properties of ultrasonically cast metal matrix nanocomposites as a function of treatment time. Adv. Eng. Mater. 2020. Vol. 22. Iss. 10. Art. 2000413. DOI:10.1002/adem.202000413.; Yuan D., Hu K., Lü S., Wu S., Gao Q. Preparation and properties of nano-SiCp/A356 composites synthesised with a new process. Mater. Sci. Technol. 2018. Vol. 34. Iss. 12. P. 1415—1424. DOI:10.1080/02670836.2018. 1458479.; Poovazhagan L., Kalaichelvan K., Balaji V.R., Ganesh P., Kali Avudaiappan A. Development of AA6061/SiCp metal matrix composites by conventional stir casting and ultrasonic assisted casting routes: A comparative study. Adv. Mat. Res. 2014. Vol. 984-985. P. 384—389. DOI:10.4028/ www.scientific.net/AMR.984-985.384.; Sillekens W.H., Jarvis D. J., Vorozhtsov A., Bojarevics V., Badini C.F., Pavese M., Terzi S., Salvo L., Katsarou L., Dieringa H. The ExoMet Project: EU/ESA Research on high-performance light-metal alloys and nanocomposites. Metall. Mater. Trans. A. 2014. Vol. 45A. P. 3349— 3361. DOI:10.1007/s11661-014-2321-2.; Mounib M., Pavese M., Badini C., Lefebvre W., Dieringa H. Reactivity and microstructure of Al2O3-reinforced magnesium matrix composites. Adv. Mater. Sci. Eng. 2014. No. 476079. P. 1-6. DOI:10.1155/2014/476079.; Daudin R., Terzi S., Lhuissier P., Salvo L., Boller E. Remelting and solidification of a 6082 Al alloy containing submicron yttria particles: 4D experimental study by in situ X-ray microtomography. Mater. Des. 2015. Vol. 87. P. 313—317. DOI:10.1016/j.matdes.2015.07.141.; Zhang W.-Q., Lou C.-S. Numerical model and experimental observation for distribution of SiCp in electromagnetic-centrifugally cast composites. Trans. Nonferrous Met. Soc. China. 2010. Vol. 20. Iss. 5. P. 870—876. DOI:10.1016/S1003-6326(09)60228-4.; Wang G., Wang Q., Easton M.A., Dargusch M.S., Qian M., Eskin D.G., StJohn D.H. Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium. Sci. Rep. 2017. Vol. 7. Art. 9729. DOI:10.1038/s41598-017-10354-6.; https://cvmet.misis.ru/jour/article/view/1357Test

  7. 7
  8. 8
    دورية أكاديمية

    المساهمون: The research was funded by the Ministry of Science and Higher Education of the Russian Federation under the project part of Government Task No. 0778-2020-0005., Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 5 (2021) ; Известия вузов. Цветная металлургия; № 5 (2021) ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1288/559Test; Kumar Nayak R., Venugopal S. Prediction of shrinkage allowance for tool design of aluminium alloy (A356) investment casting. Mater. Today: Proc. 2018. Vol. 5. No. 11. P. 24997—25005.; Sabau A.S., Viswanathan S. Material properties for predicting wax pattern dimensions in investment casting. Mater. Sci. Eng. A. 2003. Vol. 362. No. 1-2. P. 125—134.; Ефимов В.А. Специальные способы литья: Справочник. М.: Машиностроение, 1991 .; Иванов В.Н. Литье по выплавляемым моделям: 3-е изд., перераб. и доп. М.: Машиностроение, 1984.; Репях С.И. Требования к модельным составам отливок ответственного назначения. Металлы и литье Украины. 2010. No. 11. С. 10—16.; Altaf K., Rani A.M.A., Woldemichael D.E., Lemma T.A., Zhi C. Application of additive manufacturing/3D printing technologies and investment casting for rototype development of polycrystalline diamond compact (PDC) drill bit body. ARPN J. Eng. Appl. Sci. 2016. Vol. 11. No. 10. P. 6514—6518.; Vidyarthee G., Gupta N. New development in investment casting process: A review. Int. J. Sci. Eng. Res. 2017. Vol. 8. Iss. 12. P. 529—540.; Bourell D.L., Beaman J.J., Wohlers T., Frazier W., Kuhn H., Seifi M. History of additive manufacturing. In: Additive Manufacturing Processes. ASM International, 2020. Vol. 24. P. 1—8.; Hopkinson N., Hague R.J.M., Dickens P.M. Rapid manufacturing an industrial revolution for the digital age. N.Y.: J. Wiley & Sons, Ltd. 2006.; Attaran М. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons. 2017. Vol. 60. Iss. 5. P. 677—688.; Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B: Eng. 2018. Vol. 143. No. 15. P. 172—196.; Choudhari C.M., Patil V.D. Product development and its comparative analysis by SLA, SLS and FDM rapid prototyping processes. In: IOP Conf. Ser.: Mater. Sci. Eng. Vol. 149. Art. 012009 (IConAMMA-2016, Bangalore, India, 14—16 July 2016).; Kruth Jean-Pierre, Wang X., Laoui Tahar, Froyen L. Lasers and materials in selective laser sintering. Int. Product Proc. Develop. 2002. No. 1. P. 175—198.; Hyub Lee, Chin Huat Joel Lim, Mun Ji Low, Young-Jin Kim. Lasers in additive manufacturing: A review. Int. J. Precis. Eng. Manuf.-Green Tech. 2017. No. 4. P. 307—322.; Guo N., Leu Ming C. Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 2013. No. 3. P. 215—243.; Dudek P. FDM 3D printing technology in manufacturing composite elements. Arch. Metall. Mater. 2013. Vol. 58. Iss. 4. P. 1415—1418.; Cheah C.M., Chua C.K., Lee C.W., Feng C., Totong K. Rapid prototyping and tooling techniques: A review of applications for rapid investment casting. Int. J. Adv. Manuf. Technol. 2005. Vol. 25. No. 3—4. P. 308—320.; Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: A critical review. Int. J. Adv. Manuf. Technol. 2016. Vol. 83. P. 389— 405.; Khurram Altaf, Ahmad Majdi Abdul Rani, Dereje E. Woldemichael, Tamiru A. Lemmal, Chou Zhi Jian, Muhd Helmie Fiqri. Application of additive manufacturing/3D printing technologies and investment casting for prototype development of polycrystalline diamond compact (PDC) drill bit body. ARPN J. Eng. Appl. Sci. 2016. Vol. 11. No. 10. P. 6514—6518.; Bricín D., Votava F., Kubátová D., Kříž A. Influence of the quality of models made by additive technologies on the quality of castings cast by investment casting. In: Intelligent manufacturing & automation: Proc. 31st Intern. DAAAM Virtual Symp. (Vienna, Austria, 21— 24 Oct. 2020). Vienna: DAAAM International, 2020. Art. 0467.; Han D.P., Gu X., Pan B.T., Feng W.G., Wang M.H. Rapid casting of casing based on rapid prototyping technology. Foundry. 2013. No. 62. P. 658—660, 665.; Pattnaik S., Kumar Jha P., Karunakar D.B. A review of rapid prototyping integrated investment casting processes. Proc. Inst. Mech. Eng. Pt. L: J. Mater. Design Appl. 2013. Vol. 228. No. 4. P. 249—277.; https://cvmet.misis.ru/jour/article/view/1288Test

  9. 9
    دورية أكاديمية

    المساهمون: The research was funded by the Russian Science Foundation grant (Project № 20-19-00687)., Исследование выполнено за счет гранта Российского научного фонда (проект № 20-19-00687).

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 4 (2021); 32-41 ; Известия вузов. Цветная металлургия; № 4 (2021); 32-41 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1275/548Test; Wang L., Makhlouf M., Apelian D. Aluminium die casting alloys: Alloy composition, microstructure, and properties-performance relationships. Int. Mater. Rev. 1995. Vol. 40. P. 221—238.; Aluminum casting market size, share & trends analysis report by process (die casting, permanent mold casting), by end use (transportation, industrial), and segment forecasts. 2020—2027. https://www.grandviewresearch.comTest(accessed: 30.11.2020).; Stojanovic B., Bukvic M., Epler I. Application of aluminum and aluminum alloys in engineering. Appl. Eng. Lett. 2018. Vol. 3. No. 2. P. 52—62.; Gloria A., Montanari R., Richetta M., Varone A. Alloys for aeronautic applications: state of the art and perspectives. Metals. 2019. Vol. 9. Art. 662.; Caceres C. Economical and environmental factors in light alloys automotive applications. Metall. Mater. Trans. A. 2007. Vol. 38. P. 1649—1662.; Jarry P., Rappaz M. Recent advances in the metallurgy of aluminium alloys. Pt. I: Solidification and casting. C. R. Phys. 2018. Vol. 19. P. 672—687.; Murty B.S., Kori S.A., Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002. Vol. 47. No. 1. P. 3—29.; Quested T.E., Greer A.L. Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification. Acta. Mater. 2005. Vol. 53. P. 4643—4653.; Greer A.L., Cooper P.S., Meredith M.W., Schneider W., Schumacher P., Spittle J.A., Tronche A. Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 2003. Vol. 5. P. 81—91.; Fan Z., Gao F., Jiang B., Que Z. Impeding nucleation for more significant grain refinement. Sci. Rep. 2020. Vol. 10. Art. 944 .; Deev V.B., Prusov E.S., Kutsenko A.I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metall. Ital. 2018. No. 2. P. 16—24.; Riedel E., Liepe M., Scharf S. Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum. Metals. 2020. Vol. 10. Art. 476; Deev V.B., Prusov E.S., Ri E.H., Smetanyuk S.V., Feoktistov A.V. Improving the wear resistance of cast aluminum alloys by the melt thermal-rate treatment. J. Phys.: Conf. Ser. 2020. Vol. 1679. Art. 052011.; Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application. Mater. Sci. Forum. 2019. Vol. 946. MSF. P. 655—660.; Konovalov S.V., Danilov V.I., Zuev L.B., Filip’ev R.A., Gromov V.E. On the influence of the electrical potential on the creep rate of aluminum. Phys. Solid State. 2007. Vol. 49. P. 1457—1459.; Zuev L.B., Danilov V.I., Konovalov S.V., Filip’ev R.A., Gromov V.E. Influence of contact potential difference and electric potential on the microhardness of metals. Phys. Solid State. 2009. Vol. 51. No. 6. P. 1137—1141.; Zhang L., Li W., Yao J.P., Qiu H. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Mater. Lett. 2012. Vol. 66. Iss. 1. P. 190—192.; Bai Q.-W., Ma Y.-L., Xing S.-Q., Feng W.-F., Bao X.-Y., Yu W.-X. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing. Chin. J. Eng. 2017. Vol. 39. No. 12. P. 1828—1834.; Liotti E., Lui A., Vincent R., Kumar S., Guo Z., Connolley T., Dolbnya I.P., Hart M., Arnberg L., Mathiesen R.H., Grant P.S. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al—15Cu alloy. Acta Mater. 2014. Vol. 70. P. 228—239.; Bai Q., Wang J., Xing S., Ma Y., Bao X. Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Sci. Rep. 2020. Vol. 10. Art. 10603.; Gong Y.-Y., Luo J., Jing J.-X., Xia Z.-Q., Zhai Qi-J. Structure refinement of pure aluminum by pulse magneto-oscillation. Mat. Sci. Eng. A. 2008. Vol. 497. No. 1-2. P. 147—152.; Zi B.-T., Ba Q.-X., Cui J.-Z., Bai Y.-G., Na X.-J. Effect of strong pulsed electromagnetic field on metal’s solidified structure. Acta. Phys. Sin. 2000. Vol. 49. No. 5. P. 1013—1014.; Ban C.Y., Cui J.Z., Ba Q.X., Lu G.M., Zhang B.J. Influence of pulsed magnetic field on microstructure and macro-segregation in 2024 Al-alloy. Acta Metall. Sin. (Eng. Lett.). 2002. Vol. 15. No. 4. P. 380—384.; Vdovin K.N., Dubsky G.A., Deev V.B., Egorova L.G., Nefediev A.A., Prusov E.S. Influence of a magnetic field on structure formation during the crystallization and physicomechanical properties of aluminum alloys. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 3. P. 247—252.; Zhang L., Zhan W., Jin F., Zhou Q. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field. Mater. Sci. Technol. 2018. Vol. 34. No. 6. P. 698—702.; Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11. No. 6. Art. 954.; Ri E.K., Hosen R., Ermakov M.A., Knyazev G.A., Dzhou B.L., Ri V.E. Solidification of low-silicon iron under the action of nanosecond electromagnetic pulses. Steel Trans. 2013. Vol. 43. No. 8. P. 471—473.; Komkov V.G., Gostishchev V.V., Ri E.Kh., Dorofeev S.V. Influence that nanosecond electromagnetic pulses have on the acquisition of tin and the properties of its alloys. Russ. J. Non-Ferr. Met. 2011. Vol. 52. No. 4. P. 344—346.; Znamenskii L.G., Ivochkina O.V., Kulakov B.A. Electro-impulsive nanotechnology for preparing an aluminum — Refractory-metal master alloy. Metallurgist. 2005. Vol. 49. No. 1-2. P. 72—76.; Shaburova N.A. Changes in metal properties after thermal and electric impulse processing. IOP Conf. Ser. Mater. Sci. Eng. 2015. Vol. 81. Art. 012016.; Krymsky V.V., Shaburova N.A., Litvinova E.V. Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state. Mater. Sci. Forum. 2016. Vol. 843. P. 106—110.; Deev V., Ri E., Prusov E. Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings. In: 73-rd World foundry congress «Creative Foundry» (WFC 2018): Proceedings (Polish Foundrymen’s Association). 2018. P. 155—156.; Chen H., Jie J., Fu Y., Ma H., Li T. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. P. 1295—1300.; Wang B., Yang Y., Zhou J., Tong W. Microstructure refinement of an AZ91D alloy solidified with pulsed magnetic field. Trans. Nonferr. Met. Soc. China. 2008. Vol. 18. P. 536—540.; Eckert S., Nikrityuk P.A., Räbiger D., Eckert K., Gerbeth G. Efficient melt stirring using pulse sequences of a rotating magnetic field: Pt I. Flow field in a liquid metal column. Metall. Mater. Trans. B. 2007. Vol. 38. P. 977—988.; Choi J.-K., Ohtsuka H., Xu Y.; Choo W.-Y. Effects of a strong magnetic field on the phase stability of plain carbon steels. Scripta Mater. 2000. Vol. 43. P. 221—226.; Zhao Z., Liu Y., Liu L. Grain refinement induced by a pulsed magnetic field and synchronous solidification. Mater. Manuf. Process. 2011. Vol. 26. No. 9. P. 1202—1206.; Qin J., Bian X., Wang W., Sijusarenko S. I., Ma J., Xu C. Micro-inhomogeneous structure of liquid Al—Fe alloys. Sci. China Ser. E-Technol. Sci. 1998. Vol. 41. P. 182—187.; Shepelev L., Manov V. Microinhomogeneity of liquid alloys: Microscopy characterization and new production methods. Microsc. Microanal. 2002. Vol. 8. No. S02. P. 1300—1301.; Mi G.B., Li P.J., He L.J. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes. Sci. China Phys. Mech. Astron. 2010. Vol. 53. P. 1571—1577.; https://cvmet.misis.ru/jour/article/view/1275Test

  10. 10
    دورية أكاديمية

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 6 (2021); 22-30 ; Известия вузов. Цветная металлургия; № 6 (2021); 22-30 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1302/564Test; Leyens C. Advanced materials and coatings for future gas turbine applications. In: Proceedings of the 24th International congress of the aeronautical sciences (Yokohama, Japan, 29 August—3 September 2004). P. 1—10.; Иноземцев А.А., Нихамкин М.А., Сандрацский В.Л. Автоматика и регулирование авиационных двигателей и энергетических установок. Системы: Учеб. для студ. М.: Машиностроение, 2007.; Ломберг Б.С., Овсепян С.В., Бакрадзе М.М. Высокожаропрочные деформируемые никелевые сплавы для перспективных газотурбинных двигателей и газотурбинных установок. Вестник МГТУ им. Н.Э. Баумана. 2011. No. S2. С. 98—103.; Henderson M.B., Arrell D., Heobel M., Larsson R., Marchant G. Nickel-based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld JOI. 2004. Vol. 9. Iss. 1. P. 13—21.; Osintsev K.A., Konovalov S.V., Glezer A.M., Gromov V.E., Ivanov Y.F., Panchenko I.A., Sundeev R.V. Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Mater. Lett. 2021. Vol. 294. Art. 129717.; Shen Q., Kong X., Chen X. Fabrication of bulk Al—Co—Cr—Fe—Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties. J. Mater. Sci. Technol. 2021. Vol. 74, P. 136—142.; Ломберг Б.С., Моисеев С.А. Жаропрочные деформируемые сплавы для современных и перспективных ГТД. В кн. Все материалы: Энциклопед. справочник. 2007. No. 6. С. 2—5.; Сорокин Л.И. Свариваемость жаропрочных сплавов, применяемых в авиационных газотурбинных двигателях. Сварочное пр-во. 1971. No. 4. С. 4—5.; Курочко Р.С. Сварка и пайка жаропрочных материалов горячего тракта ГТД. Авиационная пром-сть. 1982. No. 8. С. 4—8.; Caron J.L., Sowards J.W. Weldability of nickel-base alloys. Compr. Mater. Process. 2014. Vol. 6. P. 151—179.; Qian M., Lippold J.C. Liquation phenomena in the simulated heat-affected zone of alloy 718 after multiple post weld heat treatment cycles. Welding J. 2003. Vol. 82. No. 6. P. 145—150.; Sashank S. Sravan, Rajakumar S., Karthikeyan R., Nagaraju D.S. Weldability, mechanical properties and microstructure of nickel based super alloys: A review. In: Proceedings of the 2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020) (Hyderabad, India, July 10—12, 2020), 2020. Vol. 184. P. 1—3.; Ferro P., Bonollo F., Tiziani A. Laser welding of copper—nickel alloys: A numerical and experimental analysis. Sci. Technol. Weld. Joining. 2005. Vol. 10. No. 3. P. 299—310.; Çam G., Koçak M. Progress in joining of advanced materials. Pt. 1: Solid state joining, fusion joining, and joining of intermetallics. Sci. Technol. Weld. Joining. 1998. Vol. 3. No. 3. P. 105—126.; Çam G., Koçak M. Progress in joining of advanced materials. Inter. Mater. Rev. 1998. No. 43. P. 1—44.; Çam G., Fischer A., Ratjen R., dos Santos J. F., Koçak M. Properties of laser beam welded superalloys Inconel 625 and 718. In: Proceedings of the 7th European Conference on Laser Treatment of Materials, ECLAT’98 (Hannover, 21—23.09.1998). P. 333—338.; Corba C., Ferencz P., Mihăilă I. Laser welding. Nonconvent. Technol. Rev. 2018. No.4. P. 34—37.; Bratukhin A.G., Maslenkov S.B., Logunov A.V., Prokopinskaya S.G., Solov’ev Yu.V. Heat treatment using high-concentrated energy suppliers. Metal Sci. Heat Treatment. 1995. Vol. 37. No. 11-12. Р. 479—484.; Naffakh-Moosavy H., Aboutalebi M.R., Seyedein S.H., Goodarzi M., Khodabakhshi M., Mapelli, Barella S. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys. Optics Laser Technol. 2014. Vol. 57. P. 12—20.; Hong J.K., Park J.H., Park N.K., Eom I.S., Kim M.B., Kang C.Y. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. J. Mater. Process. Technol. 2008. Vol. 201. No. 1. P. 515—520.; Chamanfar A., Mohammad J., Gholipour J., Wanjara P., Yue S. Suppressed liquation and microcracking in linear friction welded WASPALOY. Mater. Design. 2012. Vol. 36. P. 113—122.; Anbarasan N., Bikash Kumar Gupta, Prakash S., Muthukumar P., Oyyaravelu R., John Felix Kumar R., Jerome S. Effect of heat treatment on the microstructure and mechanical properties of inconel 718. Mater. Today: Proceedings. 2018. No. 5. P. 7716—7724.; Yoshinori Ono, Tetsumi Yuri, Nobuo Nagashima, Hideshi Sumiyoshi, Toshio Ogata, Naoki Nagao. High-cycle fatigue properties of Alloy718 base metal and electron beam welded joint. Phys. Procedia. 2015.Vol.67. P. 1028—1035.; Rautio T., Mäkikangas J., Kumpula J., Järvenpää A., Hamada A. Laser welding of laser powder bed fusion manufactured Inconel 718: Microstructure and mechanical properties. Key Eng. Mater. 2021. Vol. 883. Р. 234—241. DOI:10.1016/j.jmrt.2021.02.020.; Баранов Д.А., Жаткин С.С., Никитин В.И., Деев В.Б., Никитин К.В., Баринов А.Ю., Юдин Д.М. Обеспечение прочности сварных соединений при лазерной сварке жаропрочного дисперсионно-твердеющего никелевого сплава ЭП693. Известия вузов. Цветная металлургия. 2021. No. 3. С. 57—65.; ПИ 1.4.75-2000 Производственная инструкция. Дуговая сварка в среде защитных газов конструкционных, нержавеющих и жаропрочных сталей и сплавов. М.: ОАО «НИАТ». 2000. С. 65—70.; ГОСТ 6996-66. Сварные соединения. Методы определения механических свойств. М.: Стандартинформ, 2006.; https://cvmet.misis.ru/jour/article/view/1302Test