يعرض 1 - 10 نتائج من 770 نتيجة بحث عن '"V A Galkin"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المؤلفون: V A Galkin

    المصدر: Терапевтический архив, Vol 80, Iss 8, Pp 76-78 (2008)

    مصطلحات موضوعية: lecture, general medical practice, outpatient therap, Medicine

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المؤلفون: V A Galkin

    المصدر: Терапевтический архив, Vol 78, Iss 9, Pp 29-31 (2003)

    مصطلحات موضوعية: therapists, hospital, outpatient clinic, succession, Medicine

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 286-299 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 286-299 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/2088/1216Test; Thachil J., Khorana A., Carrier M. Similarities and perspectives on the two C’s – Cancer and COVID-19. J Thromb Haemost. 2021;19(5):1161–7. https://doi.org/10.1111/jth.15294Test.; Sciaudone A., Corkrey H., Humphries F., Koupenova M. Platelets and SARS-CoV-2 during COVID-19: immunity, thrombosis, and beyond. Circ Res. 2023;132(10):1272–89. https://doi.org/10.1161/CIRCRESAHA.122.321930Test.; Vassiliou A.G., Vrettou C.S., Keskinidou C. et al. Endotheliopathy in acute COVID-19 and long COVID. Int J Mol Sci. 2023;24(9):8237. https://doi.org/10.3390/ijms24098237Test.; Falanga A., Marchetti M. Cancer-associated thrombosis: enhanced awareness and pathophysiologic complexity. J Thromb Haemost. 2023;21(6):1397–408. https://doi.org/10.1016/j.jtha.2023.02.029Test.; Chandra A., Chakraborty U., Ghosh S., Dasgupta S. Anticoagulation in COVID-19: current concepts and controversies. Postgrad Med J. 2022;98(1159):395–402. https://doi.org/10.1136/postgradmedj-2021-139923Test.; Farge D., Frere C., Connors J.M. et al. International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23(7):e334–e347. https://doi.org/10.1016/S1470-2045Test(22)00160-7.; Lecumberri R., Marcos-Jubilar M., Guillén C. Thromboprophylaxis in patients with cancer and COVID-19. Arch Bronconeumol. 2022;58(11):744–5. https://doi.org/10.1016/j.arbres.2022.08.006Test.; Gulati S., Hsu C.Y., Shah S. et al. COVID-19 and Cancer Consortium. Systemic anticancer therapy and thromboembolic outcomes in hospitalized patients with cancer and COVID-19. JAMA Oncol. 2023;9(10):1390–400. https://doi.org/10.1001/jamaoncol.2023.2934Test.; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). М.: Министерство здравоохранения Российской Федерации, 2020, 166 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/584/original/03062020_TestМR_COVID-19_v7.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 8 (03.09.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 227 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/051/777/original/030902020_COVID-19_v8.pdfTest. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 236 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/550/original/MP_COVID-19_%28v9%29.pdf?1603788097Test. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 262 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/originalTest/Временные_МР_COVID-19_%28v.10%29.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 225 с. Режим доступа: https://rmapo.ru/uploads/koronaTest/МР_COVID-19-v11.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 12 (21.09.2021). М.: Мистерство здравоохранения Российской Федерации, 2021. 232 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/originalTest/ВМР_COVID-19_V12.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 13 (14.10.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 237 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdfTest. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14 (27.12.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 233 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/041/originalTest/ВМР_COVID-19_V14_27-12-2021.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 245 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/originalTest/ВМР_COVID-19_V15.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 16 (18.08.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 249 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/originalTest/ВМР_COVID-19_V16.pdf. [Дата обращения: 15.04.2024].; Léonard-Lorant I., Delabranche X., Séverac F. et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-Dimer levels. Radiology. 2020;296(3):E189–E191. https://doi.org/10.1148/radiol.2020201561Test.; Brito-Dellan N., Tsoukalas N., Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer. 2022;30(10):8491–500. https://doi.org/10.1007/s00520-022-07098-zTest.; Yang F., Shi S., Zhu J. et al. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;92(10):2067–73. https://doi.org/10.1002/jmv.25972Test.; Rüthrich M.M., Giessen-Jung C., Borgmann S. et al.; LEOSS Study Group. COVID-19 in cancer patients: clinical characteristics and outcome-an analysis of the LEOSS registry. Ann Hematol. 2021;100(2):383–93. https://doi.org/10.1007/s00277-020-04328-4Test.; Nopp S., Moik F., Jilma B. et al. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2020;4(7):1178–91. https://doi.org/10.1002/rth2.12439Test.; Kuderer N.M., Choueiri T.K., Shah D.P. et al. COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907–18. https://doi.org/10.1016/S0140-6736Test(20)31187-9.; Oken M.M., Creech R.H., Tormey D.C. et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.; Patell R., Bogue T., Bindal P. et al. Incidence of thrombosis and hemorrhage in hospitalized cancer patients with COVID-19. J Thromb Haemost. 2020;18(9):2349–57. https://doi.org/10.1111/jth.15018Test.; Fenioux C., Allenbach Y., Vozy A. et al. Differences of characteristics and outcomes between cancer patients and patients with no active cancer hospitalised for a SARS-CoV-2 infection. Bull Cancer. 2021;108(6):581–8. (In French). https://doi.org/10.1016/j.bulcan.2021.03.004Test.; Obispo B., Rogado J., Muñoz-Rivas N. et al.; Infanta Leonor Thrombosis Research Group. Prevalence of thrombosis in patients with cancer and SARS-CoV-2 infection. Med Clin (Barc). 2022;159(5):234–7. https://doi.org/10.1016/j.medcli.2021.08.002Test.; Li A., Kuderer N.M., Hsu C.Y. et al.; CCC19 consortium. The CoVID-TE risk assessment model for venous thromboembolism in hospitalized patients with cancer and COVID-19. J Thromb Haemost. 2021;19(10):2522–32. https://doi.org/10.1111/jth.15463Test.; https://www.gynecology.su/jour/article/view/2088Test

    الإتاحة: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.51910.1111/jth.1529410.1161/CIRCRESAHA.122.32193010.3390/ijms2409823710.1016/j.jtha.2023.02.02910.1136/postgradmedj-2021-13992310.1016/S1470-2045Test(22)00160-710.1016/j.arbres.2022.08.00610.1001/jamaoncol.2023.293410.1148/radiol.202020156110.1007/s00520-022-07098-z10.1002/jmv.2597210.1007/s00277-020-04328-410.1002/rth2.1243910.1016/S0140-6736(20)31187-910.1111/jth.1501810.1016/j.bulcan.2021.03.00410.1016/j.medcli.2021.08.00210.1111/jth.15463
    https://www.gynecology.su/jour/article/view/2088Test

  8. 8
    دورية أكاديمية

    المصدر: Tuberculosis and Lung Diseases; Том 102, № 1 (2024); 40-45 ; Туберкулез и болезни легких; Том 102, № 1 (2024); 40-45 ; 2542-1506 ; 2075-1230

    وصف الملف: application/pdf

    العلاقة: https://www.tibl-journal.com/jour/article/view/1792/1801Test; Галкин В.Б., Стерликов С.А., Яблонский П.К. Бремя туберкулеза в Российской Федерации. Часть 2. Динамика распространённости туберкулеза с множественной лекарственной устойчивостью // Медицинский альянс. – 2022. – Т.10,№4. – С. 6–18. https://doi.org/10.36422/23076348-2022-10-4-6-18Test; Литвинов В.И., Носова Е.Ю. Проблемы лекарственной устойчивости M.tuberculosis // Туберкулез и социально-значимые заболевания. – 2021. – № 2. – С.70-82.; Наумов А.Г., Павлунин А.В. Механизмы развития лекарственной устойчивости Mycobacterium tuberculosis: есть ли шанс победить? // Пульмонология. – 2021. – Т. 31, №1. – С. 100–108. https://doi.org/10.18093/0869-0189-2021-31-1-100-108Test; Приказ Минздрава России от 21.03.2003 № 109 «О совершенствовании противотуберкулезных мероприятий в Российской Федерации». URL: http://docs.cntd.ru/document/901868614Test. [Дата обращения 12.04.2023]; Туберкулез у взрослых. Клинические рекомендации КР-16. Москва; 2022.; Яблонский П.К., Вишневский Б.И., Соловьева Н.С., Маничева О.А. Догонадзе М.З., Мельникова Н.Н., Журавлев В.Ю. Лекарственная устойчивость Mycоbacterium tuberculosis при различных локализациях заболевания // Инфекция и иммунитет. –2016. –Т 6, № 2. – С. 133–140. https://doi.org/10.15789/2220-7619-2016-2-133-140Test; Bhosale S., Prabhakar A., Srivastava S., Raj A., Purohit S., Marathe N. Pattern of Drug Resistance in Primary Spinal Tuberculosis: A Single-Center Study From India // Global Spine J. – 2021. – Vol. 11, № 7. – Р. 1070-1075. https://doi.org/10.1177/2192568220941445Test.; Diriba G., Kebede A., Tola H.H., Alemu A., Yenew B., Moga S., Addise D., Mohammed Z., Getahun M., Fantahun M., Tadesse M., Dagne B., Amare M., Assefa G., Abera D., Desta K. Mycobacterial Lineages Associated with Drug Resistance in Patients with Extrapulmonary Tuberculosis in Addis Ababa, Ethiopia // Tuberc Res Treat. – 2021. – eCollection 2021. https://doi.org/10.1155/2021/5239529Test.; Global tuberculosis report 2022. Geneva: World Health Organization; 2022. Avaliable at: https://www.who.int/publications/i/item/9789240061729Test [Accessed Jul 12, 2023].; Li T., Shi T., Sun Y., Chen F., Jiang W., Chen Y. Molecular characteristics of drug-resistance Mycobacterium tuberculosis strains isolated from extra pulmonary tuberculosis sites // Enferm Infecc Microbiol Clin (Engl Ed). – 2021. – Vol.39, № 4. – Р.168-173. https://doi.org/10.1016/j.eimc.2020.04.007Test.; Raveendran R., Oberoi J., Wattal C. Multidrug-resistant pulmonary & extrapulmonary tuberculosis: A 13 years retrospective hospital-based analysis // Indian J Med Res. – 2015. – Vol. 142, № 5. – Р. 575–582. https://doi.org/10.4103/0971-5916.171285Test.; Vyazovaya A., Mokrousov I. , Solovieva N., Mushkin A., Manicheva O., Vishnevsky B., Zhuravlev V., Narvskaya O. Tuberculous spondylitis in Russia and prominent role of multidrug-resistant clone Mycobacterium tuberculosis Beijing B0/W148 // Antimicrob Agents Chemother. – 2015. – Vol.59, № 4. – Р. 2349-2357.; https://www.tibl-journal.com/jour/article/view/1792Test

  9. 9
    دورية أكاديمية

    المصدر: Research and Practical Medicine Journal; Том 11, № 1 (2024); 54-69 ; Research'n Practical Medicine Journal; Том 11, № 1 (2024); 54-69 ; 2410-1893 ; 10.17709/2410-1893-2024-11-1

    وصف الملف: application/pdf

    العلاقة: https://www.rpmj.ru/rpmj/article/view/978/612Test; Гурмиков Б. Н. Молекулярно-генетические аспекты внутрипеченочного холангиоцеллюлярного рака: обзор литературы. Успехи молекулярной онкологии. 2019;6(1):37–43. https://doi.org/10.17650/2313-805x-2019-6-1-37-43Test; Кармазановский Г. Г. Роль МСКТ и МРТ в диагностике очаговых заболеваний печени. Анналы хирургической гепатологии. 2019;24(4):91–110. https://doi.org/10.16931/1995-5464.2019491-110Test; Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018 Feb;15(2):95–111. https://doi.org/10.1038/nrclinonc.2017.157Test; Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014 Jun 21;383(9935):2168–79. https://doi.org/10.1016/s0140-6736Test(13)61903-0; Гурмиков Б. Н., Коваленко Ю. А., Вишневский В. А., Чжао А. В. Внутрипеченочный холангиоцеллюлярный рак: диагностика и лечение. Анналы хирургической гепатологии. 2018;23(4):108–117. https://doi.org/10.16931/1995-5464.20184108-117Test; Chang YT, Chang MC, Huang KW, Tung CC, Hsu C, Wong JM. Clinicopathological and prognostic significances of EGFR, KRAS and BRAF mutations in biliary tract carcinomas in Taiwan. J Gastroenterol Hepatol. 2014 May;29(5):1119–1125. https://doi.org/10.1111/jgh.12505Test; Abou-Alfa GK, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020 Jun;21(6):796–807. https://doi.org/10.1016/s1470-2045Test(20)30157-1 Epub 2020 May 13. Erratum in: Lancet Oncol. 2020 Oct;21(10):e462. Erratum in: Lancet Oncol. 2024 Feb;25(2):e61.; Wang Sh, Wu Y, Lui T, Weng Sh, You H, Wei Y, et al. Amplification and overexpression of the MET gene in intrahepatic cholangiocarcinoma correlate with adverse pathological features and worse clinical outcome. Int J Clin Exp Pathol. 2017;10(6):6809–6817.; Zhang J, Wu Z, Zhao J, Liu S, Zhang X, Yuan F, Shi Y, Song B. Intrahepatic cholangiocarcinoma: MRI texture signature as predictive biomarkers of immunophenotyping and survival. Eur Radiol. 2021 Jun;31(6):3661–3672. https://doi.org/10.1007/s00330-020-07524-yTest; Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, et al. Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes. PLoS One. 2015 Jul 24;10(7):e0132953. https://doi.org/10.1371/journal.pone.0132953Test; Попов Е. В., Кривоногов Н. Г., Округин С. А., Сазонова С. И. Радиомический анализ изображений в кардиологии: возможности перспективы применения: обзор литературы. Лучевая диагностика и терапия. 2022;13(2):7–15. https://doi.org/10.22328/2079-5343-2022-13-2-7-15Test; Ma X, Liu L, Fang J, Rao S, Lv L, Zeng M, et al. MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma. Cancer Imaging. 2020 Jun 23;20(1):40. https://doi.org/10.1186/s40644-020-00318-xTest; Shao C, Chen J, Chen J, Shi J, Huang L, Qiu Y. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol. 2017 Jul 1;10(7):7674–7681.; Гурмиков Б. Н., Чжао А. В. и др. Холангиоцеллюлярная карцинома. Монография. М.: «ГЭОТАР-Медиа»; 2021; с. 5–20.; Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016 Sep 1;379(2):198–205. dhttps://doi.org/10.1016/j.canlet.2015.09.008; Chung YE, Kim MJ, Park YN, Choi JY, Pyo JY, Kim YC, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics. 2009 May-Jun;29(3):683–700. https://doi.org/10.1148/rg.293085729Test; Fujita N, Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y, et al. Mass-forming intrahepatic cholangiocarcinoma: Enhancement patterns in the arterial phase of dynamic hepatic CT – Correlation with clinicopathological findings. Eur Radiol. 2017 Feb;27(2):498–506. https://doi.org/10.1007/s00330-016-4386-3Test; Chalasani N, Baluyut A, Ismail A, Zaman A, Sood G, Ghalib R, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology. 2000 Jan;31(1):7–11. https://doi.org/10.1002/hep.510310103Test; Nanashima A, Sakamoto I, Hayashi T, Tobinaga S, Araki M, Kunizaki M, et alT. Preoperative diagnosis of lymph node metastasis in biliary and pancreatic carcinomas: evaluation of the combination of multi-detector CT and serum CA19-9 level. Dig Dis Sci. 2010 Dec;55(12):3617–3626. https://doi.org/10.1007/s10620-010-1180-yTest; Noji T, Kondo S, Hirano S, Tanaka E, Suzuki O, Shichinohe T. Computed tomography evaluation of regional lymph node metastases in patients with biliary cancer. Br J Surg. 2008 Jan;95(1):92–96. https://doi.org/10.1002/bjs.5920Test; Zhan PC, Yang T, Zhang Y, Liu KY, Li Z, Zhang YY, et al. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study. Eur Radiol. 2023 Aug 17. https://doi.org/10.1007/s00330-023-10108-1Test; Spolverato G, Kim Y, Alexandrescu S, Marques HP, Lamelas J, Aldrighetti L, et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann Surg Oncol. 2016 Jan;23(1):235–243. https://doi.org/10.1245/s10434-015-4642-9Test; Ciresa M, De Gaetano AM, Pompili M, Saviano A, Infante A, Montagna M, et al. Enhancement patterns of intrahepatic mass-forming cholangiocarcinoma at multiphasic computed tomography and magnetic resonance imaging and correlation with clinicopathologic features. Eur Rev Med Pharmacol Sci. 2015 Aug;19(15):2786–2797.; Park HJ, Park B, Park SY, Choi SH, Rhee H, Park JH, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol. 2021 Nov;31(11):8638–8648. https://doi.org/10.1007/s00330-021-07926-6Test; Hu LS, Weiss M, Popescu I, Marques HP, Aldrighetti L, Maithel SK, et al. Impact of microvascular invasion on clinical outcomes after curative-intent resection for intrahepatic cholangiocarcinoma. J Surg Oncol. 2019 Jan;119(1):21–29. https://doi.org/10.1002/jso.25305Test; Zhang L, Yu X, Wei W, Pan X, Lu L, Xia J, et al. Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology. Eur Radiol. 2020 Oct;30(10):5327–5336. https://doi.org/10.1007/s00330-020-06895-6Test; Silva M, Maddalo M, Leoni E, Giuliotti S, Milanese G, Ghetti C, et al. Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol (NY). 2021 Oct;46(10):4689–4700. https://doi.org/10.1007/s00261-021-03183-9Test; Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol. 2020 Apr;21(4):387–401. https://doi.org/10.3348/kjr.2019.0752Test; Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, et al. Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol. 2018 Aug;57(8):1070–1074. https://doi.org/10.1080/0284186x.2018.1445283Test; Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–1062. https://doi.org/10.1002/mp.12123Test; Grobmyer SR, Wang L, Gonen M, Fong Y, Klimstra D, D'Angelica M, et al. Perihepatic lymph node assessment in patients undergoing partial hepatectomy for malignancy. Ann Surg. 2006 Aug;244(2):260–264. https://doi.org/10.1097/01.sla.0000217606.59625.9dTest; Zhang S, Huang S, He W, Wei J, Huo L, Jia N, et al. Radiomics-Based Preoperative Prediction of Lymph Node Metastasis in Intrahepatic Cholangiocarcinoma Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol. 2022 Oct;29(11):6786–6799. https://doi.org/10.1245/s10434-022-12028-8Test; Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel Nomogram for Preoperative Prediction of Early Recurrence in Intrahepatic Cholangiocarcinoma. Front Oncol. 2018 Sep 4;8:360. https://doi.org/10.3389/fonc.2018.00360Test; Chu H, Liu Z, Liang W, Zhou Q, Zhang Y, Lei K, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur Radiol. 2021 Apr;31(4):2368–2376. https://doi.org/10.1007/s00330-020-07250-5Test; Zhu Y, Mao Y, Chen J, Qiu Y, Guan Y, Wang Z, He J. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection. Sci Rep. 2021 Sep 15;11(1):18347. https://doi.org/10.1038/s41598-021-97796-1Test; Zhou Y, Zhou G, Zhang J, Xu C, Wang X, Xu P. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur Radiol. 2021 Sep;31(9):6846–6855. https://doi.org/10.1007/s00330-021-07793-1Test; Qian X, Lu X, Ma X, Zhang Y, Zhou C, Wang F, et al. A Multi-Parametric Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Status in Intrahepatic Cholangiocarcinoma. Front Oncol. 2022 Feb 24;12:838701. https://doi.org/10.3389/fonc.2022.838701Test; Yang Y, Zou X, Zhou W, Yuan G, Hu D, Kuang D, et al. Multiparametric MRI-Based Radiomic Signature for Preoperative Evaluation of Overall Survival in Intrahepatic Cholangiocarcinoma After Partial Hepatectomy. J Magn Reson Imaging. 2022 Sep;56(3):739–751. https://doi.org/10.1002/jmri.28071Test; Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019 Jun;70(6):1133–1144. https://doi.org/10.1016/j.jhep.2019.02.023Test; Hennedige TP, Neo WT, Venkatesh SK. Imaging of malignancies of the biliary tract- an update. Cancer Imaging. 2014 Apr 22;14(1):14. https://doi.org/10.1186/1470-7330-14-14Test; Xu X, Mao Y, Tang Y, Liu Y, Xue C, Yue Q, et al. Classification of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Radiomic Analysis. Comput Math Methods Med. 2022 Feb 21;2022:5334095. https://doi.org/10.1155/2022/5334095Test; Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020 Sep;17(9):557–588. https://doi.org/10.1038/s41575-020-0310-zTest; Zhu H, Ji K, Wu W, Zhao S, Zhou J, Zhang C, et al. Describing Treatment Patterns for Elderly Patients with Intrahepatic Cholangiocarcinoma and Predicting Prognosis by a Validated Model: A Population-Based Study. J Cancer. 2021 Mar 30;12(11):3114–3125. https://doi.org/10.7150/jca.53978Test; Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, et al. Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY). 2018 Dec;43(12):3271–3278. https://doi.org/10.1007/s00261-018-1600-6Test; Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology. 2015 Sep;62(3):792–800. https://doi.org/10.1002/hep.27877Test; Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol. 2018 May;28(5):2058–2067. https://doi.org/10.1007/s00330-017-5146-8Test; Hoivik EA, Hodneland E, Dybvik JA, Wagner-Larsen KS, Fasmer KE, Berg HF, et al. A radiogenomics application for prognostic profiling of endometrial cancer. Commun Biol. 2021 Dec 6;4(1):1363. https://doi.org/10.1038/s42003-021-02894-5Test; Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007 Jun;25(6):675–680. https://doi.org/10.1038/nbt1306Test; Idris T, Barghash M, Kotrotsou A, Huang HJ, Subbiah V, Kaseb AO, et al. CT-based radiogenomic signature to identify isocitrate dehydrogenase(IDH)1/2 mutations in advanced intrahepatic cholangiocarcinoma. Journal of Clinical Oncology. 2019;37(15). https://doi.org/10.1200/jco.2019.37.15_suppl.4081Test; https://www.rpmj.ru/rpmj/article/view/978Test

  10. 10
    دورية أكاديمية

    المساهمون: This research was supported by the Moscow Healthcare Department., Исследование проведено за счет средств гранта Департамента здравоохранения г. Москвы.

    المصدر: Medical Genetics; Том 23, № 2 (2024); 34-45 ; Медицинская генетика; Том 23, № 2 (2024); 34-45 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2420/1772Test; Vanin E.F. Processed pseudogenes: characteristics and evolution. Annu Rev Genet. 1985;19:253-72. doi:10.1146/annurev.ge.19.120185.001345.; Claes K.B.M., Rosseel T., De Leeneer K. Dealing with Pseudogenes in Molecular Diagnostics in the Next Generation Sequencing Era. Methods Mol Biol. 2021;2324:363-381. doi:10.1007/978-1-0716-1503-4_22.; van der Klift H.M., Tops C.M., Bik E.C., et al. Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of Lynch syndrome patients. Hum Mutat. 2010 May;31(5):578-87. doi:10.1002/humu.21229.; Clendenning M., Hampel H., LaJeunesse J., et al. Long-range PCR facilitates the identification of PMS2-specific mutations. Hum Mutat. 2006 May;27(5):490-5. doi:10.1002/humu.20318. Erratum in: Hum Mutat. 2006;27(11):1155.; Vaughn C.P., Robles J., Swensen J.J., et al. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. Hum Mutat. 2010;31(5):588-93. doi:10.1002/humu.21230.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3-23. https://doi.org/10.25557/2073-7998.2019.02.3-23Test; Hereditary Cancer Syndromes and Risk Assessment: ACOG COMMITTEE OPINION, Number 793. Obstet Gynecol. 2019;134(6):e143-e149. doi:10.1097/AOG.0000000000003562.; Nicolaides N.C., Papadopoulos N., Liu B., et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371(6492):75-80. doi:10.1038/371075a0.; Senter L., Clendenning M., Sotamaa K., et al. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations. Gastroenterology. 2008;135(2):419-28. doi:10.1053/j.gastro.2008.04.026.; Ten Broeke S.W., van der Klift H.M., Tops C.M.J., et al. Cancer Risks for PMS2-Associated Lynch Syndrome. J Clin Oncol. 2018;36(29):2961-2968. doi:10.1200/JCO.2018.78.4777. Erratum in: J Clin Oncol. 2019 Mar 20;37(9):761.; Cannavo E., Marra G., Sabates-Bellver J., et al. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res. 2005;65(23):10759-66. doi:10.1158/0008-5472.CAN-05-2528.; Korhonen M.K., Raevaara T.E., Lohi H., Nyström M. Conditional nuclear localization of hMLH3 suggests a minor activity in mismatch repair and supports its role as a low-risk gene in HNPCC. Oncol Rep. 2007;17(2):351-4.; ten Broeke S.W., Brohet R.M., Tops C.M., et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol. 2015;33(4):319-25. doi:10.1200/JCO.2014.57.8088.; Шелыгин Ю.А., Ачкасов С.И., Семёнов Д.А., и др. Генетические и фенотипические характеристики 60 российских семей с синдромом Линча. Колопроктология. 2021;20(3):35–42. http://dx.doi.org/10.33878/2073-7556-2021-20-3-35-42Test; Kasela M., Nyström M., Kansikas M. PMS2 expression decrease causes severe problems in mismatch repair. Hum Mutat. 2019;40(7):904-907. doi:10.1002/humu.23756.; Hendriks Y.M., Jagmohan-Changur S., van der Klift H.M., et al. Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology. 2006;130(2):312-22. doi:10.1053/j.gastro.2005.10.052.; Clendenning M., Hampel H., LaJeunesse J., et al. Long-range PCR facilitates the identification of PMS2-specific mutations. Hum Mutat. 2006;27(5):490-5. doi:10.1002/humu.20318. Erratum in: Hum Mutat. 2006;27(11):1155.; Li J., Dai H., Feng Y., et al. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2. J Mol Diagn. 2015;17(5):545-53. doi:10.1016/j.jmoldx.2015.04.001.; Nicolaides N.C., Kinzler K.W., Vogelstein B. Analysis of the 5’ region of PMS2 reveals heterogeneous transcripts and a novel overlapping gene. Genomics. 1995;29(2):329-34. doi:10.1006/geno.1995.9997.; Hayward B.E., De Vos M., Valleley E.M., et al. Extensive gene conversion at the PMS2 DNA mismatch repair locus. Hum Mutat. 2007;28(5):424-30. doi:10.1002/humu.20457. PMID: 17253626.; Auclair J., Leroux D., Desseigne F., et al. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. Hum Mutat. 2007;28(11):1084-90. doi:10.1002/humu.20569.; Ganster C., Wernstedt A., Kehrer-Sawatzki H., et al. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event. Hum Mutat. 2010;31(5):552-60. doi:10.1002/humu.21223.; Семенова А. Б., Бяхова М. М., Галкин В. Н., и др. Возможности молекулярно-генетических методов для эффективного выявления наследственных форм онкологических заболеваний среди лиц с повышенными рисками их развития. Здоровье мегаполиса. 2023; 4(2):30-40. doi:10.47619/2713-2617.zm.2023.v.4i2;30-40.; https://www.medgen-journal.ru/jour/article/view/2420Test