يعرض 1 - 10 نتائج من 205 نتيجة بحث عن '"Titov, Vasily"', وقت الاستعلام: 1.79s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    تقرير
  7. 7
    تقرير
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المؤلفون: Bernard, Eddie, Titov, Vasily

    المصدر: Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2015 Oct . 373(2053), 1-14.

  10. 10
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Range, Molly M.; Arbic, Brian K.; Johnson, Brandon C.; Moore, Theodore C.; Titov, Vasily; Adcroft, Alistair J.; Ansong, Joseph K.; Hollis, Christopher J.; Ritsema, Jeroen; Scotese, Christopher R.; Wang, He (2022). "The Chicxulub Impact Produced a Powerful Global Tsunami." AGU Advances 3(5): n/a-n/a.; https://hdl.handle.net/2027.42/175084Test; AGU Advances; Mascle, J., Lohmann, G. P., Clift, P. D., et al. ( 1996 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 159 ). Ocean Drilling Program.; Smit, J., Montanari, A., Swinburne, N. H. M., Alvarez, W., Hildebrand, A. R., Margolis, S. V., et al. ( 1992 ). Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology, 20 ( 2 ), 99 – 103. https://doi.org/10.1130/0091-7613Test(1992)0202.3.co;2; Smit, J., & Romein, A. J. T. ( 1985 ). A sequence of events across the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters, 74 ( 2–3 ), 55 – 170. https://doi.org/10.1016/0012-821xTest(85)90019-6; Smith, W. H. F., & Sandwell, D. T. ( 1997 ). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956Test; Storms, M. A., Natland, J. H., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 132 ). Ocean Drilling Program.; Stott, L. D., & Kennett, J. P. ( 1990 ). The paleoceanographic and paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP leg 113. In P. F. Barker, J. P. Kennett, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113 ). Ocean Drilling Program.; Stüben, D., Kramar, U., Berner, Z., Stinnesbeck, W., Keller, G., & Adatte, T. ( 2002 ). Trace elements, stable isotopes, and clay mineralogy of the Elles II K/T boundary section in Tunisia: Indications for sea level fluctuations and primary productivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 178 ( 3–4 ), 321 – 345. https://doi.org/10.1016/s0031-0182Test(01)00401-1; Suganuma, Y., & Ogg, J. G. ( 2006 ). Campanian through Eocene magnetostratigraphy of Sites 1257–1261, OD Leg 207, Demerara Rise (western equatorial Atlantic). In D. C. Mosher, J. Erbacher, & M. J. Malone (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 207 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.207.102.2006Test; Supko, P. R., Perch-Nielsen, K., et al. ( 1977 ). Initial Reports of the Deep Sea Drilling Project (Vol. 39 ). U.S. Government Printing Office.; Tada, R., Iturralde-Vinent, M. A., Matsui, T., Tajika, E., Oji, T., Goto, K., et al. ( 2003 ). K/T boundary deposits in the Paleo-western Caribbean basin. In C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, American Association of Petroleum Geologists Memoir (Vol. 79, pp. 582 – 604 ).; Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., et al. ( 2012 ). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117 ( C8 ), C08008. https://doi.org/10.1029/2011JC007635Test; Tarduno, J. A., Duncan, R. A., Scholl, D. W., et al. ( 2002 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 197 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.197.2002Test; Taylor, K. W. R., Willumsen, P. S., Hollis, C. J., & Pancost, R. D. ( 2018 ). South Pacific evidence for the long-term climate impact of the Cretaceous/Paleogene boundary event. Earth Science Reviews, 179, 287 – 302. https://doi.org/10.1016/j.earscirev.2018.02.012Test; Thiede, J., Vallier, T. L., et al. ( 1981 ). Initial Reports of the Deep Sea Drilling Project (Vol. 62 ). U.S. Government Printing Office.; Tobin, S. T., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., et al. ( 2012 ). Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 180 – 188. https://doi.org/10.1016/j.palaeo.2012.06.029Test; Tucholke, B. E., Sibuet, J.-C., Klaus, A., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 210 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.210.2004Test; Tucholke, B. E., Vogt, P. R., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project (Vol. 43 ). U.S. Government Printing Office.; van Hinte, J. E., Wise, S. W., Jr., et al. ( 1987 ). Initial Reports of the Deep Sea Drilling Project (Vol. 93 ). U.S. Government Printing Office.; Veevers, J. J., Heirtzler, J. R., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 27 ). U.S. Government Printing Office.; von Rad, U., Haq, B. U., et al. ( 1992 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 122 ). Ocean Drilling Program.; von Rad, U., Ryan, W. B. F., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project, 47, Part 1. U.S. Government Printing Office.; von der Borch, C., Sclater, C. J. G., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 22 ). U.S. Government Printing Office.; Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 121 ). Ocean Drilling Program.; Winterer, E. L., Ewing, J. I., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 17 ). U.S. Government Printing Office.; Witts, J. D., Newton, R. J., Mills, B. J. W., Wignall, P. B., Bottrell, S. H., Hall, J. L. O., et al. ( 2018 ). The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochimica et Cosmochimica Acta, 230, 17 – 45. https://doi.org/10.1016/j.gca.2018.02.037Test; Witts, J. D., Whittle, R. J., Wignall, P. B., Crame, J. A., Francis, J. E., Newton, R. J., et al. ( 2016 ). Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica. Nature Communications, 7 ( 1 ), 11738. https://doi.org/10.1038/ncomms11738Test; Worzel, J. L., Bryant, W., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 10 ). U.S. Government Printing Office.; Zachos, J. C., Arthur, M. A., & Dean, W. E. ( 1989 ). Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337 ( 6202 ), 61 – 64. https://doi.org/10.1038/337061a0Test; Zachos, J. C., Arthur, M. A., Thunell, R. C., Williams, D. F., & Tappa, E. J. ( 1985 ). Stable isotope and trace element geochemistry of carbonate sediments across the Cretaceous/Tertiary boundary at Deep Sea Drilling Project Hole 577, Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86, pp. 513 – 532 ). U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.86.120.1985Test; Zachos, J. C., Kroon, D., Blum, P., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Initial Results (Vol. 208 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.208.2004Test; Bleil, U. ( 1985 ). The magnetostratigraphy of northwest Pacific sediments, Deep Sea Drilling Project Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86 ). U.S. Government Printing Office.; Adcroft, A. ( 2013 ). Representation of topography by porous barriers and objective interpolation of topographic data. Ocean Modelling, 67, 13 – 27. https://doi.org/10.1016/j.ocemod.2013.03.002Test; Adcroft, A. ( 2017 ). NOAA—GFDL MOM6 Examples. Github. Retrieved from https://github.com/NOAA-GFDL/MOM6-examples/wikiTest; Albertão, G. A., & Martins, P. P., Jr. ( 1996 ). A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil. Sedimentary Geology, 104 ( 1–4 ), 189 – 201. https://doi.org/10.1016/0037-0738Test(95)00128-x; Alegret, L., & Thomas, E. ( 2005 ). Cretaceous/Paleogene boundary bathyal paleo-environment in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224 ( 1–3 ), 53 – 82. https://doi.org/10.1016/j.palaeo.2005.03.031Test; Alvarez, W., Claeys, P., & Kieffer, S. W. ( 1995 ). Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub Crater. Science, 269 ( 5226 ), 930 – 935. https://doi.org/10.1126/science.269.5226.930Test; Alvarez, W., Smit, J., Lowrie, W., Asaro, F., Margolis, S. V., Claeys, P., et al. ( 1992 ). Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20 ( 8 ), 697 – 700. https://doi.org/10.1130/0091-7613Test(1992)0202.3.co;2; Anderson, J. L. B., Schultz, P. H., & Heineck, J. T. ( 2003 ). Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. Journal of Geophysical Research, 108 ( E8 ), 5094. https://doi.org/10.1029/2003JE002075Test; Arbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014Test; Bahlburg, H., Weiss, R., & Wünnemann, K. ( 2010 ). Low energy deposition in the Chicxulub crater during the impact to post-impact transition. Earth and Planetary Science Letters, 295 ( 1–2 ), 170 – 176. https://doi.org/10.1016/j.epsl.2010.03.037Test; Bardeen, C. G., Garcia, R. R., Toon, O. B., & Conley, A. J. ( 2017 ). On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 36 ), E7415 – E7424. https://doi.org/10.1073/pnas.1708980114Test; Batenburg, S. J., Sprovieri, M., Gale, A. S., Hilgen, F. J., Hüsing, S., Laskar, J., et al. ( 2012 ). Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country), Northern Spain. Earth and Planetary Science Letters, 359–360, 264 – 278. https://doi.org/10.1016/j.epsl.2012.09.054Test; Bell, C., Morgan, J. V., Hampson, G. J., & Trudgill, B. ( 2004 ). Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics & Planetary Science, 39 ( 7 ), 1089 – 1098. https://doi.org/10.1111/j.1945-5100.2004.tb01130.xTest; Bourgeois, J., Hansen, T. A., Wiberg, P. L., & Kauffman, E. G. ( 1988 ). A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 241 ( 4865 ), 567 – 570. https://doi.org/10.1126/science.241.4865.567Test; Bralower, T. J., Paull, C. K., & Leckie, R. M. ( 1998 ). The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flow. Geology, 26 ( 4 ), 331 – 334. https://doi.org/10.1130/0091-7613Test(1998)0262.3.co;2; Brugger, J., Feulner, G., & Petri, S. ( 2017 ). Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, 44 ( 1 ), 419 – 427. https://doi.org/10.1002/2016GL072241Test; Burwell, D., Tolkova, E., & Chawla, A. ( 2007 ). Diffusion and dispersion characterization of a numerical tsunami model. Ocean Modelling, 19 ( 1–2 ), 10 – 30. https://doi.org/10.1016/j.ocemod.2007.05.003Test; Busby, C. J., Yip, G., Blikra, L., & Renne, P. ( 2002 ). Coastal landsliding and catastrophic sedimentation triggered by Cretaceous-Tertiary bolide impact: A Pacific margin example? Geology, 30 ( 8 ), 687 – 690. https://doi.org/10.1130/0091-7613Test(2002)0302.0.CO;2; Cacchione, D. A., & Drake, D. E. ( 1986 ). Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Letters, 6 ( 3 ), 147 – 152. https://doi.org/10.1007/bf02238085Test; Cacchione, D. A., Pratson, L. F., & Ogston, A. S. ( 2002 ). The shaping of continental slopes by internal tides. Science, 29 ( 5568 ), 724 – 727. https://doi.org/10.1126/science.1069803Test; Campbell, C. E., Oboh-Ikuenobe, F. E., & Eifert, E. I. ( 2008 ). Mega tsunami deposit in Cretaceous-Paleogene boundary interval of southeastern Missouri. Geological Society of America Special Paper, 437, 189 – 198.; Canudo, J. I., Keller, G., & Molina, E. ( 1991 ). Cretaceous/Tertiary boundary extinction pattern and faunal turnover at Agost and Caravaca, S.E. Spain. Marine Micropaleontology, 17 ( 3–4 ), 319 – 341. https://doi.org/10.1016/0377-8398Test(91)90019-3; Claeys, P., Kiessling, W., & Alvarez, W. ( 2002 ). Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In C. Koeberl & K. G. MacLeod (Eds.), Catastrophic events and mass extinction: Impacts and beyond. Geological Society of America Special Paper (Vol. 356, pp. 55 – 69 ).; Collins, G. S., Melosh, H. J., & Ivanov, B. A. ( 2004 ). Modeling damage and deformation in impact simulations. Meteoritics and Planetary Science, 39 ( 2 ), 217 – 231. https://doi.org/10.1111/j.1945-5100.2004.tb00337.xTest; Collins, G. S., Morgan, J., Barton, P., Christeson, G. L., Gulick, S., Urrutia, J., et al. ( 2008 ). Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters, 270 ( 3–4 ), 221 – 230. https://doi.org/10.1016/j.epsl.2008.03.032Test; Collins, G. S., Patel, N., Davison, T. M., Rae, A. S. P., Morgan, J. V., Gulick, S. P. S., et al. ( 2020 ). A steeply-inclined trajectory for the Chicxulub impact. Nature Communications, 11 ( 1 ), 1480. https://doi.org/10.1038/s41467-020-15269-xTest; Denne, R. A., Scott, E. D., Eickhoff, D. P., Kaiser, J. S., Hill, R. J., & Spaw, J. M. ( 2013 ). Massive Cretaceous-Paleogene boundary deposit, deep-water Gulf of Mexico: New evidence for widespread Chicxulub-induced slope failure. Geology, 41 ( 9 ), 983 – 986. https://doi.org/10.1130/G34503.1Test; Dinarès-Turell, J., Westerhold, T., Pujaltec, V., Röhl, U., & Kroon, D. ( 2014 ). Astronomical calibration of the Danian stage (Early Paleocene) revisited: Settling chronologies of sedimentary records across the Atlantic and Pacific Oceans. Earth and Planetary Science Letters, 405, 119 – 131. https://doi.org/10.1016/j.epsl.2014.08.027Test; Duncombe, J. ( 2022 ). The surprising reach of Tonga’s giant atmospheric waves. Eos, 103. https://doi.org/10.1029/2022EO220050Test; Expedition 342 Scientists. ( 2012 ). Paleogene Newfoundland sediment drifts. Integrated Ocean Drilling Program, Preliminary Report (Vol. 342 ). https://doi.org/10.2204/iodp.pr.342.2012Test; Glimsdal, S., Pedersen, G. K., Langtangen, H. P., Shuvalov, V., & Dypvik, H. ( 2007 ). Tsunami generation and propagation from the Mjølnir asteroid impact. Meteoritics & Planetary Science, 42 ( 9 ), 1473 – 1493. https://doi.org/10.1111/j.1945-5100.2007.tb00586.xTest; Gulick, S., Morgan, J., & Mellett, C. L. ( 2016 ). Expedition 364 Scientific Prospectus: Chicxulub: Drilling the K-Pg impact crater. International Ocean Discovery Program. https://doi.org/10.14379/iodp.sp.364.2016Test; Gulick, S. P. S., Barton, P. J., Christeson, G. L., Morgan, J. V., McDonald, M., Mendoza-Cervantes, K., et al. ( 2008 ). Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geoscience, 1 ( 2 ), 131 – 135. https://doi.org/10.1038/ngeo103Test; Hines, B. R., Kulhanek, B. K., Hollis, C. J., Atkins, C. B., & Morgans, H. E. G. ( 2013 ). Paleocene–Eocene stratigraphy and paleoenvironment at Tora, Southeast Wairarapa, New Zealand. New Zealand Journal of Geology and Geophysics, 56 ( 4 ), 243 – 262. https://doi.org/10.1080/00288306.2013.836112Test; Hollis, C. J. ( 2003 ). The Cretaceous/Tertiary boundary event in New Zealand: Profiling mass extinction. New Zealand Journal of Geology and Geophysics, 46 ( 2 ), 307 – 321. https://doi.org/10.1080/00288306.2003.9515011Test; Husson, D., Galbrun, B., Laskar, J., Hinnov, L. A., Thibault, N., Gardin, S., & Locklair, R. E. ( 2011 ). Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth and Planetary Science Letters, 305, 328 – 340. https://doi.org/10.1016/j.epsl.2011.03.008Test; International Geologic Congress. ( 1989 ). Paper presented at 28th International Geological Congress, Washington, D.C, July 9–19 (p. 624 ).; Keller, G. ( 1988 ). Extinction, survivorship and evolution of planktic foraminifers across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Marine Micropaleontology, 13 ( 3 ), 239 – 263. https://doi.org/10.1016/0377-8398Test(88)90005-9; Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., et al. ( 2007 ). Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas. Earth and Planetary Science Letters, 255 ( 3–4 ), 339 – 356. https://doi.org/10.1016/j.epsl.2006.12.026Test; Keller, G., & Lindinger, M. ( 1989 ). Stable isotope, TOC and CaCO 3 record across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 73 ( 3–4 ), 243 – 265. https://doi.org/10.1016/0031-0182Test(89)90007-2; Keller, G., Lopez-Oliva, J. G., Stinnesbeck, W., & Adatte, T. ( 1997 ). Age, stratigraphy, and deposition of near-K/T siliciclastic deposits in Mexico: Relation to bolide impact. The Geological Society of America Bulletin, 109 ( 4 ), 410 – 428. https://doi.org/10.1130/0016-7606Test(1997)1092.3.co;2; Kiessling, W., & Claeys, P. ( 2001 ). A geographic database approach to the KT boundary. In E. Buffetaut & C. Koeberl (Eds.), Geological and biological effects of impact events (pp. 83 – 140 ). Springer.; Kinsland, G. L., Egedahl, K., Strong, M. A., & Ivy, R. ( 2021 ). Chicxulub impact tsunami megaripples in the subsurface of Louisiana: Imaged in petroleum industry seismic data. Earth and Planetary Science Letters, 570, 117063. https://doi.org/10.1016/j.epsl.2021.117063Test; Kirby, J. T. ( 2016 ). Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 ( 6 ), 03116004. https://doi.org/10.1061Test/(ASCE)WW.1943-5460.0000350; Kodama, K., Fukuoka, M., Aita, Y., Sakai, T., Hori, R. S., Takemura, A., et al. ( 2007 ). Paleomagnetic results from Arrow Rocks in the framework of paleomagnetism in pre-Neogene rocks from New Zealand. In K. B. Spörli, A. Takemura, & R. S. Hori (Eds.), The Oceanic Permian/Triassic Boundary Sequence at Arrow Rocks (Oruatemanu), Northland, New Zealand: Lower Hutt, New Zealand, Geological and Nuclear Science Monograph (Vol. 24, pp. 177 – 196 ).; Kunkel, C. M., Hallberg, R. W., & Oppenheimer, M. ( 2006 ). Coral reefs reduce tsunami impact in model simulations. Geophysical Research Letters, 33 ( 23 ), L23612. https://doi.org/10.1029/2006GL027892Test; Laird, M. G., Bassett, K. N., Schiøler, P., Morgans, H. E. G., Bradshaw, J. D., & Weaver, S. D. ( 2003 ). Paleoenvironmental and tectonic changes across the Cretaceous/Tertiary boundary at Tora, southeast Wairarapa, New Zealand: A link between Marlborough and Hawke’s Bay. New Zealand Journal of Geology and Geophysics, 46 ( 2 ), 275 – 293. https://doi.org/10.1080/00288306.2003.9515009Test; Laskar, J., Fienga, A., Gastineau, M., & Manche, H. ( 2011 ). La2010: A new orbital solution for the long-term motion of the Earth. Astronomy and Astrophysics, 532, A89. https://doi.org/10.1051/0004-6361/201116836Test; Lonsdale, P., & Southard, J. B. ( 1974 ). Experimental erosion of North Pacific red clay. Marine Geology, 17 ( 1 ), M51 – M60. https://doi.org/10.1016/0025-3227Test(74)90044-9; Lowrie, W., & Alvarez, W. ( 1977 ). Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. III. Upper Cretaceous magnetic stratigraphy. The Geological Society of America Bulletin, 88 ( 3 ), 374 – 377. https://doi.org/10.1130/0016-7606Test(1977)882.0.co;2; MacLeod, K. G., Quinton, P. C., Sepúlveda, J., & Negra, M. H. ( 2018 ). Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science, 360 ( 6396 ), 1467 – 1469. https://doi.org/10.1126/science.aap8525Test; MacLeod, K. G., Whitney, D. L., Huber, B. T., & Koeberl, C. ( 2007 ). Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. The Geological Society of America Bulletin, 119 ( 1–2 ), 101 – 115. https://doi.org/10.1130/B25955.1Test; Margolis, S. V., Mount, J. F., Doehne, E., Showers, W., & Ward, P. ( 1987 ). The Cretaceous/Tertiary boundary carbon and oxygen isotope stratigraphy, diagenesis, and paleoceanography at Zumaya, Spain. Paleoceanography and Paleoclimatology, 2 ( 4 ), 361 – 377. https://doi.org/10.1029/pa002i004p00361Test; Matsui, T., Imamura, F., Tajika, E., Nakano, Y., & Fujisawa, Y. ( 2002 ). Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. In C. Koeberl & K. G. MacLeod (Eds.), Catastrophic events and mass extinction: Impacts and beyond. Geological Society of America Special Paper (Vol. 356, 69 – 77 ). https://doi.org/10.1130/0-8137-2356-6.69Test; Matsuyama, M., Ikeno, M., Sakakiyama, T., & Takeda, T. ( 2007 ). A study of tsunami wave fission in an undistorted experiment. Pure and Applied Geophysics, 164 ( 2–3 ), 617 – 631. https://doi.org/10.1007/s00024-006-0177-0Test; Maurrasse, F. J.-M. R., & Sen, G. ( 1991 ). Impacts, tsunamis and the Haitian Cretaceous-Tertiary boundary layer. Science, 252 ( 5013 ), 1690 – 1693. https://doi.org/10.1126/science.252.5013.1690Test; McCave, I. N. ( 1984 ). Erosion, transport and deposition of fine-grained marine sediments. Geological Society, London, Special Publications, 15 ( 1 ), 35 – 69. https://doi.org/10.1144/GSL.SP.1984.015.01.03Test; Montanari, A., Claeys, P., Asaro, F., Bermudez, J., & Smit, J. ( 1994 ). Preliminary stratigraphy and iridium and other geochemical anomalies across the KT boundary in the Bochil Section (Chiapas, southeastern Mexico), in New developments regarding the K/T event and other catastrophes in Earth history. Lunar and Planetary Institute Contribution, 825, 84 – 85.; Morgan, J., Artemieva, N., & Goldin, T. ( 2013 ). Revisiting wildfires at the K-Pg boundary. Journal of Geophysical Research: Biogeosciences, 118 ( 4 ), 1508 – 1520. https://doi.org/10.1002/2013JG002428Test; Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., et al. ( 2016 ). The formation of peak rings in large impact craters. Science, 354 ( 6314 ), 878 – 882. https://doi.org/10.1126/science.aah6561Test; Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. ( 2008 ). Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319 ( 5868 ), 1357 – 1362. https://doi.org/10.1126/science.1151540Test; Pardo, A., Ortiz, N., & Keller, G. ( 1996 ). Latest Maastrichtian foraminiferal turnover and its environmental implications at Agost, Spain. In N. MacLeod & G. Keller (Eds.), The Cretaceous/Tertiary boundary mass extinction: Biotic and environmental events (pp. 139 – 171 ). Norton.; Pedersen, G. ( 2008 ). Modeling runup with depth integrated equation models. In L.-F. Liu, H. Yeg, & C. Synolakis (Eds.), Advanced numerical models for simulating tsunami waves and runup (pp. 3 – 41 ). World Scientific. https://doi.org/10.1142/6226Test; Robertson, D., Pokorný, P., Granvik, M., Wheeler, L., & Rumpf, C. ( 2021 ). Latitude variation of flux and impact angle of asteroid collisions with Earth and the Moon. Planetary Science Journal, 2 ( 3 ), 88. https://doi.org/10.3847/PSJ/abefdaTest; Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., et al. ( 2003 ). From tides to mixing along the Hawaiian Ridge. Science, 301 ( 5631 ), 355 – 357. https://doi.org/10.1126/science.1085837Test; Sanford, J. C., Snedden, J. W., & Gulick, S. P. S. ( 2016 ). The Cretaceous-Paleogene boundary deposit in the Gulf of Mexico: Large-scale oceanic basin response to the Chicxulub impact. Journal of Geophysical Research: Solid Earth, 121 ( 3 ), 1240 – 1261. https://doi.org/10.1002/2015JB012615Test; Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., et al. ( 2010 ). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327 ( 5970 ), 1214 – 1218. https://doi.org/10.1126/science.1177265Test; Schulte, P., Speijer, P., Brinkhuis, H., Kontny, A., Claeys, P., Galeotti, S., et al. ( 2008 ). Comment on the paper “Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas” by Keller et al., 2007. Earth and Planetary Science Letters, 269 ( 3–4 ), 614 – 620. https://doi.org/10.1016/j.epsl.2007.11.066Test; Schulte, P., Speijer, R., Mai, H., & Kontny, A. ( 2006 ). The Cretaceous–Paleogene (K–P) boundary at Brazos, Texas: Sequence stratigraphy, depositional events and the Chicxulub impact. Sedimentary Geology, 184 ( 1–2 ), 77 – 109. https://doi.org/10.1016/j.sedgeo.2005.09.021Test; Scotese, C. R. ( 1997 ). The PALEOMAP Project: Paleogeographic atlas and plate tectonic software. Retrieved from https://cmr.earthdata.nasa.gov/search/concepts/C1214607516-SCIOPSTest; Sissingh, W. ( 1977 ). Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw, 56 ( 1 ), 37 – 65.; Smit, J., Roep, T. B., Alvarez, W., Montanari, A., Claeys, P., Grajales-Nishimura, J. M., & Bermudez, J. ( 1996 ). Coarse-grained, clastic sandstone complex at the K/T boundary around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact. Geological Society of America Special Paper, 307, 151 – 182.; Smith, W. H. F., Scharroo, R., Titov, V. V., Arcas, D., & Arbic, B. K. ( 2005 ). Satellite altimeters measure tsunami—Early model estimates confirmed. Oceanography, 18 ( 2 ), 11 – 13. https://doi.org/10.5670/oceanog.2005.62Test; Son, S., Lynett, P., & Kim, D.-H. ( 2011 ). Nested and multi-physics modeling of tsunami evolution from generation to inundation. Ocean Modelling, 38 ( 1 ), 96 – 113. https://doi.org/10.1016/j.ocemod.2011.02.007Test; Stinnesbeck, W., Keller, G., de la Cruz, J., de León, C., MacLeod, N., & Whittaker, J. E. ( 1997 ). The Cretaceous–Tertiary transition in Guatemala: Limestone breccia deposits from the South Peten basin. Geologische Rundschau, 86 ( 3 ), 686 – 709. https://doi.org/10.1007/s005310050171Test; Synolakis, C. E., Bernard, E. N., Titov, V. V., K-noğlu, U., & González, F. I. ( 2008 ). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165 ( 11–12 ), 2197 – 2228. https://doi.org/10.1007/s00024-004-0427-yTest; Titov, V. V., K-noğlu, U., & Synolakis, C. ( 2016 ). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 ( 6 ), 03116004. https://doi.org/10.1061Test/(ASCE)WW.1943-5460.0000357; Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. ( 2005 ). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309 ( 5743 ), 2045 – 2048. https://doi.org/10.1126/science.1114576Test; Titov, V. V., & Synolakis, C. E. ( 1995 ). Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS–2. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121 ( 6 ), 308 – 316. https://doi.org/10.1061Test/(ASCE)0733-950X(1995)121:6(308); Toon, O. B., Pollack, J. B., Ackerman, T. P., Turco, R. P., McKay, C. P., & Liu, M. S. ( 1982 ). Evolution of an impact-generated dust cloud and its effects on the atmosphere. In L. T. Silver & P. H. Schultz (Eds.), Geological implications of impacts of large asteroids and comets on Earth. Geological Society of America Special Paper (Vol. 190, pp. 187 – 200 ).; Van Dorn, W. G., Le Méhauté, B., & Hwang, L.-S. ( 1968 ). Handbook of explosion-generated water waves. Report TC-130. Tetra Tech Inc.; Ward, S. ( 2012 ). Chicxulub Tsunami.mov, YouTube. Retrieved from https://www.youtube.com/watch?v=Dcp0JhwNgmETest; Ward, S. ( 2021 ). Chicxulub Tsunami-2.mov, YouTube. Retrieved from https://www.youtube.com/watch?v=5qhqmXMUu6U%26t=31sTest; Weiss, R., & Wünnemann, K. ( 2007 ). Large waves caused by oceanic impacts of meteorites. In Tsunami and nonlinear waves (pp. 237 – 261 ). Springer.; Weiss, R., Wünnemann, K., & Bahlburg, H. ( 2006 ). Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: Model strategy and technical solutions. Geophysical Journal International, 167 ( 1 ), 77 – 88. https://doi.org/10.1111/j.1365-246X.2006.02889.xTest; Westerhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the Early Paleogene. Geochemistry, Geophysics, Geosystems, 13 ( 6 ), 73 – 82. https://doi.org/10.1029/2012gc004096Test; Wünnemann, K., Collins, G. S., & Melosh, H. J. ( 2006 ). A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180 ( 2 ), 514 – 527. https://doi.org/10.1016/j.icarus.2005.10.013Test; Wünnemann, K., Collins, G. S., & Weiss, R. ( 2010 ). Impact of a cosmic body into Earth’s ocean and the generation of large tsunami waves: Insight from numerical modeling. Reviews of Geophysics, 48 ( 4 ), RG4006. https://doi.org/10.1029/2009RG000308Test; Wünnemann, K., & Weiss, R. ( 2015 ). The meteorite impact-induced tsunami hazard. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 373 ( 2053 ), 20140381. https://doi.org/10.1098/rsta.2014.0381Test; Wunsch, C., & Ferrari, R. ( 2004 ). Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36 ( 1 ), 281 – 314. https://doi.org/10.1146/annurev.fluid.36.050802.122121Test; Zhou, H., Wei, Y., & Titov, V. V. ( 2012 ). Dispersive modeling of the 2009 Samoa tsunami. Geophysical Research Letters, 39 ( 16 ), L16603. https://doi.org/10.1029/2012GL053068Test; Zhou, H., Wei, Y., Wright, L., & Titov, V. V. ( 2014 ). Waves and currents in Hawaiian waters induced by the dispersive 2011 Tohoku tsunami. Pure and Applied Geophysics, 171 ( 12 ), 3365 – 3384. https://doi.org/10.1007/s00024-014-0781-3Test; Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stüben, D., et al. ( 2002 ). Age and paleoenvironment of the Maastrichtian-Paleocene of the Mahajanga Basin, Madagascar: A multidisciplinary approach. Marine Micropaleontology, 47 ( 1–2 ), 17 – 70. https://doi.org/10.1016/S0377-8398Test(02)00094-4; Açıkalın, S., Vellekoop, J., Ocakoğlu, F., Yılmaz, I. Ö., Smit, J., Altıner, S. Ö., et al. ( 2015 ). Geochemical and palaeontological characterization of a new K-Pg Boundary locality from the Northern branch of the Neo-Tethys: Mudurnu—Göynük Basin, NW Turkey. Cretaceous Research, 52, 251 – 267. https://doi.org/10.1016/j.cretres.2014.07.011Test; Adatte, T., Keller, G., Burns, S., Stoykova, K. H., Ivanov, M. I., Vangelov, D., et al. ( 2002 ). Paleoenvironment across the Cretaceous-Tertiary transition in eastern Bulgaria. Geological Society of America Special Paper, 356, 231 – 251.; Alegret, L., Arenillas, I., Arz, J., Diaz, C., Grajales-Nishimura, J., Meléndez, A., et al. ( 2005 ). Cretaceous-Paleogene boundary deposits at Loma Capiro, central Cuba: Evidence for the Chicxulub impact. Geology, 33 ( 9 ), 721 – 724. https://doi.org/10.1130/g21573.1Test; Alegret, L., Kaminski, M. A., & Molina, E. ( 2004 ). Paleoenvironmental recovery after the Cretaceous/Paleogene boundary crisis: Evidence from the Marine Bidart Section (SW France). Palaios, 19 ( 6 ), 574 – 586. https://doi.org/10.1669/0883-1351Test(2004)0192.0.co;2; Alegret, L., Thomas, E., & Lohmann, K. C. ( 2012 ). End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 3 ), 728 – 732. https://doi.org/10.1073/pnas.1110601109Test; Alvarez, W., Asaro, F., & Montanari, A. ( 1990 ). Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy). Science, 250 ( 4988 ), 1700 – 1702. https://doi.org/10.1126/science.11538083Test; Alvarez, W., & Lowrie, W. ( 1978 ). Upper Cretaceous palaeomagnetic stratigraphy at Moria, Umbrian Apennines, Italy: Verification of the Gubbio section. Geophysical Journal International, 55, 1 – 17. https://doi.org/10.1111/j.1365-246x.1978.tb04745.xTest; Andrews, J. E., Packham, G., et al. ( 1975 ). Initial Reports of the Deep Sea Drilling Project (Vol. 30 ). U.S. Government Printing Office.; Arneth, J.-D., Matzigkeit, U., & Boos, A. ( 1985 ). Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany. Earth and Planetary Science Letters, 75 ( 1 ), 50 – 58. https://doi.org/10.1016/0012-821xTest(85)90049-4; Askin, R. A. ( 1985 ). The palynological record across the Cretaceous/Tertiary transition on Seymour Island, Antarctica. In R. M. Feldmann & M. O. Woodburne (Eds.), Geology and paleontology of Seymour Island: Geological Society of America Memoir 169 (pp. 155 – 162 ).; Austin, J. A., Jr., Schlager, W., Palmer, A. A., et al. ( 1986 ). Proceedings of the Ocean Drilling Program, Initial Reports (Part A, Vol. 101 ). Ocean Drilling Program.; Barker, P. F., Carlson, R. L., & Johnson, D. A. ( 1983 ). Initial Reports Deep Sea Drilling Program (Vol. 72 ). U.S. Government Printing Office.; Barker, P. F., Dalziel, I. W. D., et al. ( 1976 ). Initial Reports of the Deep Sea Drilling Project (Vol. 36 ). U.S. Government Printing Office.; Barker, P. F., Kennett, J. P., et al. ( 1988 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 113 ). Ocean Drilling Program.; Barker, P. F., Kennett, J. P., et al. ( 1990 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113 ). Ocean Drilling Program.; Barrera, E. ( 1994 ). Global environmental changes preceding the Cretaceous-Tertiary boundary: Early-late Maastrichtian transition. Geology, 22 ( 10 ), 877 – 880. https://doi.org/10.1130/0091-7613Test(1994)0222.3.co;2; Barron, J., & Larsen, B. ( 1989 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 119 ). Ocean Drilling Program.; Benson, W. E., Sheridan, R. E., et al. ( 1978 ). Initial Reports of the Deep Sea Drilling Project (Vol. 44, p. 1005 ). U.S. Government Printing Office.; Boillot, G., Winterer, E. L., Meyer, A. W., et al. ( 1987 ). Proceedings of the Ocean Drilling Program, Initial Reports (Part A, Vol. 103 ). Ocean Drilling Program.; Bolli, H. M., Ryan, W. B. F., et al. ( 1978 ). Initial Reports of the Deep Sea Drilling Project (Vol. 40 ). U.S. Government Printing Office.; Bowles, J. ( 2007 ). Data report: Revised magnetostratigraphy and magnetic mineralogy of sediments from Walvis Ridge, Leg 208. In D. Kroon, J. C. Zachos, & C. Richter. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 208, p. 24 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.208.206.2006Test; Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B., & Swindles, G. T. ( 2014 ). Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: Palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 26 – 47. https://doi.org/10.1016/j.palaeo.2014.04.018Test; Bralower, T. J., Premoli Silva, I., & Malone, M. J. ( 2002b ). Leg 198 synthesis: A remarkable 120 M.Y. Record of climate and ceoanography from Shatsky Rise, Northwest Pacific Ocean. In T. J. Bralower, I. Premoli Silva, M. J. Malone, & the Scientific Participants of Leg 198 (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 198, pp. 1 – 47 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.198.2002Test; Bralower, T. J., Premoli Silva, I., Malone, M. J., & the Scientific Participants of Leg 198. ( 2002a ). Proceedings of the Ocean Drilling Program, Initial Reports (Part A, Vol. 198 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.198.2002Test; Bralower, T. J., & Siesser, W. G. ( 1992 ). Cretaceous calcareous nannofossil biostratigraphy of Sites 761, 762, and 763, Exmouth and Wombat Plateaus, Northwest Australia. In U. von Rad, B. U. Haq, S. O’Connell, & Shipboard Scientific Party (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 122 ). Ocean Drilling Program.; Brinkhuis, H., & Zachariasse, W. J. ( 1988 ). Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceous-Tertiary boundary at El Haria, Northwest Tunisia. Marine Micropaleontology, 13 ( 2 ), 153 – 191. https://doi.org/10.1016/0377-8398Test(88)90002-3; Buffler, R. T., Schlager, W., et al. ( 1984 ). Initial Reports of the Deep Sea Drilling Project (Vol. 11 ). U.S. Government Printing Office.; Burns, R. E., Andrews, J. E., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 21 ). U.S. Government Printing Office.; Carter, R. M., McCave, I. N., Richter, C., Carter, L., et al. ( 2000 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 181 ). [Online]. https://doi.org/10.2973/odp.proc.ir.181.2000Test; Ciesielski, P. F., Kristoffersen, Y., et al. ( 1988 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 114 ). Ocean Drilling Program.; Clemens, S. C., Kuhnt, W., & LeVay, L. J., & the Expedition 353 Scientists. ( 2015 ). Expedition 353 Preliminary Report: Indian Monsoon Rainfall. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.353.2015Test; Coffin, M. F., Frey, F. A., Wallace, P. J., et al. ( 2000 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 183 ). [Online]. https://doi.org/10.2973/odp.proc.ir.183.2000Test; Creager, J. S., Scholl, D. W., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (p. 930 ). U.S.Government Printing Office.; Davies, T. A., Luyendyk, B. P., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 26 ). U.S. Government Printing Office.; Dinarès-Turell, J., Westerhold, T., Pujalte, V., Röhl, U., & Kroon, D. ( 2013 ). Settling the Danian astronomical time scale: A prospective global unit stratotype at Zumaia, Basque Basin. In R. Rocha, et al. (Eds.), STRATI 2013. Springer International Publishing. https://doi.org/10.1007/978-3-319-04364-7_38Test; Donovan, A. D., Baum, G. R., Blechschmidt, G. L., Loutit, T. S., Pflum, C. E., & Vail, P. R. ( 1988 ). Sequence stratigraphic setting of the Cretaceous-Tertiary boundary in central Alabama. In Sea-Level Changes-An Integrated Approach. SEPM Society for Sedimentary Geology Special Publication No. 42 (pp. 299 – 307 ).; Edgar, N. T., Saunders, J. B., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 15 ). U.S. Government Printing Office.; Elliot, D. H., Askin, R. A., Kyte, F. T., & Zinsmeister, W. J. ( 1994 ). Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event. Geology, 22 ( 8 ), 675 – 678. https://doi.org/10.1130/0091-7613Test(1994)0222.3.co;2; Erbacher, J., Mosher, D. C., Malone, M. J., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 207 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.207.2004Test; Esmeray-Senlet, S., Wright, J. D., Olsson, R. K., Miller, K. G., Browning, J. V., & Quan, T. M. ( 2015 ). Evidence for reduced export productivity following the Cretaceous/Paleogene mass extinction. Paleoceanography, 30 ( 6 ), 718 – 738. https://doi.org/10.1002/2014PA002724Test; Exon, N. F., Kennett, J. P., & Malone, M. J. ( 2004 ). Leg 189 synthesis: Cretaceous–Holocene history of the Tasmanian Gateway. In N. F. Exon, J. P. Kennett, & M. J. Malone (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 189, pp. 1 – 37 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.189.101.2004Test; Galbrun, B., & Gardin, S. ( 2004 ). New chronostratigraphy of the Cretaceous–Paleogene boundary interval at Bidart, France. Earth and Planetary Science Letters, 224 ( 1–2 ), 19 – 32. https://doi.org/10.1016/j.epsl.2004.04.043Test; Galburn, B. ( 1992 ). Magnetostratigraphy of Upper Cretaceous and Lower Tertiary sediments, Sites 761 and 762, Exmouth Plateau, Northwest Australia. In U. von Rad, B. U. Haq, S. O’Connell, & Shipboard Scientific Party (Eds.), Proceedings of the Ocean Drilling Program, Scientific. Results (Vol. 122 ). Ocean Drilling Program.; Gisler, G., Weaver, R., & Gittings, M. ( 2011 ). Calculations of asteroid impacts into deep and shallow water. Pure and Applied Geophysics, 168 ( 6–7 ), 1187 – 1198. https://doi.org/10.1007/s00024-010-0225-7Test; Graciansky, P. C., de Poag, C. W., et al. ( 1985 ). Initial Reports of the Deep Sea Drilling Project (Vol. 80 ). U.S. Government Printing Office.; Hailwood, E. A., & Clement, B. M. ( 1991 ). Magnetostratigraphy of Sites 699 and 700, East Georgia Basin. In P. F. Ciesielski, Y. Kristoffersen, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 114, pp. 337 – 357 ). Ocean Drilling Program.; Hamilton, N. ( 1990 ). Mesozoic magnetostratigraphy of Maud Rise, Antarctica. In P. F. Barker, J. P. Kennett, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113 ). Ocean Drilling Program.; Hamilton, N., & Suzyumov, A. E. ( 1983 ). Late Cretaceous magnetostratigraphy of Site 516, Rio Grande Rise, southwestern Atlantic Ocean, Deep Sea Drilling Project, Leg 72. In P. F. Barker, R. L. Carlson, & D. A. Johnson (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 72, pp. 723 – 730 ). U.S. Government Printing Office.; Hansen, H. J., Drobne, K., & Gwozdz, R. ( 1995 ). The K/T boundary in Slovenia: Dating by magnetic susceptibility and an iridium anomaly in a debris flow. Paper presented at 4th International Workshop European Science Network “Impact Cratering and Evolution of Planet Earth”, Ancona, May 1995, Abstracts and Field Trips (pp. 84 – 85 ). Università degli Studi Urbino.; Hansen, J. M. ( 1979 ). Dinoflagellate zonation around the boundary. In T. Birkelund & R. G. Bromley (Eds.), Cretaceous-Tertiary boundary events (Vol. 1, pp. 136 – 141 ). University of Copenhagen.; Haq, B. U., von Rad, U., O’Connell, S., et al. ( 1990 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 122 ). Ocean Drilling Program.; Hart, M. B., Feist, S. E., Håkansson, E., Heinberg, C., Price, G. D., Leng, M. J., et al. ( 2005 ). The Cretaceous–Palaeogene boundary succession at Stevns Klint, Denmark: Foraminifers and stable isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 224 ( 1–3 ), 6 – 26. https://doi.org/10.1016/j.palaeo.2005.03.029Test; Hay, W. W., Sibuet, J.-C., et al. ( 1984 ). Initial Reports of the Deep Sea Drilling Project (Vol. 75 ). U.S. Government Printing Office.; Hayes, D. E., Frakes, L. A., et al. ( 1975 ). Initial Reports of the Deep Sea Drilling Project (Vol. 28 ). U.S. Government Printing Office.; Hayes, D. E., Pimm, A. C., et al. ( 1972 ). Initial Reports of the Deep Sea Drilling Project (Vol. 14 ). U.S. Government Printing Office.; Heath, G. R., Burckle, L. H., et al. ( 1985 ). Initial Reports of the Deep Sea Drilling Project (Vol. 86 ). U.S. Government Printing Office.; Herbert, T. D., & D’Hondt, S. L. ( 1990 ). Precessional climate cyclicity in Late Cretaceous-Early Tertiary marine sediments: A high resolution chronometer of Cretaceous-Tertiary boundary events. Earth and Planetary Science Letters, 99 ( 3 ), 263 – 275. https://doi.org/10.1016/0012-821xTest(90)90115-e; Hinz, K., Winterer, E. L., et al. ( 1984 ). Initial Reports of the Deep Sea Drilling Project (Vol. 79 ). U.S. Government Printing Office.; Hollis, C. J. ( 2002 ). Biostratigraphy and paleoceanographic significance of Paleocene radiolarians from offshore eastern New Zealand. Marine Micropaleontology, 46 ( 3–4 ), 265 – 316. https://doi.org/10.1016/s0377-8398Test(02)00066-x; Hollis, C. J., Strong, C. P., Rodgers, K. A., & Rogers, K. M. ( 2003 ). Paleoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, eastern Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics, 46 ( 2 ), 177 – 197. https://doi.org/10.1080/00288306.2003.9515003Test; Hollister, C. D., Craddock, C., et al. ( 1976 ). Initial Reports of the Deep Sea Drilling Project (Vol. 35 ). U.S. Government Printing Office.; Hsü, K. J., LaBrecque, J. L., et al. ( 1984 ). Initial Reports of the Deep Sea Drilling Project (Vol. 73 ). U.S. Government Printing Office.; Huber, B. T., Liu, C., Olsson, R. K., & Berggren, W. A. ( 1994 ). Comment on “The Cretaceous-Tertiary boundary transition in the Antarctic Ocean and its global implications”, by G. Keller. Marine Micropaleontology, 24 ( 2 ), 91 – 99. https://doi.org/10.1016/0377-8398Test(94)90017-5; Keller, G., Adatte, T., Stinnesbeck, W., Stüben, D., Kramar, U., Berner, Z., et al. ( 1997 ). The Cretaceous-Tertiary transition on the shallow Saharan Platform of Southern Tunisia. Geobios, 30 ( 7 ), 951 – 975. https://doi.org/10.1016/s0016-6995Test(97)80218-5; Keller, G., Adatte, T., Tantawy, A. A., Berner, Z., Stueben, D., & Leanza, H. ( 2007 ). High stress late Maastrichtian—early Danian paleoenvironment in the Neuquén Basin, Argentina. Cretaceous Research, 28 ( 6 ), 939 – 960. https://doi.org/10.1016/j.cretres.2007.01.006Test; Keller, G., Khozyem, H. M., Adatte, T., Malarkodi, N., Spangenberg, J. E., & Stinnesbeck, W. ( 2013 ). Chicxulub impact spherules in the North Atlantic and Caribbean: Age constraints and Cretaceous-Tertiary boundary hiatus. Geological Magazine, 150 ( 5 ), 885 – 907. https://doi.org/10.1017/S0016756812001069Test; Kroenke, L. W., Berger, W. H., Janecek, T. R., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Initial Report (Vol. 130 ). Ocean Drilling Program.; Kyte, F. T., Smit, J., & Wasson, J. T. ( 1985 ). Siderophile interelement variations in the Cretaceous-Tertiary boundary sediments from Caravaca, Spain. Earth and Planetary Science Letters, 73 ( 2–4 ), 183 – 195. https://doi.org/10.1016/0012-821xTest(85)90067-6; Lancelot, Y., Seibold, E., et al. ( 1977 ). Initial Reports of the Deep Sea Drilling Project (Vol. 41 ). U.S. Government Printing Office.; Lancelot, Y., & Winterer, E. L. ( 1980 ). Initial Reports of the Deep Sea Drilling Project (Vol. 50 ). U.S. Government Printing Office.; Landman, N. H., Johnson, R. O., Garb, M. P., Edwards, L. E., & Kyte, F. T. ( 2007 ). Cephalods from the Cretaceous/ Tertiary boundary interval on the Atlantic coastal plain, with a description of the highest ammonite zones in North America. Part III. Manasquan River Basin, Monmouth County, New Jersey. Bulletin of the American Museum of Natural History, 303, 1– 122. https://doi.org/10.1206/0003-0090Test(2007)303[1:cfttbi]2.0.co;2; Larson, R. L., Moberly, R., et al. ( 1975 ). Initial Reports of the Deep Sea Drilling Project (Vol. 32 ). U.S. Government Printing Office.; Latal, C. ( 2004 ). The Cretaceous-Paleogene boundary section of Gorgo a Cerbara: An integrated stratigraphical study. Annals Naturhistorisches Museum Wien, 160A, 259 – 279.; Ludwig, W. J., Krasheninikov, V. A., et al. ( 1983 ). Initial Reports of the Deep Sea Drilling Project (Vol. 71 ). U.S. Government Printing Office.; MacLeod, K. G., & Keller, G. ( 1991a ). How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation. The Geological Society of America Bulletin, 103 ( 11 ), 1439 – 1457. https://doi.org/10.1130/0016-7606Test(1991)1032.3.co;2; MacLeod, K. G., & Keller, G. ( 1991b ). Hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary. Geology, 19 ( 5 ), 497 – 501. https://doi.org/10.1130/0091-7613Test(1991)0192.3.co;2; Maeno, F., & Imamura, F. ( 2011 ). Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. Journal of Geophysical Research: Solid Earth, 116, B09205. https://doi.org/10.1029/2011JB008253Test; Mahoney, J. J., Fitton, J. G., Wallace, P. J., et al. ( 2001 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 192 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.192.2001Test; Mateo, P., Keller, G., Adatte, T., & Spangenberg, J. E. ( 2016 ). Mass wasting and hiatuses during the Cretaceous-Tertiary transition in the North Atlantic: Relationship to the Chicxulub impact ?. Palaeogeography, Palaeoclimatology, Palaeoecolology, 441 (1), 96 – 115. https://doi.org/10.1016/j.palaeo.2015.01.019Test; Maxwell, A. E., et al. ( 1970 ). Initial Reports of the Deep Sea Drilling Project (Vol. 3 ). U.S. Government Printing Office.; Michel, H. V., Asaro, F., Alvarez, W. Z., & Alvarez, L. W. ( 1990 ). Geochemical studies of the Cretaceous-Tertiary boundary in ODP holes 689B and 690C. In P. F. Barker, J. P. Kennett, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113, pp. 159 – 168 ). Ocean Drilling Program.; Miller, K. G., Sugarman, P. J., Browning, J. V., et al. ( 1998 ). Bass River Site report. Scientific results, Ocean Drilling Program, Leg 174AX Supplement (pp. 5 – 43 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.174AX.1998Test; Miller, K. G., Sugarman, P. J., Browning, J. V., et al. ( 1999 ). Proceedings of the Ocean Drilling Program, Initial Reports, 174AX (Supplement). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.174AXS.1999Test; Moberly, R., Schlanger, S. O., et al. ( 1986 ). Initial Reports of the Deep Sea Drilling Project (Vol. 89 ). U.S. Government Printing Office.; Molina, E., Alegret, L., Arenillas, I., & Arz, J. A. ( 2005 ). The Cretaceous/Paleogene boundary at the Agost section revisited: Paleoenvironmental reconstruction and mass extinction pattern. Journal Iberian Geolology, 31 ( 1 ), 135 – 150.; Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., et al. ( 2006 ). The global boundary stratotype section and point for the base of the Danian stage (Paleocene, Paleogene, "Tertiary", Cenozoic) at El Kef, Tunisia—original definition and revision. Episodes, 29 ( 4 ), 263 – 273. https://doi.org/10.18814/epiiugs/2006/v29i4/004Test; Monechi, S., & Thierstein, H. R. ( 1985 ). Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlations near Gubbio, Italy. Marine Micropaleontology, 9 ( 5 ), 419 – 440. https://doi.org/10.1016/0377-8398Test(85)90009-X; Montadert, L. Z., & Roberts, D. G. ( 1979 ). Initial Reports of the Deep Sea Drilling Project (Vol. 48 ). U.S. Government Printing Office.; Montanari, A., Hay, R. L., Alvarez, W., Asaro, F., Michel, H. V., Alvarez, L. W., & Smit, J. ( 1983 ). Spheroids at the Cretaceous-Tertiary boundary are altered impact droplets of basaltic composition. Geology, 11, 668 – 671. https://doi.org/10.1130/0091-7613Test(1983)112.0.co;2; Moore, T. C., Jr., Rabinowitz, P. D., et al. ( 1984 ). Initial Reports of the Deep Sea Drilling Project (Vol. 7 ). U.S. Government Printing Office.; Norris, R. D., Kroon, D., Klaus, A., et al. ( 1998 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 171B ). Ocean Drilling Program.; Ogorelec, B., Dolenec, T., & Drobne, K. ( 2007 ). Cretaceous–Tertiary boundary problem on shallow carbonate platform: Carbon and oxygen excursions, biota and microfacies at the K/T boundary sections Dolenja Vas and Sopada in SW Slovenia, Adria CP. Palaeogeography, Palaeoclimatology, Palaeoecology, 255 ( 1–2 ), 64 – 76. https://doi.org/10.1016/j.palaeo.2007.02.041Test; Olsson, R. K., Miller, K. G., Browning, J. V., Habib, D., & Sugarman, P. J. ( 1997 ). Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology, 25 ( 8 ), 759 – 762. https://doi.org/10.1130/0091-7613Test(1997)0252.3.co;2; Olsson, R. K., Miller, K. G., Browning, J. V., Wright, J. D., & Cramer, B. S. ( 2002 ). Sequence stratigraphy and sea level change across the Cretaceous/Tertiary boundary on the New Jersey passive margin. In C. Koeberl & K. G. MacLeod (Eds.), Catastrophic events and mass extinctions: Impacts and beyond. Geological Society of America Special Paper (Vol. 356, pp. 97 – 108 ).; Peirce, J., Weissel, J., et al. ( 1989 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 121 ). Ocean Drilling Program.; Perch Nielsen, K., McKenzie, J., Quziang, H. E., Silver, L. T., & Schultz, P. H. ( 1982 ). Biostratigraphy and isotope stratigraphy and the "catastrophic" extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper, 190, 353 – 371.; Poore, R., Tauxe, L., Percival, S. F., Jr., Labrecque, J. L., Wright, R., Petersen, N. Y. P., et al. ( 1983 ). Late Cretaceous-Cenozoic Magnetostratigraphic and biostratigraphic correlations of the South Atlantic Ocean: DSDP Leg 73. Palaeogeography, Palaeoclimatology, Palaeoecology, 42 ( 1–2 ), 127 – 149. https://doi.org/10.1016/0031-0182Test(83)90041-x; Premoli Silva, I., Haggerty, J., Rack, F., et al. ( 1993 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 144 ). Ocean Drilling Program.; Punekar, J., Keller, G., Khozyem, H. M., Adatte, T., Font, E., & Spangenberg, J. ( 2016 ). A multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 116 – 136. https://doi.org/10.1016/j.palaeo.2015.08.025Test; Rea, D. K., Basov, L. A., Janecek, T. R., Palmer-Julson, A., et al. ( 1993 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 145 ). Ocean Drilling Program.; Robin, E., Boclet, D., Bonte, P., Froget, L., Jehanna, C., & Rocchia, R. ( 1991 ). The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761C (Leg 122). Earth and Planetary Science Letters, 107 ( 3–4 ), 715 – 721. https://doi.org/10.1016/0012-821xTest(91)90113-v; Ruddiman, W., Sarnthein, M., Baldauf, J., et al. ( 1988 ). Proceedings of the Ocean Drilling Program, Initial Reports (Part A, Vol. 108 ). Ocean Drilling Program.; Sager, W. W., Winterer, E. L., Firth, J. V., et al. ( 1993 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 14 ). Ocean Drilling Program.; Saito, T., Yamanoi, T., & Kaiho, K. ( 1986 ). End-Cretaceous devastation of terrestrial flora in the boreal Far East. Nature, 323 ( 6085 ), 253 – 255. https://doi.org/10.1038/323253a0Test; Schlanger, S. O., Jackson, E. D., et al. ( 1976 ). Initial Reports of the Deep Sea Drilling Project (Vol. 33 ). U.S. Government Printing Office.; Schlich, R., Wise, S. W., Jr., et al. ( 1989 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 120 ). Ocean Drilling Program.; Schmitz, B., Keller, G., & Stenvall, O. ( 1992 ). Stable isotope and foraminiferal changes across the Cretaceous-Tertiary boundary at Stevns Klint, Denmark Arguments for long-term oceanic instability before and after bolide-impact event. Palaeogeography, Palaeoclimatology, Palaeoecology, 96 ( 3–4 ), 233 – 260. https://doi.org/10.1016/0031-0182Test(92)90104-d; Schroeder, W. ( 1984 ). The empirical age-depth relation and depth anomalies in the Pacific Ocean Basin. Journal of Geophysical Research, 89 ( B12 ), 9873 – 9883. https://doi.org/10.1029/JB089iB12p09873Test; Sibuet, J.-C., Ryan, W. B. F., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project (Part 2, Vol. 47 ). U.S. Government Printing Office.; Sigurdsson, H., Leckie, R. M., Acton, G. D., et al. ( 1997 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 165 ). Ocean Drilling Program.; Simpson, E. S. W., Schlich, R., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 25 ). U.S. Government Printing Office.; Smit, J. ( 1999 ). The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences, 27 ( 1 ), 75 – 113. https://doi.org/10.1146/annurev.earth.27.1.75Test