دورية أكاديمية

Application of a computational model in simulating an endovascular clot retrieval service system within regional Australia

التفاصيل البيبلوغرافية
العنوان: Application of a computational model in simulating an endovascular clot retrieval service system within regional Australia
المؤلفون: Ren, Yifan, Phan, Michael, Luong, Phillip, Wu, Jamin, Shell, Daniel, Barras, Christen D, Chryssidis, Steve, Kok, Hong Kuan, Burney, Moe, Tahayori, Baham, Maingard, Julian, Jhamb, Ashu, Thijs, Vincent, Brooks, Duncan Mark, Asadi, Hamed
المصدر: Journal of Medical Imaging and Radiation Oncology ; volume 65, issue 7, page 850-857 ; ISSN 1754-9477 1754-9485
بيانات النشر: Wiley
سنة النشر: 2021
المجموعة: Wiley Online Library (Open Access Articles via Crossref)
الوصف: Introduction The global demand for endovascular clot retrieval (ECR) has grown rapidly in recent years creating challenges to healthcare system planning and resource allocation. This study aims to apply our established computational model to predict and optimise the performance and resource allocation of ECR services within regional Australia, and applying data from the state of South Australia as a modelling exercise. Method Local geographic information obtained using the Google Maps application program interface and real‐world data was input into the discrete event simulation model we previously developed. The results were obtained after the simulation was run over 5 years. We modelled and compared a single‐centre and two‐centre ECR service delivery system. Results Based on the input data, this model was able to simulate the ECR delivery system in the state of South Australia from the moment when emergency services were notified of a potential stroke patient to potential delivery of ECR treatment. In the model, ECR delivery improved using a two‐centre system compared to a one‐centre system, as the percentage of stroke patients requiring ECR was increased. When 15% of patients required ECR, the proportion of ‘failure to receive ECR’ cases for a single‐centre system was 17.35%, compared to 3.71% for a two‐centre system. Conclusions Geolocation and resource utilisation within the ECR delivery system are crucial in optimising service delivery and patient outcome. Under the model assumptions, as the number of stroke cases requiring ECR increased, a two‐centre ECR system resulted in increased timely ECR delivery, compared to a single‐centre system. This study demonstrated the flexibility and the potential application of our DES model in simulating the stroke service within any location worldwide.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1111/1754-9485.13255
الإتاحة: https://doi.org/10.1111/1754-9485.13255Test
حقوق: http://onlinelibrary.wiley.com/termsAndConditions#vorTest
رقم الانضمام: edsbas.701A6DB0
قاعدة البيانات: BASE