يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"T. S. Dushina"', وقت الاستعلام: 1.39s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 234-242 ; Медицинский Совет; № 23 (2023); 234-242 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8023/7115Test; Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431Test.; Ивашкин ВТ, Драпкина ОМ, Маев ИВ, Трухманов АС, Блинов ДВ, Пальгова ЛК и др. Распространенность неалкогольной жировой болезни печени у пациентов амбулаторно-поликлинической практики в Российской Федерации: результаты исследования DIREG 2. Российский журнал гастроэнтерологии, гепатологии и колопроктологии. 2015;25(6):31–41. https://doi.org/10.12691/ajcmr-3-2-3Test.; Fracanzani AL, Valenti L, Bugianesi E, Andreoletti M, Colli A, Vanni E et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology. 2008;48(3):792–798. https://doi.org/10.1002/hep.22429Test.; Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int. 2010;30(6):795–808. https://doi.org/10.1111/j.1478-3231.2010.02264.xTest.; Targher G, Bertolini L, Scala L, Zoppini G, Zenari L, Falezza G. Nonalcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22(10):1354–1358. https://doi.org/10.1111/j.1464-5491.2005.01646.xTest.; Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;9(3):299–314. https://doi.org/10.2174/156652409787847191Test.; Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59(2):267–273. https://doi.org/10.1136/gut.2009.190801Test.; Yamanouchi T. Concomitant therapy with pioglitazone and insulin for the treatment of type 2 diabetes. Vasc Health Risk Manag. 2010;6:189–197. https://doi.org/10.2147/vhrm.s5838Test.; Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–240. https://doi.org/10.4103/22314040.90879Test.; Дедов ИИ. Сахарный диабет: развитие технологий в диагностике, лечении и профилактике (пленарная лекция). Сахарный диабет. 2010;(3):6–13. Режим доступа: https://www.elibrary.ru/download/elibrary_15600463_13067605.pdfTest.; Yki-Jarvinen H. Thiazolidinediones. New Engl J Med. 2004;351(11):1106–1118. https://doi.org/10.1056/NEJMra041001Test.; Sohda T, Mizuno K, Imamiya E, Sugiyama Y, Fujita T., Kawamatsu Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl] thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem Pharm Bull (Tokyo). 1982;30(10):3580–3600. https://doi.org/10.1248/Cpb.30.3580Test.; Fujita T, Sugiyama Y, Taketomi S, Sohda T, Kawamatsu Y, Iwatsuka H, Suzuoki Z. Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes. 1983;32(9):804–810. https://doi.org/10.2337/diab.32.9.804Test.; Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KLR. Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther. 2014;96(5):589–598. https://doi.org/10.1038/clpt.2014.158Test.; Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care. 2002;25(5):815–821. https://doi.org/10.2337/diacare.25.5.81Test.; Bolton GC, Keogh JP, East PD, Hollis FJ, Shore FD. The fate of a thiazolidinedione antidiabetic agent in rat and dog. Xenobiotica. 1996;26(6):627–636. https://doi.org/10.3109/00498259609046738Test.; Shibata H, Nii S, Kobayashi M, Izumi T, Maeda E. Phase I study of a new hypoglycemic agent CS 045 in healthy volunteers: safety and pharmacokinetics in single administration. Rinsho Riinsho Iyaku. 1993;9:1503–1518. Available at: https://www.researchgate.net/publication/286392580_Phase_I_study_of_a_new_hypoglycemic_agent_CS-045_in_healthy_volunteers_Safety_and_pharmacokinetics_in_single_administrationTest.; Young PW, Buckle DR, Cantello BC, Chapman H, Clapham JC, Coyle PJ et al. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther. 1998;284:751–759. Available at: https://pubmed.ncbi.nlm.nih.gov/9454824Test.; Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–2471. https://doi.org/10.1056/NEJMoa072761Test.; Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009; 373(9681):2125–2135. https://doi.org/10.1016/s0140-6736Test(09)60953-3.; Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005;294(20):2581–2586. https://doi.org/10.1001/jama.294.20.joc50147Test.; Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspectivepioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet. 2005;366(9493):1279–1289. https://doi.org/110.1016/S01406736Test(05)67528-9.; Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino Sr RB et al. Effect of Pioglitazone Compared With Glimepiride on Carotid Intima-Media Thicknes in Type 2 Diabetes: A Randomized Trial. JAMA. 2006;296(21):2572–2581. https://doi.org/110.1001/jama.296.21.joc60158Test.; Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299(13):1561–1573. https://doi.org/110.1001/jama.299.13.1561Test.; Gerrits CM, Bhattacharya M, Manthena S, Baran R, Perez A, Kupfer S. A comparison of pioglitazone and rosiglitazone for hospitalization for acute myocardial infarction in type 2 diabetes. Pharmacoepidemiol Drug Saf. 2007;16(10):1065–1071. https://doi.org/10.1002/pds.1470Test.; Tolman KG, Freston JW, Kupfer S, Perez A. Liver safety in patients with type 2 diabetes treated with pioglitazone: results from a 3-year, randomized, comparator-controlled study in the US. Drug Saf. 2009;32(9):787–800. https://doi.org/10.2165/11316510-000000000-00000Test.; Kawamori R, Kadowaki T, Onjic M, Seino Y, Akanuma Y. Hepatic safety profile and glycemic control of pioglitazone in more than 20,000 patients with type 2 diabetes mellitus: Postmarketing surveillance study in Japan. Diabetes Res Clin Pract. 2007;76(2):229–35. https://doi.org/10.1016/j.diabres.2006.08.017Test.; Ahmad SR. Adverse drug monitoring at the Food and Drug Administration. J Gen Intern Med. 2003;18(1):57–60. https://doi.org/10.1046/j.1525-1497.2003.20130.xTest.; Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract. 2022;28(5):528–562. https://doi.org/10.1016/j.eprac.2022.03.010Test.; European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–1402. https://doi.org/10.1016/j.jhep.2015.11.004Test.; Голованова ЕВ, Туркина СВ, Райхельсон КЛ, Оковитый СВ, Драпкина ОМ, Маев ИВ и др. Неалкогольная жировая болезнь печени у взрослых: клинические рекомендации. 2022. Режим доступа: https://diseases.medelement.com/diseaseTest/неалкогольная-жировая-болезнь-печени-у-взрослых-кпрф-2022/17468.; Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010; 362(18):1675–1685. https://doi.org/10.1056/NEJMoa0907929Test.; Della Pepa G, Russo M, Vitale M, Carli F, Vetrani C, Masulli M et al. Pioglitazone even at low dosage improves NAFLD in type 2 diabetes: clinical and pathophysiological insights from a subgroup of the TOSCA.IT randomised trial. Diabetes Res Clin Pract. 2021;178:108984. https://doi.org/10.1016/j.diabres.2021.108984Test.; Zhao Y, Zhao W, Wang H, Zhao Y, Bu H, Takahashi H. Pioglitazone on nonalcoholic steatohepatitis: A systematic review and meta-analysis of 15 RCTs. Medicine (Baltimore). 2022;101(46):e31508. https://doi.org/10.1097/MD.0000000000031508Test.; Singh S, Khera R, Allen AM, Murad MH, Loomba R. Comparative effectiveness of pharmacological interventions for nonalcoholic steatohepatitis: a systematic review and network meta-analysis. Hepatology. 2015;62(5):1417–1432. https://doi.org/10.1002/hep.27999Test.; He L, Liu X, Wang L, Yang Z. Thiazolidinediones for Nonalcoholic Steatohepatitis: A Meta-Analysis of Randomized Clinical Trials. Med (Baltimore). 2016;95(42):e4947. https://doi.org/10.1097/md.0000000000004947Test.; Glen J, Floros L, Day C, Pryke R. Non-Alcoholic Fatty Liver Disease (NAFLD): Summary of NICE Guidance. BMJ. 2016;354:i4428. https://doi.org/10.1136/bmj.i4428Test.; Bril F, Kalavalapalli S, Clark VC, Lomonaco RS. Response to Pioglitazone in Patients With Nonalcoholic Steatohepatitis With vs Without Type 2 Diabetes. Clin Gastroenterol Hepatol. 2018;16(4):558–566. https://doi.org/10.1016/j.cgh.2017.12.001Test.; Boettcher E, Csako G, Pucino F, Loomba R. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with nonalcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66–75. https://doi.org/10.1111/j.1365-2036.2011.04912.xTest.; Piccinni C, Motola D, Marchesini G, Poluzzi E. Assessing the Association of Pioglitazone Use and Bladder Cancer Through Drug Adverse Event Reporting. Diabetes Care. 2011;34(6):1369–1371. https://doi.org/10.2337/dc10-2412Test.; Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297–2307. https://doi.org/10.1056/NEJMoa060326Test.; Mahady SE, Webster AC, Walker S, Sanyal A, George J. The role of thiazolidinediones in non-alcoholic steatohepatitis – a systematic review and meta-analysis. J. Hepatol. 2011;55(6):1383–1390. https://doi.org/10.1016/j.jhep.2011.03.016Test.; Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and Advanced Liver Fibrosis in Nonalcoholic Steatohepatitis: A Meta-analysis. JAMA Intern Med. 2017;177(5):633–640. https://doi.org/10.1001/jamainternmed.2016.9607Test.; https://www.med-sovet.pro/jour/article/view/8023Test

  3. 3
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2023); 40-46 ; Медицинский Совет; № 9 (2023); 40-46 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7604/6753Test; Цыганкова О.В., Веретюк В.В., Аметов А.С. Инкретины сегодня: множественные эффекты и терапевтический потенциал. Сахарный диабет. 2019;22(1):70–78. https://doi.org/10.14341/DM9841Test. Tsygankova O.V., Veretyuk V.V., Ametov A.S. Incretins today: multiple effects and therapeutic potential. Diabetes Mellitus. 2019;22(1):70–78. (In Russ.) https://doi.org/10.14341/DM9841Test.; Тюренков И.Н., Бакулин Д.А., Куркин Д.В., Волотова Е.В. Нейропротективные свойства инкретиномиметиков при ишемии головного мозга и нейродегенеративных заболеваниях. Проблемы эндокринологии. 2017;63(1):58–67. https://doi.org/10.14341/probl201763158-67Test. Tyurenkov I.N., Bakulin D.A., Kurkin D.V., Volotova E.V. Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases. Problemy Endokrinologii. 2017;63(1):58–67. (In Russ.) https://doi.org/10.14341/probl201763158-67Test.; Cork S.C., Richards J.E., Holt M.K., Gribble F.M., Reimann F., Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4(10):718–731. https://doi.org/10.1016/j.molmet.2015.07.008Test.; Shirazi R., Palsdottir V., Collander J., Anesten F., Vogel H., Langlet F. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci. 2013;110(40):16199–16204. https://doi.org/10.1073/pnas.1306799110Test.; Grieco M., Giorgi A., Gentile M.C., d’Erme M., Morano S., Maras B., Filardi T. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front Neurosci. 2019;13:1112. Available at: https://pubmed.ncbi.nlm.nih.govTest/ 31680842/.; Романцова Т.И. Аналог глюкагоноподобного пептида-1 лираглутид (Саксенда®): механизм действия, эффективность в лечении ожирения. Ожирение и метаболизм. 2018;15(1):3–11. https://doi.org/10.14341Test/ omet201813-11. Romantsova T.I. Gglucagon-like peptide-1 analogue liraglutide (Saxenda®): mechanism of action, efficacy for the treatment of obesity. Obesity and Metabolism. 2018;15(1):3–11. (In Russ.) https://doi.org/10.14341Test/ omet201813-11.; Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 2018;108:952–962. https://doi.org/10.1016/j.biopha.2018.08.088Test.; El Tabaa M.M., El Tabaa M.M., Anis A., Elgharabawy R.M., Borai El-Borai N. GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/ TLR4- NF-κB pathway. Int Immunopharmacol. 2022;110:108995. https://doi.org/10.1016/j.intimp.2022.108995Test.; Yan W., Pang M., Yu Y., Gou X., Si P., Zhawatibai A. et al. The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis. Life Sci. 2019;231:116566. https://doi.org/10.1016/j.lfs.2019.116566Test.; Finan B., Ma T., Ottaway N., Müller T.D., Habegger K.M., Heppner K.M. et al. Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Sci Transl Med. 2013;5(209):209ra151. https://doi.org/10.1126/scitranslmed.3007218Test.; Flanagan M., Sonnen J.A., Keene C.D., Hevner R.F., Montine T.J. Molecular Basis of Diseases of the Nervous System. Molecular Pathology. Elsevier. 2018:651–690. https://doi.org/10.1016/B978-0-12-802761-5.00029-8Test.; Quillinan N., Herson P.S., Traystman R.J. Neuropathophysiology of Brain Injury. Anesthesiol Clin. 2016;34(3):453–464. https://doi.org/10.1016/jTest. anclin.2016.04.011.; Власов Т.Д., Симаненкова А.В., Дора С.В., Шляхто Е.В. Механизмы нейропротективного действия инкретиномиметиков. Сахарный диабет. 2016;19(1):16–23. https://doi.org/10.14341/DM7192Test. Vlasov T.D., Simanenkova A.V., Dora S.V., Shlyakhto E.V. Mechanisms of neuroprotective action of incretin mimetics. Diabetes Mellitus. 2016;19(1):16–23. (In Russ.) https://doi.org/10.14341/DM7192Test.; Deng C., Cao J., Han J., Li J., Li Z., Shi N., He J. Liraglutide Activates the Nrf2/HO-1 Antioxidant Pathway and Protects Brain Nerve Cells against Cerebral Ischemia in Diabetic Rats. Comput Intell Neurosci. 2018; 2018:3094504. https://doi.org/10.1155/2018/3094504Test.; Yang X., Qiang Q., Li N., Feng P., Wei W., Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol. 2022;13:844697. https://doi.org/10.3389/fneur.2022.844697Test.; Zhang H., Meng J., Zhou S., Liu Y., Qu D., Wang L. et al. Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect Against Cerebral Ischemia in Mice. AAPS J. 2016;18(2):385–394. https://doi.org/10.1208/s12248-015-9854-1Test.; Timper K., Del Río-Martín A., Cremer A.L., Bremser S., Alber J., Giavalisco P. et al. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metab. 2020;31(6):1189–1205.e13. https://doi.org/10.1016/j.cmet.2020.05.001Test.; Shandilya A., Mehan S., Kumar S., Sethi P., Narula A.S., Alshammari A. et al. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules. 2022;27(12):3878. https://doi.org/10.3390/molecules27123878Test.; Nizari S., Basalay M., Chapman P., Korte N., Korsak A., Christie I.N. et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol. 2021;116(1):32. https://doi.org/10.1007/s00395-021-00873-9Test.; Bai B., Li D., Xue G., Feng P., Wang M., Han Y. et al. The novel GLP-1/GIP dual agonist DA3-CH is more effective than liraglutide in reducing endoplasmic reticulum stress in diabetic rats with cerebral ischemia-reperfusion injury. Nutri Metab Cardiovasc Dis. 2021;31(1):333–343. https://doi.org/10.1016/jTest. numecd.2020.09.002.; Li Y., Gong M. Analysis of the neuroprotective effect of GLP‐1 receptor agonist peptide on cerebral ischemia‐reperfusion injury by Quantitative Proteomics Mass Spectrometry. Brain Behav. 2021;11(6):е02190. https://doi.org/10.1002/brb3.2190Test.; Augestad I.L., Dekens D., Karampatsi D., Elabi O., Zabala A., Pintana H. et al. Normalisation of glucose metabolism by exendin‐4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol. 2022;179(4):677–694. https://doi.org/10.1111/bph.15524Test.; Shan Y., Tan S., Lin Y., Liao S., Zhang B., Chen X. et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019;16(1):242. https://doi.org/10.1186/s12974-019-1638-6Test.; Xie Z., Enkhjargal B., Wu L., Zhou K., Sun C., Hu X. et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–151. https://doi.org/10.1016/j.neuropharm.2017.09.040Test.; Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A. et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045Test.; Irvine G.B., El-Agnaf O.M., Shankar G.M., Walsh D.M. Protein Aggregation in the Brain: The Molecular Basis for Alzheimer’s and Parkinson’s Diseases. Mol Med. 2008;14(7–8):451–464. https://doi.org/10.2119/2007-00100.IrvineTest.; Hong C.T., Chen K.Y., Wang W., Chiu J.Y., Wu D., Chao T.Y. et al. Insulin Resistance Promotes Parkinson’s Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells. 2020;9(3):740. https://doi.org/10.3390/cells9030740Test.; Aghanoori M.-R., Smith D.R., Roy Chowdhury S., Sabbir M.G., Calcutt N.A., Fernyhough P. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol. 2017;297:148–157. https://doi.org/10.1016/j.expneurol.2017.08.005Test.; Porniece Kumar M., Cremer L., Klemm P., Steuernagel L., Sundaram S., Jais A. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab. 2021;3(12):1662–1679. https://doi.org/10.1038/s42255-021-00499-0Test.; García-Cáceres C., Quarta C., Varela L., Gao Y., Gruber T., Legutko B. et al. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell. 2016;166(4):867–880. https://doi.org/10.1016/j.cell.2016.07.028Test.; Kim D.S., Choi H.I., Wang Y., Luo Y., Hoffer B.J., Greig N.H. A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The GlucagonLike Peptide-1 Receptor Pathway. Cell Transplant. 2017;26(9):1560–1571. https://doi.org/10.1177/0963689717721234Test.; Fiory F., Perruolo G., Cimmino I., Cabaro S., Pignalosa F.C., Miele C. et al. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci. 2019;13:868. https://doi.org/10.3389/fnins.2019.00868Test.; Yang L., Wang H., Liu L., Xie A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front Neurosci. 2018;12:73. https://doi.org/10.3389/fnins.2018.00073Test.; Li Y., Perry T., Kindy M.S., Harvey B.K., Tweedie D., Holloway H.W. et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci. 2009;106(4):1285–1290. https://doi.org/10.1073/pnas.0806720106Test.; Mahapatra M.K., Karuppasamy M., Sahoo B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, NonAlcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm Res. 2022;39(6):1233–1248. https://doi.org/10.1007Test/ s11095-022-03302-1.; Zhang L., Zhang L., Li L., Hölscher C. Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson’s Disease. J Parkinsons Dis. 2019;9(1):157–171. https://doi.org/10.3233Test/ JPD-181503.; Harkavyi A., Abuirmeileh A., Lever R., Kingsbury A.E., Biggs C.S., Whitton P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5(1):19. https://doi.org/10.1186/1742-2094-5-19Test.; Oh Y., Jun H.S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci. 2017;19(1):26. https://doi.org/10.3390/ijms19010026Test.; Salameh T.S., Rhea E.M., Talbot K., Banks W.A. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol. 2020;180:114187. https://doi.org/10.1016/j.bcp.2020.114187Test.; Wiciński M., Socha M., Malinowski B., Wódkiewicz E., Walczak M., Górski K. et al. Liraglutide and its Neuroprotective Properties–Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int J Mol Sci. 2019;20(5):1050. https://doi.org/10.3390/ijms20051050Test.; Hunter K., Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13(1):33. https://doi.org/10.1186/1471-2202-13-33Test.; Zeng S.S., Bai J.J., Jiang H., Zhu J.J., Fu C.C., He M.Z. et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic–Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2020;13:585. https://doi.org/10.3389/fncel.2019.00585Test.; Boehme A.K., Esenwa C., Elkind M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ Res. 2017;120(3):472–495. https://doi.org/10.1161Test/ CIRCRESAHA.116.308398.; Zhu H., Zhang Y., Shi Z., Lu D., Li T., Ding Y. et al. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci Rep. 2016;6(1):26859. https://doi.org/10.1038/srep26859Test.; Abdel-latif R.G., Heeba G.H., Taye A., Khalifa M.M.A. Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/ independent pathways. Eur J Pharmacol. 2018;833:145–154. https://doi.org/10.1016/j.ejphar.2018.05.045Test.; Zhang Q., Liu C., Shi R., Zhou S., Shan H., Deng L. et al. Blocking C3d+ / GFAP+ A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis. 2022;13(3):943–959. https://doi.org/10.14336/AD.2021.1029Test.; Basalay M., Davidson S.M., Yellon D.M. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues–Liraglutide and Semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–667. https://doi.org/10.1007/s10557-019-06915-8Test.; Strain W.D., Frenkel O., James M.A., Leiter L.A., Rasmussen S., Rothwell P.M. et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–2757. https://doi.org/10.1161/STROKEAHA.121.037775Test.; Riddle M.C., Gerstein H.C., Xavier D., Cushman W.C., Leiter L.A., Raubenheimer P.J. et al. Efficacy and Safety of Dulaglutide in Older Patients: A post hoc Analysis of the REWIND trial. J Clin Endocrinol Metab. 2021;106(5):1345–1351. https://doi.org/10.1210/clinem/dgab065Test.; Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056Test/ NEJMoa1603827.; De Pablo-Fernandez E., Goldacre R., Pakpoor J., Noyce A.J., Warner T.T. Association between diabetes and subsequent Parkinson disease. Neurology. 2018;91(2):e139–e142. https://doi.org/10.1212/WNL.0000000000005771Test.; Athauda D., Maclagan K., Skene S.S., Bajwa-Joseph M., Letchford D., Chowdhury K. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. https://doi.org/10.1016/S0140-6736Test(17) 31585-4.; Aviles-Olmos I., Dickson J., Kefalopoulou Z., Djamshidian A., Ell P., Soderlund T. et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–2736. https://doi.org/10.1172/JCI68295Test.; Femminella G.D., Frangou E., Love S.B., Busza G., Holmes C., Ritchie C. et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20(1):191. https://doi.org/10.1186/s13063Test- 019-3259-x.; https://www.med-sovet.pro/jour/article/view/7604Test

  4. 4
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 148-155 ; Медицинский Совет; № 23 (2022); 148-155 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7307/6529Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test.; Бабенко А.Ю., Лаевская М.Ю. Неалкогольная жировая болезнь печени – взаимосвязи с метаболическим синдромом. РМЖ. 2018;(1):34–40. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Nealkogolynaya_ghirovaya_bolezny_pecheni_vzaimosvyazi_s_metabolicheskim_sindromomTest.; Pierantonelli I., Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation. 2019;103(1):e1–e13. https://doi.org/10.1097/TP.0000000000002480Test.; Day C.P., James O.F.W. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. https://doi.org/10.1016/s0016-5085Test(98)70599-2.; Caligiuri A., Gentilini A., Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. https://doi.org/10.3390/ijms17091575Test.; Ouyang X., Cirillo P., Sautin Y., McCall S., Bruchette J.L., Diehl A.M. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–999. https://doi.org/10.1016/j.jhep.2008.02.011Test.; Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. https://doi.org/10.1152/physrev.00019.2009Test.; Jegatheesan P., De Bandt J.P. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230. https://doi.org/10.3390/nu9030230Test.; Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol in Vitro. 2010;24(2):387–396. https://doi.org/10.1016/j.tiv.2009.10.020Test.; Civera M., Urios A., Garcia-Torres M.L., Ortega J., Martinez-Valls J., Cassinello N. et al. Relationship between insulin resistance, inflammation and liver cell apoptosis in patients with severe obesity. Diabetes Metab Res Rev. 2010;26(3):187–192. https://doi.org/10.1002/dmrr.1070Test.; Кучерявый Ю.А., Маевская Е.А., Ахтаева М.Л., Краснякова Е.А. Неалкогольный стеатогепатит и кишечная микрофлора: есть ли потенциал пребиотических препаратов в лечении? Медицинский совет. 2013;(2):46–51. Режим доступа: https://www.med-sovet.pro/jour/article/view/963/0Test.; Gambino R., Bugianesi E., Rosso C., Mezzabotta L., Pinach S., Alemanno N. et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int J Mol Sci. 2016;17(4):479. https://doi.org/10.3390/ijms17040479Test.; Салль Т.С., Щербакова Е.С., Ситкин С.И., Вахитов Т.Я., Бакулин И.Г., Демьянова Е.В. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021;(4):120–131. https://doi.org/10.17116/profmed202124041120Test.; Bae C.S., Park S.H. The involvement of p38 MAPK and JNK activation in palmitic acid-induced apoptosis in rat hepatocytes. Journal of Life Science. 2009;19(8):1119–1124.; Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017Test.; Пеньков Д.Н., Егоров А.Д., Мозговая М.Н., Ткачук В.А. Связь инсулиновой резистентности с адипогенезом: роль транскрипционных и секретируемых факторов. Биохимия. 2013;(1):14–26. Режим доступа: https://biochemistrymoscow.com/ru/archive/2013/78-01-0014Test.; Qiang G., Kong H.W., Xu S., Pham H.A., Parlee S.D., Burr A.A. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Мetab. 2016;5(7):480–490. https://doi.org/10.1016/j.molmet.2016.05.005Test.; Wu X., Chen K., Williams K.J. The role of pathway-selective insulin resistance and responsiveness in diabetic dyslipoproteinemia. Curr Opin Lipidol. 2012;23(4):334–344. https://doi.org/10.1097/MOL.0b013e3283544424Test.; Abulizi A., Perry R.J., Camporez J.P.G., Jurczak M.J., Petersen K.F., Aspichueta P. et al. A controlled‐release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J. 2017;31(7):2916–2924. https://doi.org/10.1096/fj.201700001RTest.; Bechmann L.P., Hannivoort R.A., Gerken G., Hotamisligil G.S., Trauner M., Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–964. https://doi.org/10.1016/j.jhep.2011.08.025Test.; Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014Test.; Brandi G., Lorenzo S.D., Candela M., Pantaleo M.A., Bellentani S., Tovoli F. et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis. 2017;38(3):231–240. https://doi.org/10.1093/carcin/bgx007Test.; Monsour Jr.H.P., Frenette C.T., Wyne K. Fatty liver: a link to cardiovascular disease–its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8(3):21. https://doi.org/10.14797/mdcj-8-3-21Test.; Buechler C., Wanninger J., Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801. https://doi.org/10.3748/wjg.v17.i23.2801Test.; Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28(10):875–886. https://doi.org/10.1007/s40263-014-0178-yTest.; Кытикова О.Ю., Новгородцева Т.П., Денисенко Ю.К., Антонюк М.В., Гвозденко Т.А. Толл-подобные рецепторы в патофизиологии ожирения. Ожирение и метаболизм. 2020;(1):56–63. https://doi.org/10.14341/omet10336Test.; Dube P.E., Brubaker P.L. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm Metab Res. 2004;36(11–12):755–760. https://doi.org/10.1055Test/s-2004-826159.; Галстян Г.Р., Каратаева Е.А., Юдович Е.А. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2-го типа. Сахарный диабет. 2017;(4):286–298. https://doi.org/10.14341/DM8804Test.; Раскина К. Долгоживущий человеческий аналог ГПП-1. Актуальная эндокринология. 2015;6(1). Режим доступа: https://actendocrinology.ru/archives/2507Test.; Халимов Ю.Ш., Кузьмич В.Г. Органопротективные эффекты агонистов рецепторов глюкагоноподобного пептида 1-го типа по результатам доказательных исследований сердечно-сосудистой безопасности. Медицинский совет. 2019;(21):189–197. https://doi.org/10.21518/2079-701X-2019-21-189-197Test.; Scrocchi L.A., Brown T.J., Maclusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Мed. 1996;2(11):1254–1258. https://doi.org/10.1038/nm1196-1254Test.; Buteau J. GLP-1 receptor signaling: effects on pancreatic β-cell proliferation and survival. Diabetes Мetab. 2008;34(Suppl. 2):S73–77. https://doi.org/10.1016/S1262-3636Test(08)73398-6.; Fehmann H.C., Habener J.F. Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–166. https://doi.org/10.1210/endo.130.1.1309325Test.; Campbell J.E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. https://doi.org/10.1016/j.cmet.2013.04.008Test.; Cryer P.E. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012;153(3):1039–1048. https://doi.org/10.1210/en.2011-1499Test.; Buse J.B., Sesti G., Schmidt W.E., Montanya E., Chang C.T., Xu Y. et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care. 2010;33(6):1300–1303. https://doi.org/10.2337/dc09-2260Test.; Henry R.R., Buse J.B., Sesti G., Davies M.J., Jensen K.H., Brett J. et al. Efficacy of Anti Hyperglycemic Therapies and the Influence of Baseline Hemoglobin A1C: A Meta-Analysis of the Liraglutide Development Program. Endocr Pract. 2011;17(6):906–913. https://doi.org/10.4158/ep.17.6.906Test.; Monami M., Dicembrini I., Nreu B., Andreozzi F., Sesti G., Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a meta-analysis and systematic review of randomized controlled trials. Acta Diabetol. 2017;54(12):1101–1114. https://doi.org/10.1007/s00592-017-1054-2Test.; Fan H., Pan Q.R., Xu Y., Yang X.C. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arq Bras de Endocrinol Metabol. 2013;57(9):702–708. https://doi.org/10.1590/s0004-27302013000900005Test.; Cusi K., Sattar N., García-Pérez L.-E., Pavo I., Yu M., Robertson K.E. et al. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diab Med. 2018;35(10):1434–1439. https://doi.org/10.1111/dme.13697Test.; Aroda V.R., Rosenstock J., Terauchi Y., Altuntas Y., Lalic N.M., Morales Villegas E.C. et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42(9):1724–1732. https://doi.org/10.2337/dc19-0749Test.; Гоникова З.З., Никольская А.О., Кирсанова Л.А., Шагидулин М.Ю., Онищенко Н.А., Севастьянов В.И. Сравнительный анализ эффективности стимуляции процессов регенерации печени клетками костного мозга и общей РНК этих клеток. Вестник трансплантологии и искусственных органов. 2019;(1):113–121. https://doi.org/10.15825/1995-1191-2019-1-113-121Test.; Feng W., Bi Y., Li P., Yin T.T., Gao C.X., Shen S.M. et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J Diabetes. 2017;9(8):800–809. https://doi.org/10.1111/jdi.12888Test.; Gluud L.L., Knop F.K., Vilsbоll T. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes. BMJ Open. 2014;4(12):e005325. https://doi.org/10.1136/bmjopen-2014-005325Test.; Sjоberg K.A., Holst J.J., Rattigan S., Richter E.A., Kiens B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014;306(4):E355–E362. https://doi.org/10.1152/ajpendo.00283.2013Test.; Nogueiras R., Pérez-Tilve D., Veyrat-Durebex C., Morgan D.A., Varela L., Haynes W.G. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009;29(18):5916–5925. https://doi.org/10.1523/JNEUROSCI.5977-08.2009Test.; Richards P., Parker H.E., Adriaenssens A.E., Hodgson J.M., Cork S.C., Trapp S. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224–1233. https://doi.org/10.2337/db13-1440Test.; Baggio L.L., Ussher J.R., McLean B.A., Cao X., Kabir M.G., Mulvihill E.E. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab. 2017;6(11):1339–1349. https://doi.org/10.1016/j.molmet.2017.08.010Test.; Szablowski J.O., Lee-Gosselin A., Lue B., Malounda D., Shapiro M.G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng. 2018;2(7):475–484. https://doi.org/10.1038/s41551-018-0258-2Test.; Ерофеев А.И., Матвеев М.В., Терехин С.Г., Захарова О.А., Плотникова П.В., Власова О.Л. Оптогенетика – новый метод исследования нейрональной активности. Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2015;(3):61–74. Режим доступа: https://physmath.spbstu.ru/article/2015.29.7Test.; Gaykema R.P., Newmyer B.A., Ottolini M., Raje V., Warthen D.M., Lambeth P.S. et al. Activation of murine pre-proglucagon – producing neurons reduces food intake and body weight. J Сlin Invest. 2017;127(3):1031–1045. https://doi.org/10.1172/JCI81335Test.; Burmeister M.A., Ayala J.E., Smouse H., Landivar-Rocha A., Brown J.D., Drucker D.J. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017;66(2):372–384. https://doi.org/10.2337/db16-1102Test.; Kooijman S., Wang Y., Parlevliet E.T., Boon M.R., Edelschaap D., Snaterse G. et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58(11):2637–2646. https://doi.org/10.1007/s00125-015-3727-0Test.; Lockie S.H., Heppner K.M., Chaudhary N., Chabenne J.R., Morgan D.A., Veyrat-Durebex C. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–2762. https://doi.org/10.2337/db11-1556Test.; Beiroa D., Imbernon M., Gallego R., Senra A., Herranz D., Villarroya F. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–3358. https://doi.org/10.2337/db14-0302Test.; Brierley D.I., de Lartigue G. Reappraising the role of the vagus nerve in GLP‐1‐mediated regulation of eating. Br J Pharmacol. 2022;179(4):584–599. https://doi.org/10.1111/bph.15603Test.; Frias J.P., Bonora E., Ruiz L.N., Li Y.G., Yu Z., Milicevic Z. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg versus dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care. 2021;44(3):765–773. https://doi.org/10.2337/dc20-1473Test.; Newsome P.N., Buchholtz K., Cusi K., Linder M., Okanoue T., Ratziu V. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113–1124. https://doi.org/10.1056/NEJMoa2028395Test.; O’Neil P.M., Birkenfeld A.L., McGowan B., Mosenzon O., Pedersen S.D., Wharton S. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–649. https://doi.org/10.1016/S0140-6736Test(18)31773-2.; Lomonaco R., Leiva E.G., Bril F., Shrestha S., Mansour L., Budd J. et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406. https://doi.org/10.2337/dc20-1997Test.; Seko Y., Sumida Y., Tanaka S., Mori K., Taketani H., Ishiba H. et al. Effect of 12‐week dulaglutide therapy in Japanese patients with biopsy‐proven non‐alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017;47(11):1206–1211. https://doi.org/10.1111/hepr.12837Test.; Mantovani A., Petracca G., Beatrice G., Csermely A., Lonardo A., Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021;11(2):73. https://doi.org/10.3390/metabo11020073Test.; Patel Chavez C., Cusi K., Kadiyala S. The emerging role of glucagon-like Peptide-1 receptor agonists for the management of NAFLD. J Clin Endocrinol Metab. 2022;107(1):29–38. https://doi.org/10.1210/clinem/dgab578Test.; Ghosal S., Datta D., Sinha B. A meta-analysis of the effects of glucagon-like-peptide 1 receptor agonist (GLP1-RA) in nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D). Sci Rep. 2021;11(1):1–8. https://doi.org/10.1038/s41598-021-01663-yTest.; https://www.med-sovet.pro/jour/article/view/7307Test

  5. 5
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 15 (2022); 83-89 ; Медицинский Совет; № 15 (2022); 83-89 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7075/6349Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test. Maevskaya M.V., Kotovskaya Yu.V., Ivashkin V.T., Tkacheva O.N., Troshina E.A., Shestakova M.V. et al. National consensus for physicians on the management of adult patients with non-alcoholic fatty liver disease and its major comorbid conditions. Terapevticheskii Arkhiv. 2022;(2):216–253. (In Russ.) https://doi.org/10.26442/00403660.2022.02.201363Test.; Jichitu A., Bungau S., Stanescu A.M.A., Vesa C.M., Toma M.M., Bustea C. et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. https://doi.org/10.3390/diagnostics11040689Test.; Li X., Jiao Y., Xing Y., Gao P. Diabetes Mellitus and Risk of Hepatic Fibrosis/ Cirrhosis. Biomed Res Int. 2019;2019:5308308. https://doi.org/0.1155/2019/5308308Test.; Nakahara T., Hyogo H., Yoneda M., Sumida Y., Eguchi Y., Fujii H. et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49(11):1477–1484. https://doi.org/10.1007/s00535-013-0911-1Test.; Trombetta M., Spiazzi G., Zoppini G., Muggeo M. Review article: Type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22(2 Suppl.):24–27. https://doi.org/10.1111/j.1365-2036.2005.02590.xTest.; Mantovani A., Scorletti E., Mosca A., Alisi A., Byrne C.D., Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170. https://doi.org/10.1016/j.metabol.2020.154170Test.; Targher G., Lonardo A., Byrne C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018;14(2):99–114. https://doi.org/10.1038/nrendo.2017.173Test.; Machado M., Marques-Vidal P., Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45(4):600–606. https://doi.org/10.1016/j.jhep.2006.06.013Test.; Younossi Z.M., Golabi P., de Avila L., Paik J.M., Srishord M., Fukui N. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. https://doi.org/10.1016/j.jhep.2019.06.021Test.; Masarone M., Rosato V., Aglitti A., Bucci T., Caruso R., Salvatore T. et al. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE. 2017;12(6):e0178473. https://doi.org/10.1371/journal.pone.0178473Test.; Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–1789. https://doi.org/10.1007/s00125-008-1116-7Test.; Defronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795. https://doi.org/10.2337/db09-9028Test.; Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012Test.; Eslam M., Sanyal A.J., George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1. https://doi.org/10.1053/j.gastro.2019.11.312Test.; Younossi Z.M., Corey K.E., Lim J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology. 2021;160(3):912–918. https://doi.org/10.1053/j.gastro.2020.11.051Test.; Finer N. Weight loss interventions and nonalcoholic fatty liver disease: Optimizing liver outcomes. Diabetes Obes Metab. 2022;24(Suppl. 2):44–54. https://doi.org/10.1111/dom.14569Test.; Петунина Н.А., Тельнова М.Э., Кузина И.А. Влияние ипраглифлозина на компоненты метаболического синдрома и неалкогольную жировую болезнь печени. Медицинский совет. 2021;(12):305–310. https://doi.org/10.21518/2079-701X-2021-12-305-310Test. Petunina N.A., Telnova M.E., Kuzina I.A. Effect of ipragliflozin on components of the metabolic syndrome and non-alcoholic fatty liver disease. Meditsinskiy Sovet. 2021;(12):305–310. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-305-310Test.; Моргунов Л.Ю., Мамедгусейнов Х.С. Новые возможности коррекции сахарного диабета 2-го типа у пациентов с заболеваниями печени. Лечащий врач. 2021;(12):26–32. https://doi.org/10.51793/OS.2021.24.12.004Test. Morgunov L.Yu., Mamedguseynov Kh.S. New opportunities for the correction of type 2 diabetes mellitus in patients with liver diseases. Lechaschi Vrach. 2021;(12):26–32. (In Russ.) https://doi.org/10.51793/OS.2021.24.12.004Test.; Vallon V., Thomson S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16(6):317–336. https://doi.org/10.1038/s41581-020-0256-yTest.; Simes B.C., MacGregor G.G. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician’s Guide. Diabetes Metab Syndr Obes. 2019;12:2125–2136. https://doi.org/10.2147/DMSO.S212003Test.; Yu A.S., Hirayama B.A., Timbol G., Liu J., Basarah E., Kepe V. et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6):C1277–1284. https://doi.org/10.1152/ajpcell.00296.2010Test.; Fonseca-Correa J.I., Correa-Rotter R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front Med (Lausanne). 2021;8:777861. https://doi.org/10.3389/fmed.2021.777861Test.; Yanai H., Hakoshima M., Adachi H., Katsuyama H. Multi-Organ Protective Effects of Sodium Glucose Cotransporter 2 Inhibitors. Int J Mol Sci. 2021;22(9):4416. https://doi.org/10.3390/ijms22094416Test.; Амосова М.В., Фадеев В.В. Эмпаглифлозин – новые показания к применению – поворотный момент в лечении сахарного диабета 2-го типа. Медицинский совет. 2017;(3):38–43. https://doi.org/10.21518/2079-701X-2017-3-38-43Test. Amosova M.V., Fadeev V.V. Empagliflozin – new indications for use – a turning point in the treatment of type 2 diabetes mellitus. Meditsinskiy Sovet. 2017;(3):38–43. (In Russ.) https://doi.org/10.21518/2079-701X-2017-3-38-43Test.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом: клинические рекомендации. М.; 2021. 222 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest. Dedov I.I., Shestakova M.V., Maiorov A.Yu. (eds.). Algorithms of specialized medical care for patients with diabetes mellitus: clinical recommendations. Мoscow; 2021. 228 p. (In Russ.) Available at: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest.; Komiya C., Tsuchiya K., Shiba K., Miyachi Y., Furuke S., Shimazu N. et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS ONE. 2016;11(3):e0151511. https://doi.org/10.1371/journal.pone.0151511Test.; Petito-da-Silva T. I., Souza-Mello V., Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol Cell Endocrinol. 2019;498:110539. https://doi.org/10.1016/j.mce.2019.110539Test.; Androutsakos T., Nasiri-Ansari N., Bakasis A.D., Kyrou I., Efstathopoulos E., Kassi E. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci. 2022;23(6):3107. https://doi.org/10.3390/ijms23063107Test.; Hüttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M. et al. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci. 2021;22(21):11513. https://doi.org/10.3390/ijms222111513Test.; Seko Y., Nishikawa T., Umemura A., Yamaguchi K., Moriguchi M., Yasui K. et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsy-proven nonalcoholic steatohepatitis classified as stage 1-3 fibrosis. Diabetes Metab Syndr Obes. 2018;11:835–843. https://doi.org/10.2147/DMSO.S184767Test.; Wang D., Luo Y., Wang X., Orlicky D.J., Myakala K., Yang P., Levi M. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. Int J Mol Sci. 2018;19(1):137. https://doi.org/10.3390/ijms19010137Test.; Li B., Wang Y., Ye Z., Yang H., Cui X., Wang Z., Liu L. Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. J Pharm Pharm Sci. 2018;21(1):222–235. https://doi.org/10.18433/jpps29831Test.; Gallo S., Calle R.A., Terra S.G., Pong А., Tarasenko L., Raji А. Effects of Ertugliflozin on Liver Enzymes in Patients with Type 2 Diabetes: A PostHoc Pooled Analysis of Phase 3 Trials. Diabetes Ther. 2020;11(8):1849– 1860. https://doi.org/10.1007/s13300-020-00867-1Test.; Arase Y., Shiraishi K., Anzai K., Sato H., Teramura E., Tsuruya K. et al. Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Clin Drug Investig. 2019;39(7):631–641. https://doi.org/10.1007/s40261-019-00785-6Test.; Eriksson J.W., Lundkvist P., Jansson P.A., Johansson L, Kvarnström M., Moris L. et al. Effects of dapagliflozin and n-3 carboxylic acids on nonalcoholic fatty liver disease in people with type 2 diabetes: a doubleblind randomised placebo-controlled study. Diabetologia. 2018;61(9):1923–1934. https://doi.org/10.1007/s00125-018-4675-2Test.; Kashiwagi A., Takahashi H., Ishikawa H., Yoshida S., Kazuta K., Utsuno A. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015;17(2):152–160. https://doi.org/10.1111/dom.12403Test.; Kashiwagi A., Sakatani T., Nakamura I., Akiyama N., Kazuta K., Ueyama E. et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J. 2018;65(7):693–705. https://doi.org/10.1507/endocrj.EJ17-0491Test.; Honda Y., Imajo K., Kato T., Kessoku T., Ogawa Y., Tomeno W. et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS ONE. 2016;11(1):e0146337. https://doi.org/10.1371/journal.pone.0146337Test.; Tobita H., Sato S., Miyake T., Ishihara S., Kinoshita Y. Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr Ther Res Clin Exp. 2017;87:13–19. https://doi.org/10.1016/j.curtheres.2017.07.002Test.; Tabuchi H., Maegawa H., Tobe K., Nakamura I., Uno S. Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: a subgroup analysis of the STELLA-LONG TERM study (3-month interim results). Endocr J. 2019;66(1):31–41. https://doi.org/10.1507/endocrj.EJ18-0217Test.; Ohta A., Kato H., Ishii S., Sasaki Y., Nakamura Y., Nakagawa T. et al. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin Pharmacother. 2017;18(14):1433–1438. https://doi.org/10.1080/14656566.2017.1363888Test.; Nakamura I., Maegawa H., Tobe K., Tabuchi H., Uno S. Safety and efficacy of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice: interim results of the STELLA-LONG TERM postmarketing surveillance study. Expert Opin Pharmacother. 2018;19(3):189–201. https://doi.org/10.1080/14656566.2017.1408792Test.; Nishimiya N., Tajima K., Imajo K., Kameda A., Yoshida E., Togashi Y. et al. Effects of Canagliflozin on Hepatic Steatosis, Visceral Fat and Skeletal Muscle among Patients with Type 2 Diabetes and Non-alcoholic Fatty Liver Disease. Intern Med. 2021;60(21):3391–3399. https://doi.org/10.2169/internalmedicine.7134-21Test.; Pokharel A., Kc S., Thapa P., Karki N., Shrestha R., Jaishi B., Paudel M.S. The Effect of Empagliflozin on Liver Fat in Type 2 Diabetes Mellitus Patients With Non-Alcoholic Fatty Liver Disease. Cureus. 2021;13(7):e16687. https://doi.org/10.7759/cureus.16687Test.; Lai L.L., Vethakkan S.R., Nik Mustapha N.R., Mahadeva S., Chan W.K. Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes Mellitus. Dig Dis Sci. 2020;65(2):623–631. https://doi.org/10.1007/s10620-019-5477-1Test.; Akuta N., Watanabe C., Kawamura Y., Arase Y., Saitoh S., Fujiyama S. et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: Preliminary prospective study based on serial liver biopsies. Hepatol Commun. 2017;1(1):46–52. https://doi.org/10.1002/hep4.1019Test.; Yabiku K., Nakamoto K., Tsubakimoto M. Effects of Sodium-Glucose Cotransporter 2 Inhibition on Glucose Metabolism, Liver Function, Ascites, and Hemodynamics in a Mouse Model of Nonalcoholic Steatohepatitis and Type 2 Diabetes. J Diabetes Res. 2020;2020:1682904. https://doi.org/10.1155/2020/1682904Test.; Ribeiro Dos Santos L., Baer Filho R. Treatment of nonalcoholic fatty liver disease with dapagliflozin in non-diabetic patients. Metabol Open. 2020;5:100028. https://doi.org/10.1016/j.metop.2020.100028Test.; Shiba K., Tsuchiya K., Komiya C., Miyachi Y., Mori K., Shimazu N. et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep. 2018;8(1):2362. https://doi.org/10.1038/s41598-018-19658-7Test.; Jojima T., Wakamatsu S., Kase M., Iijima T., Maejima Y., Shimomura K. et al. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci. 2019;20(20):5237. https://doi.org/10.3390/ijms20205237Test.; Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314. https://doi.org/10.1126/science.123.3191.309Test.; Scafoglio C., Hirayama B.A., Kepe V., Liu J., Ghezzi C., Satyamurthy N. et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112(30):E4111–1119. https://doi.org/10.1073/pnas.1511698112Test.; Du D., Liu C., Qin M., Zhang X., Xi T., Yuan S. et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558–580. https://doi.org/10.1016/j.apsb.2021.09.019Test.; https://www.med-sovet.pro/jour/article/view/7075Test

  6. 6