يعرض 1 - 10 نتائج من 186 نتيجة بحث عن '"Técnicas Inmunológicas"', وقت الاستعلام: 1.19s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    رسالة جامعية
  3. 3
    دورية أكاديمية
  4. 4
  5. 5
    رسالة جامعية

    المساهمون: Montoya Campuzano, Olga Inés, Arango Isaza, Rafael Eduardo, Probióticos: Prospección Funcional y Metabolitos

    وصف الملف: 77 páginas; application/pdf

    العلاقة: LaReferencia; Agarwal, A., Awasthi, V., Dua, A., Ganguly, S., Garg, V., & Marwaha, S. S. (2012). Microbiological profile of milk: impact of household practices. Indian Journal of Public Health. https://www-scopus-com.ezproxy.unal.edu.co/record/display.uri?eid=2-s2.0-84864590874&origin=reflist&sort=plf-f&src=s&sid=7af4d3155df3a2121a2d2147fab97c33&sot=b&sdt=b&sl=137&s=TITLE-ABS-KEY%28Usefulness+of+Potentially+Probiotic+L.+lactis+Isolates+from+Polish+Fermented+Cow+Milk+for+the+Production+of+Cottage+Cheese%29Test; Akbar, A., Sadiq, M. B., Ali, I., Anwar, M., Muhammad, N., Muhammad, J., Shafee, M., Ullah, S., Gul, Z., Qasim, S., Ahmad, S., & Anal, A. K. (2019). Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential. Http://Mc.Manuscriptcentral.Com/TcytTest, 17(1), 214–220. https://doi.org/10.1080/19476337.2019.1575474Test; Aljasir, S. F., & D’Amico, D. J. (2020). The effect of protective cultures on Staphylococcus aureus growth and enterotoxin production. Food Microbiology, 91, 103541. https://doi.org/10.1016/J.FM.2020.103541Test; Argudín, M. A., Mendoza, M. C., & Rodicio, M. R. (2010). Food Poisoning and Staphylococcus aureus Enterotoxins. Toxins, 2(7), 1751–1773. https://doi.org/10.3390/toxins2071751Test; Batista Gutiérrez, L., Manuel ROSADO GARCÍA, F., Isabel GONZÁLEZ GONZÁLEZ, M., & Villar Saavedra, A. (2019). IMPLEMENTATION OF A SCREENING TECHNIQUE FOR THE IDENTIFICATION OF SALMONELLA SPP. IN SURFACE WATER. Higiene y Sanidad Ambiental, 19(2), 1749–1754; Bianchi, D. M., Maurella, C., Lenzi, C., Fornasiero, M., Barbaro, A., & Decastelli, L. (2022). Influence of Season and Food Type on Bacterial and Entero-Toxigenic Prevalence of Staphylococcus aureus. Toxins 2022, Vol. 14, Page 671, 14(10), 671. https://doi.org/10.3390/TOXINS14100671Test; Bordin, G., Cordeiro Raposo, F., De La Calle, B., & Rodriguez, A. R. (2001). Identification and quantification of major bovine milk proteins by liquid chromatography. Journal of Chromatography A, 928(1), 63–76. https://doi.org/10.1016/S0021-9673Test(01)01097-4; Camaró-Sala, M. L., Martínez-García, R., Olmos-Martínez, P., Catalá-Cuenca, V., Ocete-Mochón, M. D., & Gimeno-Cardona, C. (2015). Validation and verfication of microbiology methods %7C Validación y verificación analítica de los métodos microbiológicos. Enfermedades Infecciosas y Microbiologia Clinica Monografias, 33(7), e31–e36. https://doi.org/10.1016/j.eimc.2013.11.010Test; Castro, S. T., Rodríguez, C. R., Perazzi, B. E., Radice, M., Paz Sticotti, M., Muzio, H., Juárez, J., Gutkind, G., Famiglietti, A. M. R., Santini, P. I., & Vay, C. A. (2006). Comparación de diferentes métodos para identificar las especies del género Proteus. Revista Argentina de Microbiología v.38 n.3 Ciudad Autónoma de Buenos Aires. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-75412006000300002Test; Centers for Disease Control and Prevention. (2021, July 16). Microbios y enfermedades transmitidos por los alimentos %7C Seguridad alimenticia %7C CDC. https://www.cdc.gov/foodsafety/es/foodborne-germs-es.htmlTest; Centers for Disease Control and Prevention (CDC). (2019). Salmonella %7C CDC. Salmonella . https://www.cdc.gov/salmonella/index.htmlTest; Chacón, L., Barrantes, K., García, C., & Rosario, A. (2010). Estandarización de una PCR para la detección del gen invA de Salmonella spp. en lechuga. Revista de La Sociedad Venezolana de Microbiología, 30(1), 18–23. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1315-25562010000100005&lng=es&nrm=iso&tlng=esTest; Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629–641. https://doi.org/10.1038/nrmicro2200Test; Codex Alimentarius. (2011). Leche y Productos Lácteos Segunda edición. http://www.codexalimentarius.orgTest; Corral, A., Morales, Y., Pazos, L., Ramírez, A., Martínez, R., & Muñoz, J. (2012). Quantification of cultivable bacteria by the “Massive Stamping Drop Plate” method. Revista Colombiana Biotecnología, 2, 147–156; Côté-Gravel, J., & Malouin, F. (2019). Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. Journal of Dairy Science, 102(5), 4727–4740. https://doi.org/10.3168/JDS.2018-15272Test; David, A., Porras Atencia, O. O., Bermúdez, S. C., Velasco Sánchez, N. J., & Osorio Padilla, M. L. (2016). Detección de Listeria ssp y Salmonella spp en queso y su relación con las caraterísticas fisicoquímicas. Revista Politécnica, Vol. 12, No. 23. https://revistas.elpoli.edu.co/index.php/pol/article/view/903Test; Dhanashekar, R., Akkinepalli, S., & Nellutla, A. (2012). Milk-borne infections. An analysis of their potential effect on the milk industry. Germs, 2(3), 101. https://doi.org/10.11599/GERMS.2012.1020Test; Dos Santos, P. H. C., Figueiredo, H. M., da SILVA, L. H. M., da SILVA, R. S. O., Cardoso, G. V. F., Moraes, C. M., & Rodrigues, A. M. da C. (2020). Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon. Food Science and Technology, 41(1), 151–157. https://doi.org/10.1590/FST.38719Test; Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (2019). Food microbiology: Fundamentals and frontiers. In Food Microbiology: Fundamentals and Frontiers. https://doi.org/10.1002/9781683670476Test; Drake, P., Chen, Y.-C., Lehmann, I., & Jiang, P.-S. (2015). Nanoparticle labels for pathogen detection through nucleic acid amplification tests. Microfluidics and Nanofluidics, 19(2), 299–305. https://doi.org/10.1007/s10404-014-1530-8Test; Ertas, N., Gonulalan, Z., Yildirim, Y., & Kum, E. (2010). Detection of Staphylococcus aureus enterotoxins in sheep cheese and dairy desserts by multiplex PCR technique. International Journal of Food Microbiology, 142(1–2), 74–77. https://doi.org/10.1016/J.IJFOODMICRO.2010.06.002Test; European Commission. (2005). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:02005R2073-20180101&from=ENTest; Fàbrega, A., & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clinical Microbiology Reviews, 26(2), 308–341. https://doi.org/10.1128/CMR.00066-12Test; Foster, T. J. (2009). Colonization and infection of the human host by staphylococci: Adhesion, survival and immune evasion. Veterinary Dermatology, 20(5–6), 456–470. https://doi.org/10.1111/j.1365-3164.2009.00825.xTest; Galván, M. del pilar. (2005). PROCESO BÁSICO DE LA LECHE Y EL QUESO. Revista Digital Universitaria, 6. http://www.revista.unam.mx/vol.6/num9/art87/int87.htmTest; GE Healthcare. (2007). Illustra bacteria genomicPrep Mini Spin Kit; Gökmen-Polar, Y. (2018). Overview of PCR-Based Technologies and Multiplexed Gene Analysis for Biomarker Studies. In Predictive Biomarkers in Oncology: Applications in Precision Medicine. https://doi.org/10.1007/978-3-319-95228-4_5Test; Gonzalez Pedraza, J. B., Sanandres, N. P., Varela, Z. S., Aguirre, E. H., & Camacho, J. V. (2014). Microbiological Isolation of Salmonella spp. And Molecular tools for detection %7C Aislamiento microbiológico de Salmonella spp. y herramientas moleculares para su detección. Salud Uninorte, 30(1), 73–94. https://doi.org/10.14482/sun.30.1.4316Test; Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., Praet, N., Bellinger, D. C., de Silva, N. R., Gargouri, N., Wu, F., & Zeilmaker, M. (2015). World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Medicine, 12(12). https://doi.org/10.1371/journal.pmed.1001923Test; Hernández Ramírez, D. F., & Cabiedes, J. (2010). Técnicas inmunológicas que apoyan el diagnóstico de las enfermedades autoinmunes. Reumatología Clínica, 6(3), 173–177. https://doi.org/10.1016/J.REUMA.2009.10.003Test; Herrera, A., & Santos, F. (2015). PRESENCIA DE Staphylococcus aureus METICILINA-RESISTENTES EN QUESO DOBLE CREMA ARTESANAL PRESENCE OF METHICILLIN-RESISTANT Staphylococcus aureus INARTISAN DOUBLE CREAM CHEESE. Revista U.D.C.A Actualidad & Divulgación Científica; Hoffmann, S., Maculloch, B., & Batz, M. (2015). Economic burden of major foodborne illnesses acquired in the United States. In Economic Cost of Foodborne Illnesses in the United States; Hoppe, C., Mølgaard, C., & Michaelsen, K. F. (2006). Cow’s milk and linear growth in industrialized and developing countries. Annual Review of Nutrition, 26, 131–173. https://doi.org/10.1146/annurev.nutr.26.010506.103757Test; Hosseini, S. M., Arabestani, M. R., Mahmoodi, H., & Farhangara, E. (2015). Prevalence of G, H, I, J Enterotoxin Genes and antibacterial susceptibility pattern in staphylococcus aureus strains isolated from different foods. Journal of Mazandaran University of Medical Sciences, 25(123), 1–10; ICONTEC - Instituto Colombiano de Normas Técnicas. (2002, October 30). Productos lacteos. Leche pasteurizada.(NTC 506). ICONTEC E-Collection. https://ecollection-icontec-org.ezproxy.unal.edu.co/normavw.aspx?ID=4257Test; ICONTEC - Instituto Colombiano de Normas Técnicas. (2004, February 25). Productos lacteos. Leche uat -uht- ultra alta temperatura larga vida y leche ultrapasteurizada. (NTC 3856). ICONTEC E-Collection. https://ecollection-icontec-org.ezproxy.unal.edu.co/normavw.aspx?ID=2899Test; ICONTEC - Instituto Colombiano de Normas Técnicas. (2007a, March 21). Microbiologia de alimentos y de alimentos para animales. Método horizontal para la detección de salmonella spp. (NTC 4574). ICONTEC E-Collection. https://ecollection-icontec-org.ezproxy.unal.edu.co/normavw.aspx?ID=3690Test; ICONTEC - Instituto Colombiano de Normas Técnicas. (2007b, August 29). Microbiologia de alimentos y alimentos para animales. Metodo horizontal para el recuento de estafilococos coagulasa positiva (staphylococcus aureus y otras especies). (NTC4779). ICONTEC E-Collection. https://ecollection-icontec-org.ezproxy.unal.edu.co/normavw.aspx?ID=3917Test; ICONTEC - Instituto Colombiano de Normas Técnicas. (2023). Certificación de Producto - Icontec. ICONTEC. https://www.icontec.org/certificacion-de-productoTest/; ISO. (2021). Microbiología de la cadena alimentaria. Método horizontal para la detección, enumeración y serotipado de Salmonella. Parte 1: Detección de Salmonella spp. Modificación 1: Ampliación del rango de temperaturas de incubación, modificación del estado del Anexo D y corrección de la composición de los medios MSRV y SC. (ISO 6579-1:2017/Amd 1:2020); ISO. (2022). Microbiología de la cadena alimentaria. Método horizontal para el recuento de estafilococos coagulasa positivos (Staphylococcus aureus y otras especies). Parte 1: Método que utiliza un medio de agar Baird-Parker. (ISO 6888-1:2021); Jay James M, L. M. J. G. D. A. (2005). Modern Food Microbiology; Jayarao, B. M., & Henning, D. R. (2001). Prevalence of foodborne pathogens in bulk tank milk. Journal of Dairy Science, 84(10), 2157–2162. https://doi.org/10.3168/jds.S0022-0302Test(01)74661-9; Kav, K., Col, R., & Ardic, M. (2011). Characterization of Staphylococcus aureus Isolates from White-Brined Urfa Cheese. Journal of Food Protection, 74(11), 1788–1796. https://doi.org/10.4315/0362-028X.JFP-11-179Test; Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Döpfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T., Havelaar, A. H., & Angulo, F. J. (2015). World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Medicine, 12(12). https://doi.org/10.1371/journal.pmed.1001921Test; Kong, J., Fan, C., Liao, X., Chen, A., Yang, S., Zhao, L., & Li, H. (2022). Accurate detection of Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium based on the combination of next-generation sequencing and droplet digital PCR. LWT, 168, 113913. https://doi.org/10.1016/J.LWT.2022.113913Test; Koskinen, M. T., Wellenberg, G. J., Sampimon, O. C., Holopainen, J., Rothkamp, A., Salmikivi, L., van Haeringen, W. A., Lam, T. J. G. M., & Pyörälä, S. (2010). Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. Journal of Dairy Science, 93(12), 5707–5715. https://doi.org/10.3168/JDS.2010-3167Test; Laboratorios Britania. (2012). T.S.I. Agar (Triple Sugar Iron Agar). https://www.britanialab.com/back/public/upload/productos/upl_6070971eb11bd.pdfTest; Laboratorios Britania. (2021a). Baird Parker Agar Base. https://www.britanialab.com/back/public/upload/productos/upl_607060f71db9b.pdfTest; Laboratorios Britania. (2021b). Christensen Medio (Urea Agar Base). https://www.britanialab.com/back/public/upload/productos/upl_6054e95043249.pdfTest; Laboratorios Britania. (2021c). Lisina Hierro Agar. https://www.britanialab.com/back/public/upload/productos/upl_6054e85d48c47.pdfTest; Laboratorios Britania. (2021d). Simmons Citrato Agar. https://www.britanialab.com/back/public/upload/productos/upl_607092758cfa8.pdfTest; Luigi, T., Rojas, L., & Valbuena, O. (2015). Polymerase chain reaction (PCR) for identification of Salmonella spp. using the invA gene %7C Reacción en cadena de la polimerasa para la identificación de Salmonella spp. Usando el gen invA. Salus, 19(3), 41–46; MacFaddin, J. F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica; Makovec, J. A., & Ruegg, P. L. (2003). Results of Milk Samples Submitted for Microbiological Examination in Wisconsin from 1994 to 2001. Journal of Dairy Science, 86(11), 3466–3472. https://doi.org/10.3168/JDS.S0022-0302Test(03)73951-4; Microbiologics. (2023). Epower Quantitated Control Organisms │ Microbiologics. Epower Quantitated Control Organisms . https://www.microbiologics.com/item-type/Product/product-format/EpowerTest; Microbiologics Salmonella enterica. (2023). Microbiologics : 0363E4 Salmonella enterica subsp. enterica serovar Typhimurium derived from ATCC® 14028TM* Epower. https://www.microbiologics.com/0363E4Test; Microbiologics Staphylococcus aureus. (2023). Microbiologics : 0360E4 Staphylococcus aureus subsp. aureus derived from ATCC® 25923TM* Epower. https://www.microbiologics.com/0360E4Test; Modabber, F. Z., & Bahr, G. M. (1979). Binding of antigen-enzyme complex by antigen-binding cells as an approach for immunodiagnosis. Infection and Immunity, 23(1), 49–53. https://doi.org/10.1128/iai.23.1.49-53.1979Test; Myint, M. S., Johnson, Y. J., Tablante, N. L., & Heckert, R. A. (2006). The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiology, 23(6), 599–604. https://doi.org/10.1016/J.FM.2005.09.002Test; Neelam, Jain, V. K., Singh, M., Joshi, V. G., Chhabra, R., Singh, K., & Rana, Y. S. (2022). Virulence and antimicrobial resistance gene profiles of Staphylococcus aureus associated with clinical mastitis in cattle. PLOS ONE, 17(5), e0264762. https://doi.org/10.1371/JOURNAL.PONE.0264762Test; Nia, Y., Lombard, B., Gentil, S., Neveux, L., Mutel, I., Guillier, F., Messio, S., Pairaud, S., Herbin, S., Guillier, L., Auvray, F., & Hennekinne, J. A. (2021). Development and validation of the Standard method EN ISO 19020 - microbiology of the food chain — Horizontal method for the immunoenzymatic detection of staphylococcal enterotoxins in foodstuffs. International Journal of Food Microbiology, 354, 109319. https://doi.org/10.1016/J.IJFOODMICRO.2021.109319Test; Nia, Y., Rodriguez, M., Zeleny, R., Herbin, S., Auvray, F., Fiebig, U., Avondet, M. A., Munoz, A., & Hennekinne, J. A. (2016). Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk. Toxins 2016, Vol. 8, Page 268, 8(9), 268. https://doi.org/10.3390/TOXINS8090268Test; Oliveira, R., Pinho, E., Almeida, G., Azevedo, N. F., & Almeida, C. (2022). Prevalence and Diversity of Staphylococcus aureus and Staphylococcal Enterotoxins in Raw Milk From Northern Portugal. Frontiers in Microbiology, 13. https://doi.org/10.3389/FMICB.2022.846653/FULLTest; Ostyn, A., Guillier, F., Prufer, A. L., Papinaud, I., Messio, S., Krys, S., Lombard, B., & Hennekinne, J. A. (2011). Intra‐laboratory validation of the Ridascreen® SET Total kit for detecting staphylococcal enterotoxins SEA to SEE in cheese. Letters in Applied Microbiology, 52(5), 468–474. https://doi.org/10.1111/J.1472-765X.2011.03025.XTest; Paco González Ulibarry. (2018). Definiciones de Leche y Queso. Biblioteca Del Congreso Nacional de Chile/BCN-Asesoría Técnica Parlamentaria. http://bcn.cl/22oicTest; Paniel, N., & Noguer, T. (2019). Detection of Salmonella in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. Foods 2019, Vol. 8, Page 371, 8(9), 371. https://doi.org/10.3390/FOODS8090371Test; Park, C. E., Warburton, D., & Laffey, P. J. (1996). A collaborative study on the detection of staphylococcal enterotoxins in foods by an enzyme immunoassay kit (RIDASCREEN®). International Journal of Food Microbiology, 29(2–3), 281–295. https://doi.org/10.1016/0168-1605Test(95)00046-1; Parra, M., Durango, J., Máttar, S., & De Tema, R. (2002). MICROBIOLOGÍA, PATOGÉNESIS, EPIDEMIOLOGÍA, CLÍNICA Y DIAGNÓSTICO DE LAS INFECCIONES PRODUCIDAS POR Salmonella. 7(2), 187–200; PAST - Download. (n.d.). Retrieved July 31, 2023, from https://past.en.lo4d.com/windowsTest; Pitkälä, A., Gindonis, V., Wallin, H., & Honkanen-Buzalski, T. (2005). Interlaboratory Proficiency Testing as a Tool for Improving Performance in Laboratories Diagnosing Bovine Mastitis. Journal of Dairy Science, 88(2), 553–559. https://doi.org/10.3168/JDS.S0022-0302Test(05)72717-X; Poljak, M., Seme, K., & Koren, S. (1996). The polymerase chain reaction: A critical review of its uses and limitations in diagnostic microbiology. Periodicum Biologorum, 98(2), 183–190; Pytka, M., Kordowska-Wiater, M., Wajs, J., Glibowski, P., & Sajnaga, E. (2022). Usefulness of Potentially Probiotic L. lactis Isolates from Polish Fermented Cow Milk for the Production of Cottage Cheese. Applied Sciences (Switzerland), 12(23). https://doi.org/10.3390/app122312088Test; Quigley, L., O’sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2013). The complex microbiota of raw milk. FEMS MICROBIOLOGY REVIEWS , 664–698. https://doi.org/10.1111/1574-6976.12030Test; R: The R Project for Statistical Computing. (n.d.). Retrieved July 31, 2023, from https://www.r-project.orgTest/; R-Biopharm, D. G. (2016, June 27). R 4201 Ridascreen Salmonella. R-Biopharm AG, Darmstadt, Germany. https://www.engormix.com/biopharm-latinoamerica/4201-ridascreen-salmonella-sh6718_pr22669.htmTest; R-Biopharm, D. G. (2017, August 9). RIDASCREEN® SET Total (96 pruebas) - Análisis de alimentos y piensos. R-Biopharm AG, Darmstadt, Germany. https://food.r-biopharm.com/products/ridascreen-set-totalTest/; Rivera de la Cruz, J. F., Villegas de Gante, A., Miranda Romero, L. A., García Cué, J. L., Rivera de la Cruz, J. F., Villegas de Gante, A., Miranda Romero, L. A., & García Cué, J. L. (2017). Identificación de bacterias acidolácticas antagónicas de Salmonella enterica var. Typhimurium aisladas de queso artesanal. Revista Mexicana de Ciencias Agrícolas, 8(4), 785–797. https://doi.org/10.29312/remexca.v8i4.7Test; Rosec, J. P., & Gigaud, O. (2002). Staphylococcal enterotoxin genes of classical and new types detected by PCR in France. International Journal of Food Microbiology, 77(1–2), 61–70. https://doi.org/10.1016/S0168-1605Test(02)00044-2; Sartori, C., Boss, R., Ivanovic, I., & Graber, H. U. (2017). Development of a new real-time quantitative PCR assay for the detection of Staphylococcus aureus genotype B in cow milk, targeting the new gene adlb. Journal of Dairy Science, 100(10), 7834–7845. https://doi.org/10.3168/JDS.2017-12820Test; Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011a). Foodborne illness acquired in the United States-Major pathogens. Emerging Infectious Diseases, 17(1), 7–15. https://doi.org/10.3201/eid1701.P11101Test; Scallan, E., Hoekstra, R. M., Mahon, B. E., Jones, T. F., & Griffin, P. M. (2015). An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiology and Infection, 143(13), 2795–2804. https://doi.org/10.1017/S0950268814003185Test; Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the united states. Journal of Food Protection, 75(1), 123–131. https://doi.org/10.4315/0362-028X.JFP-11-058Test; Schilcher, K., & Horswill, A. R. (2020). Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiology and Molecular Biology Reviews, 84(3). https://doi.org/10.1128/MMBR.00026-19Test; Sergelidis, D., & Angelidis, A. S. (2017). Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Letters in Applied Microbiology, 64(6), 409–418. https://doi.org/10.1111/lam.12735Test; Sharma, R., Singh, M., & Sharma, A. (2002). Polymerase chain reaction: An emerging tool for research in pharmacology. Indian Journal of Pharmacology, 34(4), 229–236; Sharma, S., Raghav, R., O’Kennedy, R., & Srivastava, S. (2016). Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme and Microbial Technology, 89, 15–30. https://doi.org/10.1016/j.enzmictec.2016.03.002Test; Soledad Vázquez-Garcidueñas, M., Cristina Meléndez-Ceja, S., & Vázquez-Marrufo RESUMEN, G. (2015). Ensayo de PCR multiplex para la detección en leche del género Salmonella, la subespecie I y el serotipo Typhimurium A multiplex PCR assay for detection of genus Salmonella, subspecies I, and serotype Typhimurium in milk. Rev Mex Cienc Pecu, 6(3), 329–335; Sylvere, N., Mustopa, A. Z., Budiarti, S., Meilina, L., Hertati, A., & Handayani, I. (2023). Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis Subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). Journal of Genetic Engineering and Biotechnology, 21(1). https://doi.org/10.1186/s43141-023-00503-yTest; Tamime, A. Y., & Robinson, R. K. (2007). Tamime and Robinson’s Yoghurt: Science and Technology: Third Edition. In Tamime and Robinson’s Yoghurt: Science and Technology: Third Edition. https://doi.org/10.1533/9781845692612Test; Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14Test; Tsai, K., Nonnenmann, M. W., Rohlman, D., & Baker, K. K. (2023). Development of Shortened Enrichment Methods for Detection of Salmonella Typhimurium Spiked in Milk. ACS Food Science and Technology, 3(5), 831–837. https://doi.org/10.1021/ACSFOODSCITECH.2C00310/ASSET/IMAGES/LARGE/FS2C00310_0003.JPEGTest; Valero Díaz, A. (2020). Los criterios microbiológicos: principios para su establecimiento y aplicación en la seguridad alimentaria. Arbor, 196(795), 537. https://doi.org/10.3989/arbor.2020.795n1001Test; Valtek diagnostics. (2021). Agar Xilosa - Lisina - Desoxicolato (Agar XLD). https://www.valtek.cl/wp-content/uploads/2020/02/Agar-XLD-Valtek-Version-3.pdfTest; Van Weemen, B. K., & Schuurs, A. H. W. M. (1971). Immunoassay using antigen-enzyme conjugates. FEBS Letters, 15(3), 232–236. https://doi.org/10.1016/0014-5793Test(71)80319-8; Vázquez-Garcidueñas, M. S., Meléndez-Ceja, S. C., & Vázquez-Marrufo, G. (2015). A multiplex PCR assay for detection of genus Salmonella, subspecies I, and serotype Typhimurium in milk %7C Ensayo de PCR multiplex para la detección en leche del género Salmonella, la subespecie I y el serotipo Typhimurium. Revista Mexicana De Ciencias Pecuarias, 6(3), 329–335. https://doi.org/10.22319/rmcp.v6i3.4095Test; World Health Organization. (2015). WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. World Health Organization. https://apps.who.int/iris/handle/10665/199350Test; Zhang, Y., & Ozdemir, P. (2009). Microfluidic DNA amplification-A review. Analytica Chimica Acta, 638(2), 115–125. https://doi.org/10.1016/j.aca.2009.02.038Test; https://repositorio.unal.edu.co/handle/unal/85828Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  6. 6
    رسالة جامعية

    المؤلفون: Melo Velanida, Fredy Leonardo

    المساهمون: Lozano Moreno, José Manuel, Mimetismo Molecular de Los Agentes Infecciosos

    جغرافية الموضوع: Colombia

    وصف الملف: [100] páginas; application/pdf

    العلاقة: Abbas, A. K., Lichtman, A. H., & Pillai, S. (2015). Student Consult (8°; Elsevier, ed.). https://doi.org/10.1016/j.genhosppsych.2013.05.007Test; Acosta, C., Galindo, C., Schellenberg, D., Aponte, J., Kahigwa, E., Urassa, H., … Alonso, P. (1999). Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania. Tropical Medicine and International Health, 4(5), 368–376. https://doi.org/10.1046/j.1365-3156.1999.00406Test.; Aikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77: 72–82.; Akter, J., Khoury, D. S., Aogo, R., Lansink, L. I., SheelaNair, A., Thomas, B. S., … Haque, A. (2019). Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells. PLoS Pathogens, 15(2), 1–24. https://doi.org/10.1371/journal.ppat.1007599Test; Al-Yaman, F., Genton, B., Anders, R., Falk, M., Triglia, T., Lewis, D., … Alpers, M. (1994). Relationship between humoral response to Plasmodium falciparum merozoite surface antigen- 2 and malaria morbidity in a highly endemic area of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 51, 593–602. https://doi.org/10.4269/ajtmh.1994.51.593Test; Angulo, I., & Fresno, M. (2002, November). Cytokines in the pathogenesis of and protection against malaria. Clinical and Diagnostic Laboratory Immunology, Vol. 9, pp. 1145–1152. https://doi.org/10.1128/CDLI.9.6.1145-1152.2002Test; Arias-Murillo, Y., Osorio-Arango, K., Bayona, B., Ercilla, Guadalupe., Beltrán-Durán, Mauricio. (2017). Determinación del polimorfismo de HLA-A, -B y -DRB1 en donantes de órganos con muerte encefálica representativos de la población general colombiana, 2007-2014. Biomédica, 37, 184-190. doi: http://dx.doi.org/10.7705/biomedica.v37i2.3263Test; Arlett, H., & Spielmann, T. (2014). Preparation of Parasite Protein Extracts and Western Blot Analysis.In Bio-protocol LLC (Vol. 4).; Arnaiz-Villena, A., Muñiz, E., del Palacio-Gruber, J., Campos, C., Alonso-Rubio, J., Gomez-Casado, E., … Silvera, C. (2016). Ancestry of Amerindians and its Impact in Anthropology, Transplantation, HLA Pharmacogenomics and Epidemiology by HLA Study in Wiwa Colombian Population. Open Medicine Journal, 3(1), 269–285. https://doi.org/10.2174/1874220301603010269Test; Arrunategui, A. M., Villegas, A., Ocampo, L. Á., Rodríguez, L. M., & Badih, A. (2013). Frecuencias alélicas, genotípicas y haplotípicas del sistema HLA clase I y II en donantes de una población del suroccidente colombiano. Acta Medica Colombiana, 38(1), 16–21.; Aurrecoechea, C., Brestelli, J., Brunk, B., Dommer, J., Fischer, S., Gajria, B., … Wang, H. (2009). PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Research, 37(SUPPL. 1), D539. https://doi.org/10.1093/nar/gkn814Test; Ávila-Portillo, L. M., Carmona, A., Franco, L., Briceño, I., Casas, M. C., & Gómez, A. (2010). Bajo polimorfismo en el sistema de antígenos de leucocitos humanos en población mestiza colombiana. Universitas Médica, 51(4), 359–370. https://doi.org/10.11144/javeriana.umed51Test- 4.bpsa; Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M., Gajria, B., Grant, G., … Whetzel, P. (2003). PlasmoDB: The Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Research, 31(1), 212–215. https://doi.org/10.1093/nar/gkg081Test; Baird, J. (1998). Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Annals of Tropical Medicine and Parasitology, 92(4), 367–390. https://doi.org/10.1080/00034989859366Test; Bannister, L., Hopkins, J., Fowler, R., Krishna, S., & Mitchell, G. (2000). A Brief Illustrated Guide to the Ultrastructure of Plasmodium falciparum Asexual Blood Stages. Parásitology Today, 16(10), 427–433. https://doi.org/10.1016/S0169-4758Test(00)01755-5; Bastian, M., Lozano, J. M., Patarroyo, M. E., Pluschke, G., & Daubenberger, C. A. (2004). Characterization of a reduced peptide bond analogue of a promiscuous CD4 T cell epitope derived from the Plasmodium falciparum malaria vaccine candidate merozoite surface protein 1. Molecular Immunology, 41, 775–784. https://doi.org/10.1016/j.molimm.2004.04.019Test; Batista-Duharte, A., Lastre, M., & Pérez, O. (2014). Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enfermedades Infecciosas y Microbiologia Clinica, 32(2), 106–114. https://doi.org/10.1016/j.eimc.2012.11.012Test; Battle, K., Karhunen, M., Bhatt, S., Gething, P., Howes, R., Golding, N., … Hay, S. (2014). Geographical variation in Plasmodium vivax relapse. Malaria Journal, 13(1), 1–16. https://doi.org/10.1186/1475-2875-13-144Test; Beeson, J., Drew, D., Boyle, M., Feng, G., Fowkes, F., & Richards, J. (2016). Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiology Reviews, 40(3), 343–372. https://doi.org/10.1093/femsre/fuw001Test; Bergmann-Leitner, E., Duncan, E., & Angov, E. (2012). Malaria Vaccine. In O. Okwa (Ed.), The Impact of Immune Responses on the Asexual Erythrocytic Stages of Plasmodium and the Implication for Vaccine Development. https://doi.org/10.5772/33130Test; Bermeo, S., Guerra, M. T., & Ostos Alfonso, H. (2010). Vista de Frecuencias de HLA-A, B y DRB1 en una población de Huila-Colombia. Revista Facultad de Salud, 2(1), 9–19.; Bernal, J., & Briceño, I. (2013). Estudios de HLA en Colombia. Acta Medica Colombiana, Vol. 38, pp.5–6.; Vol. 38, pp.5–6. P. (1986). Rabbit and human antibodies to a repeated amino acid sequence of a Plasmodium falciparum antigen, Pf 155, react with the native protein and inhibit merozoite invasion. Proceedings of the National Academy of Sciences of the United States of America, 83(4), 1065– 1069. https://doi.org/10.1073/pnas.83.4.1065Test Birkett, A. (2016). Status of vaccine research and development of vaccines for malaria. Vaccine, 34, 2915–2920. https://doi.org/10.1016/j.vaccine.2016.02.074Test; Black, C. G., Wang, L., Wu, T., & Coppel, R. L. (2003). Apical location of a novel EGF-like domain- containing protein of Plasmodium falciparum. Molecular and Biochemical Parasitology, 127(1),59–68. https://doi.org/10.1016/S0166-6851Test(02)00308-0; Black, C. G., Wu, T., Wang, L., Hibbs, A. R., & Coppel, R. L. (2001). Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Molecular and Biochemical Parasitology, 114(2), 217–226. https://doi.org/10.1016/S0166-6851Test(01)00265-1; Blackman, M. J., Heidrich, H. G., Donachie, S., McBride, J. S., & Holder, A. (1990). A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. Journal of Experimental Medicine, 172, 379–382. https://doi.org/10.1084/jem.172.1.379Test; Blackman, M. J., Whittle, H., & Holder, A. (1991). Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Molecular and Biochemical Parasitology, 49, 35–44. https://doi.org/10.1016/0166-6851Test(91)90128-S; Blasco, B., Leroy, Di., & Fidock, D. A. (2017). Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nature Medicine, 23(8), 917–928. https://doi.org/10.1038/nm.4381Test; Bohley, P., & Seglen, P. (1992). Proteases and proteolysis in the lysosome. Experientia, 48(2), 151– 157. https://doi.org/10.1007/BF01923508Test; Bonanni, P. (1999). Demographic impact of vaccination: A review. Vaccine, 17(SUPPL. 3), 120–125. https://doi.org/10.1016/S0264-410XTest(99)00306-0; Boyle, M. J., Langer, C., Chan, J. A., Hodder, A., Coppel, R. L., Anders, R., & Beeson, J. (2014). Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infection and Immunity, 82(3), 924–936. https://doi.org/10.1128/IAI.00866-13Test; Cai, Q., Peng, G., Bu, L., Lin, Y., Zhang, L., Lustigmen, S., & Wang, H. (2007). Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling. Vaccine, 25(28), 5155–5165. https://doi.org/10.1016/j.vaccine.2007.04.085Test; Camus, D., & Hadley, T. J. (1985). A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science, 230(4725), 553–556. https://doi.org/10.1126/science.3901257Test; Cavanagh, D. R., & McBride, J. S. (1997). Antigenicity of recombinant proteins derived from Plasmodium falciparum merozoite surface protein 1. Molecular and Biochemical Parasitology, 85(2), 197–211. https://doi.org/10.1016/S0166-6851Test(96)02826-5; Céspedes, N., Arévalo-Herrera, M., Felger, I., Reed, S., Kajava, A. V, Corradin, G., & Herrera, S. (2013). Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. Vaccine, 31, 4923–4930. https://doi.org/10.1016/j.vaccine.2013.05.082Test; Chaves, F., Calvo, J., Carvajal, C., Rivera, Z., Ramírez, L., Pinto, M., … Patarroyo, M. E. (2001). Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. Journal of Peptide Research, 58(4), 307– 316. https://doi.org/10.1034/j.1399-3011.2001.00921Test.; Chen, J. S., Liu, H., Yang, J., & Chou, K. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33, 423–428. https://doi.org/10.1007/s00726-006-0485-9Test; Christopher, A., MacRaild, C. A., Reiling, L., Wycherley, K., Boyle, M. J., Kienzle, V., … Anders, R. (2012). Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infection and Immunity, 80(12), 4177–4185. https://doi.org/10.1128/IAI.00665-12Test; Coffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work.Immunity, 33, 492–503. https://doi.org/10.1016/j.immuni.2010.10.002Test; Cohen, S. (1961). Gamma-Globulin and acquired immunity to human malaria. Nature, 192.; Coligan, J. E., Bierer, B. E., David, M., Shevach, E., & Strober, W. (2007). Current Protocols in Immunology (Richard Coico, Ed.). https://doi.org/10.1002/0471142735Test; Collins, C. R., & Blackman, M. J. (2011). Apicomplexan AMA1 in Host Cell Invasion: A Model at the Junction? Cell Host & Microbe, 10(6), 531–533. https://doi.org/10.1016/J.CHOM.2011.11.006Test; Coppi, A., Natarajan, R., Pradel, G., Bennett, B. L., James, E. R., Roggero, M. A., … Sinnis, P. (2011). The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. Journal of Experimental Medicine, 208(2), 341–356. https://doi.org/10.1084/jem.20101488Test; Coppi, A., Pinzon-Ortiz, C., Hutter, C., & Sinnis, P. (2005). The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. Journal of Experimental Medicine, 201(1), 27– 33. https://doi.org/10.1084/jem.20040989Test; Corman, V., Müller, M., Costabel, U., Timm, J., Binger, T., Meyer, B., … Drosten, C. (2012). Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Eurosurveillance, 17(49), 20334. https://doi.org/10.2807/ese.17.49.20334Test; Correa, P., Whitworth, W., Kuffner, T., McNicholl, J., & Anaya, J. (2002). HLA-DR and DQB1 gene polymorphism in the North-western Colombian population. Tissue Antigens, 59(5), 436–439. https://doi.org/10.1034/j.1399-0039.2002.590515Test; Cowman, A., Healer, J., Marapana, D., & Marsh, K. (2016, October 20). Malaria: Biology and Disease.Cell, Vol. 167, pp. 610–624. https://doi.org/10.1016/j.cell.2016.07.055Test; Cox, F. (2002, October). History of human parasitology. Clinical Microbiology Reviews, Vol. 15, pp.595–612. https://doi.org/10.1128/CMR.15.4.595-612.2002Test; Crewther, PE., Culvenor, J., Silva, A., Cooper, JA., Anders. RF. (1990). Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp. Parasitol. 70:193–206; Croft, N. P., & Purcell, A. W. (2011). Peptidomimetics: Modifying peptides in the pursuit of better vaccines. Expert Review of Vaccines, 10(2), 211–226. https://doi.org/10.1586/erv.10.161Test; Crompton, P. D., Kayala, M. A., Traore, B., Kayentao, K., Ongoiba, A., Weiss, G. E., … Pierce, S. K. (2010). A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6958–6963. https://doi.org/10.1073/pnas.1001323107Test; Cubillos, M., Espejo, F., Purmova, J., Martinez, J. C., & Patarroyo, M. E. (2003). Alpha helix shortening in 1522 MSP-1 conserved peptide analogs is associated with immunogenicity and protection against P. falciparum malaria. Proteins: Structure, Function and Genetics, 50(3), 400–409. https://doi.org/10.1002/prot.10314Test; Cuesta Astroz, Yesid, & Segura Latorre, Cesar. (2012). Métodos proteómicos aplicados al estudio de la malaria: Plasmodium falciparum. Acta Biológica Colombiana, 17(3), 463-484. Retrieved January 18, 2022, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120Test- 548X2012000300002&lng=en&tlng=es; Culvenor, J., Day, K., & Anders, R. (1991). Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infection and Immunity, 59(3), 1183–1187. https://doi.org/10.1128/iai.59.3.1183-1187.1991Test; D’Alessandro, U., Leach, A., Drakeley, C., Bennett, S., Olaleye, B., Fegan, G., … Targett, G. (1995). Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet, 346(8973), 462–467. https://doi.org/10.1016/s0140-6736Test(95)91321-1; D’Amelio, E., Salemi, S., & D’Amelio, R. (2015, May 3). Anti-Infectious Human Vaccination in Historical Perspective. International Reviews of Immunology, Vol. 35, pp. 260–290. https://doi.org/10.3109/08830185.2015.1082177Test; Daubenberger, C. A., Nickel, B., Ciatto, C., Grütter, M. G., Pöltl‐Frank, F., Rossi, L., … Pluschke, G. (2002). Amino acid dimorphism and parasite immune evasion: cellular immune responses to a promiscuous epitope of Plasmodium falciparum merozoite surface protein 1 displaying dimorphic amino acid polymorphism are highly constrained. European Journal of Immunology, 32(12), 3667–3677. https://doi.org/10.1002/1521-4141Test(200212)32:123.0.CO;2-C; Davies, E. E. (1974). Ultrastructural studies on the early ookinete stage of Plasmodium berghei nigeriensis and its transformation into an oocyst. Annals of Tropical Medicine and Parasitology, 68(3), 283–290. https://doi.org/10.1080/00034983.1974.11686950Test; De Groot, A. S. (2006, March). Immunomics: Discovering new targets for vaccines and therapeutics.; Drug Discovery Today, Vol. 11, pp. 203–209. https://doi.org/10.1016/S1359-6446Test(05)03720-7; De Sousa, K., & Doolan, D. (2016). Immunomics: a 21st century approach to vaccine development for complex pathogens. Parasitology, 143(Special issue), 236–244. https://doi.org/10.1017/S0031182015001079Test; Deans, J., Knight, A., Jean, W., Waters, A., Cohen, S., & Mitchell, G. (1988). Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite Immunology, 10(5), 535–552. https://doi.org/10.1111/j.1365-3024.1988.tb00241Test; Dearsly, A., Sinden, R., & Self, I. (1990). Sexual development in malarial parasites: Gametocyte production, fertility and infectivity to the mosquito vector. Parasitology, 100(3), 359–368. https://doi.org/10.1017/S0031182000078628Test; Del Río-Ospina, L., Camargo, M., Soto-De León, S.C., Robayo-Calderón, K.L., Garzón-Ospina, D… (2019). Using next-generation sequencing for characterising HLA-DRB1 and DQB1 loci in a cohort of Colombian women. HLA Immnune Response Genetics, (94)5, 425-434. https://doi.org/10.1111/tan.13672Test; Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. (2013). Prediction of IL4 Inducing Peptides. Clinical and Developmental Immunology, 2013, 1–9. https://doi.org/10.1155/2013/263952Test; Dhanda, S. K., Vir, P., & Raghava, G. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 1–15. https://doi.org/10.1186/1745-6150-8-30Test; Dieng, M. M., Diawara, A., Manikandan, V., Tamim El Jarkass, H., Sermé, S. S., Sombié, S., Idaghdour, Y. (2020). Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467Test- 020-18915-6; Dinko, B., & Pradel, G. (2016). Immune Evasion by Plasmodium falciparum Parasites: Converting a Host Protection Mechanism for the Parasite’s Benefit. Advances in Infectious Diseases, 06, 82– 95. https://doi.org/10.4236/aid.2016.62011Test; Dobaño, C., Sanz, H., Sorgho, H., Dosoo, D., Mpina, M., Ubillos, I., … Gyan, B. (2019). Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/ AS01E malaria vaccine efficacy. Nature Communications, 10(2174), 1–13. https://doi.org/10.1038/s41467-019-10195-zTest; Donahue, CG., Carruthers, v., Gilk, sd., Ward, GE. (2000). The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol. Biochem. Parasitol. 111:15–30; Doolan, D. (Ed.). (2002). Malaria Methods and Protocols. New Jersey: Humana Press.; Doolan, D., Dobaño, C., & Baird, J. (2009). Acquired immunity to Malaria. Clinical Microbiology Reviews, 22(1), 13–36. https://doi.org/10.1128/CMR.00025-08Test; Drakeley, C., Corran, P., Coleman, P., Tongren, J., McDonald, S. L., Carneiro, I., … Riley, E. (2005). Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5108–5113. https://doi.org/10.1073/pnas.0408725102Test; Dunbar, B. S., & Schwoebel, E. D. (1990). Preparation of Polyclonal Antibodies. Methods in Enzymology, 182(C), 663–670. https://doi.org/10.1016/0076-6879Test(90)82051-3; Egan, J., Hoffman, S., Haynes, J., Sadoff, J., Schneider, I., Grau, G., … Gordon, D. (1993). Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. American Journal of Tropical Medicine and Hygiene, 49(2), 166–173. https://doi.org/10.4269/ajtmh.1993.49.166Test; El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit, 21, 243–255. https://doi.org/10.1002/jmr.893Test; Ellis, R., Martin, L. B., Shaffer, D., Long, C., Miura, K., Fay, M., … Durbin, A. (2010). Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1 42-C1/alhydrogel with and without CPG 7909 in malaria naïve adults. PLoS ONE, 5(1), 1–9. https://doi.org/10.1371/journal.pone.0008787Test; Esen, M., Kremsner, P., Schleucher, R., Gässler, M., Imoukhuede, E., Imbault, N., … Mordmüller, B. (2009). Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine, 27(49), 6862–6868. https://doi.org/10.1016/j.vaccine.2009.09.011Test; Espejo, F., Bermúdez, A., Vanegas, M., Rivera, Z., Torres, E., Salazar, L. M., & Patarroyo, M. E. (2005). Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. Journal of Structural Biology, 150(3), 245–258. https://doi.org/10.1016/j.jsb.2005.03.007Test; Espejo, F., Cubillos, M., Mary Salazar, L., Guzmán, F., Urquiza, M., Ocampo, M., … Patarroyo, M; E. (2001). Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues (Vol. 113).; https://repositorio.unal.edu.co/handle/unal/85352Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
  10. 10