يعرض 1 - 10 نتائج من 18 نتيجة بحث عن '"Subject specific models"', وقت الاستعلام: 1.10s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية
  3. 3
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Price, Mark A.; Lapré, Andrew K.; Johnson, Russell T.; Umberger, Brian R.; Sup, Frank C. (2020). "A model‐based motion capture marker location refinement approach using inverse kinematics from dynamic trials." International Journal for Numerical Methods in Biomedical Engineering 36(1): n/a-n/a.; https://hdl.handle.net/2027.42/153769Test; International Journal for Numerical Methods in Biomedical Engineering; Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ. A computational framework to predict post‐treatment outcome for gait‐related disorders. Medical Engineering and Physics. 2008; 30 ( 4 ): 434 ‐ 443. https://doi.org/10.1016/j.medengphy.2007.05.005Test; Stagni R, Fantozzi S, Cappello A, Leardini A. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: A study on two subjects. Clinical Biomechanics. 2005; 20 ( 3 ): 320 ‐ 329. https://doi.org/10.1016/j.clinbiomech.2004.11.012Test; Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG. Non‐invasive assessment of soft‐tissue artifact and its effect on knee joint kinematics during functional activity. Journal of Biomechanics. 2010; 43 ( 7 ): 1292 ‐ 1301. https://doi.org/10.1016/j.jbiomech.2010.01.002Test; Lu TW, O’Connor JJ. Bone position estimation from skin marker co‐ordinates using global optimisation with joint constraints. Journal of Biomechanics. 1999; 32 ( 2 ): 129 ‐ 134. https://doi.org/10.1016/S0021Test‐9290(98)00158‐4; Lund ME, De Zee M, Andersen MS, Rasmussen J. On validation of multibody musculoskeletal models. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2012; 226 ( 2 ): 82 ‐ 94. https://doi.org/10.1177/0954411911431516Test; Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J. A computationally efficient optimisation‐based method for parameter identification of kinematically determinate and over‐determinate biomechanical systems. Computer Methods in Biomechanics and Biomedical Engineering. 2010; 13 ( 2 ): 171 ‐ 183.; Lund ME, Andersen MS, de Zee M, Rasmussen J. Scaling of musculoskeletal models from static and dynamic trials. International Biomechanics. 2015; 2 ( 1 ): 1 ‐ 11. https://doi.org/10.1080/23335432.2014.993706Test; Reinbolt JA, Schutte JF, Fregly BJ, et al. Determination of patient‐specific multi‐joint kinematic models through two‐level optimization. Journal of Biomechanics. 2005; 38 ( 3 ): 621 ‐ 626. https://doi.org/10.1016/j.jbiomech.2004.03.031Test; Charlton IW, Tate P, Smyth P, Roren L. Repeatability of an optimised lower body model. Gait and Posture. 2004; 20 ( 2 ): 213 ‐ 221. https://doi.org/10.1016/j.gaitpost.2003.09.004Test; Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of Biomechanics. 1987; 20 ( 2 ): 187 ‐ 201. https://doi.org/10.1016/0021Test‐9290(87)90310‐1; Anderson FC, Pandy MG. Dynamic optimization of human walking. Journal of Biomechanical Engineering. 2001; 123 ( 5 ): 381 ‐ 390. https://doi.org/10.1115/1.1392310Test; Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics. 2003; 36 ( 3 ): 321 ‐ 328. https://doi.org/10.1016/S0021Test‐9290(02)00432‐3; Vaughan CL, Andrews JG, Hay JG. Selection of body segment parameters by optimization methods. Journal of Biomechanical Engineering. 1982; 104 ( 1 ): 38 ‐ 44.; Delp SL, Anderson FC, Arnold AS, et al. OpenSim: Open‐source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering. 2007; 54 ( 11 ): 1940 ‐ 1950. https://doi.org/10.1109/TBME.2007.901024Test; van den Bogert AJ, Smith GD, Nigg BM. In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. Journal of Biomechanics. 1994; 27 ( 12 ): 1477 ‐ 1488. https://doi.org/10.1016/0021Test‐9290(94)90197‐X; Sommer H. A technique for kinematic modeling of anatomical joints. Journal of Biomechanical Engineering. 1980; 102 ( 4 ): 311 ‐ 317. https://doi.org/10.1115/1.3138228Test; Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient‐specific gait modifications for knee osteoarthritis rehabilitation. IEEE Transactions on Biomedical Engineering. 2007; 54 ( 9 ): 1687 ‐ 1695.; Samaan MA, Weinhandl JT, Bawab SY, Ringleb SI. Determining residual reduction algorithm kinematic tracking weights for a sidestep cut via numerical optimization. Computer Methods in Biomechanics and Biomedical Engineering. 2016; 19 ( 16 ): 1721 ‐ 1729. https://doi.org/10.1080/10255842.2016.1183123Test; Seth A, Hicks JL, Uchida TK, et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS Computational Biology. 2018; 14 ( 7 ): e1006223. https://doi.org/10.1371/journal.pcbi.1006223Test; Hooke R, Jeeves TA. “Direct search” solution of numerical and statistical problems. Journal of the ACM. 1961; 8 ( 2 ): 212 ‐ 229. https://doi.org/10.1145/321062.321069Test; LaPrè AK, Price MA, Wedge RD, Umberger BR, Sup FC. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics. International Journal for Numerical Methods in Biomedical Engineering. 2018; 34 ( 4 ): e2936. https://doi.org/10.1002/cnm.2936Test; Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. Hoboken, NJ: John Wiley & Sons; 2009.; Scaling. OpenSim Documentation. https://simtkTest‐confluence.stanford.edu:8443/display/OpenSim/Scaling.; Inverse Kinematics. OpenSim Documentation. https://simtkTest‐confluence.stanford.edu:8443/display/OpenSim/Inverse+Kinematics.

  9. 9
    رسالة جامعية
  10. 10
    دورية أكاديمية