يعرض 1 - 10 نتائج من 433 نتيجة بحث عن '"Simms, L"', وقت الاستعلام: 1.59s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Journal of Geophysical Research. Space Physics; Jun2024, Vol. 129 Issue 6, p1-18, 18p

  2. 2
    مؤتمر
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المؤلفون: Romagnoni A., Jegou S., Van Steen K., Wainrib G., Hugot J. -P., Peyrin-Biroulet L., Chamaillard M., Colombel J. -F., Cottone M., D'Amato M., D'Inca R., Halfvarson J., Henderson P., Karban A., Kennedy N. A., Khan M. A., Lemann M., Levine A., Massey D., Milla M., Ng S. M. E., Oikonomou I., Peeters H., Proctor D. D., Rahier J. -F., Rutgeerts P., Seibold F., Stronati L., Taylor K. M., Torkvist L., Ublick K., Van Limbergen J., Van Gossum A., Vatn M. H., Zhang H., Zhang W., Andrews J. M., Bampton P. A., Barclay M., Florin T. H., Gearry R., Krishnaprasad K., Lawrance I. C., Mahy G., Montgomery G. W., Radford-Smith G., Roberts R. L., Simms L. A., Hanigan K., Croft A., Amininijad L., Cleynen I., Dewit O., Franchimont D., Georges M., Laukens D., Theatre E., Vermeire S., Aumais G., Baidoo L., Barrie A. M., Beck K., Bernard E. -J., Binion D. G., Bitton A., Brant S. R., Cho J. H., Cohen A., Croitoru K., Daly M. J., Datta L. W., Deslandres C., Duerr R. H., Dutridge D., Ferguson J., Fultz J., Goyette P., Greenberg G. R., Haritunians T., Jobin G., Katz S., Lahaie R. G., McGovern D. P., Nelson L., Ng S. M., Ning K., Pare P., Regueiro M. D., Rioux J. D., Ruggiero E., Schumm L. P., Schwartz M., Scott R., Sharma Y., Silverberg M. S., Spears D., Steinhart A. H., Stempak J. M., Swoger J. M., Tsagarelis C., Zhang C., Zhao H., Aerts J., Ahmad T., Arbury H., Attwood A., Auton A., Ball S. G., Balmforth A. J., Barnes C., Barrett J. C., Barroso I., Barton A., Bennett A. J., Bhaskar S., Blaszczyk K., Bowes J., Brand O. J., Braund P. S., Bredin F., Breen G., Brown M. J., Bruce I. N., Bull J., Burren O. S., Burton J., Byrnes J., Caesar S., Cardin N., Clee C. M., Coffey A. J., MC Connell J., Conrad D. F., Cooper J. D., Dominiczak A. F., Downes K., Drummond H. E., Dudakia D., Dunham A., Ebbs B., Eccles D., Edkins S., Edwards C., Elliot A., Emery P., Evans D. M., Evans G., Eyre S., Farmer A., Ferrier I. N., Flynn E., Forbes A., Forty L., Franklyn J. A., Frayling T. M., Freathy R. M., Giannoulatou E., Gibbs P., Gilbert P., Gordon-Smith K., Gray E., Green E., Groves C. J., Grozeva D., Gwilliam R., Hall A., Hammond N., Hardy M., Harrison P., Hassanali N., Hebaishi H., Hines S., Hinks A., Hitman G. A., Hocking L., Holmes C., Howard E., Howard P., Howson J. M. M., Hughes D., Hunt S., Isaacs J. D., Jain M., Jewell D. P., Johnson T., Jolley J. D., Jones I. R., Jones L. A., Kirov G., Langford C. F., Lango-Allen H., Lathrop G. M., Lee J., Lee K. L., Lees C., Lewis K., Lindgren C. M., Maisuria-Armer M., Maller J., Mansfield J., Marchini J. L., Martin P., Massey D. C., McArdle W. L., McGuffin P., McLay K. E., McVean G., Mentzer A., Mimmack M. L., Morgan A. E., Morris A. P., Mowat C., Munroe P. B., Myers S., Newman W., Nimmo E. R., O'Donovan M. C., Onipinla A., Ovington N. R., Owen M. J., Palin K., Palotie A., Parnell K., Pearson R., Pernet D., Perry J. R., Phillips A., Plagnol V., Prescott N. J., Prokopenko I., Quail M. A., Rafelt S., Rayner N. W., Reid D. M., Renwick A., Ring S. M., Robertson N., Robson S., Russell E., Clair D. S., Sambrook J. G., Sanderson J. D., Sawcer S. J., Schuilenburg H., Scott C. E., Seal S., Shaw-Hawkins S., Shields B. M., Simmonds M. J., Smyth D. J., Somaskantharajah E., Spanova K., Steer S., Stephens J., Stevens H. E., Stirrups K., Stone M. A., Strachan D. P., Su Z., Symmons D. P. M., Thompson J. R., Thomson W., Tobin M. D., Travers M. E., Turnbull C., Vukcevic D., Wain L. V., Walker M., Walker N. M., Wallace C., Warren-Perry M., Watkins N. A., Webster J., Weedon M. N., Wilson A. G., Woodburn M., Wordsworth B. P., Yau C., Young A. H., Zeggini E., Brown M. A., Burton P. R., Caulfield M. J., Compston A., Farrall M., Gough S. C. L., Hall A. S., Hattersley A. T., Hill A. V. S., Mathew C. G., Pembrey M., Satsangi J., Stratton M. R., Worthington J., Hurles M. E., Duncanson A., Ouwehand W. H., Parkes M., Rahman N., Todd J. A., Samani N. J., Kwiatkowski D. P., McCarthy M. I., Craddock N., Deloukas P., Donnelly P., Blackwell J. M., Bramon E., Casas J. P., Corvin A., Jankowski J., Markus H. S., Palmer C. N., Plomin R., Rautanen A., Trembath R. C., Viswanathan A. C., Wood N. W., Spencer C. C. A., Band G., Bellenguez C., Freeman C., Hellenthal G., Pirinen M., Strange A., Blackburn H., Bumpstead S. J., Dronov S., Gillman M., Jayakumar A., McCann O. T., Liddle J., Potter S. C., Ravindrarajah R., Ricketts M., Waller M., Weston P., Widaa S., Whittaker P.

    المساهمون: Romagnoni, A., Jegou, S., Van Steen, K., Wainrib, G., Hugot, J. -P., Peyrin-Biroulet, L., Chamaillard, M., Colombel, J. -F., Cottone, M., D'Amato, M., D'Inca, R., Halfvarson, J., Henderson, P., Karban, A., Kennedy, N. A., Khan, M. A., Lemann, M., Levine, A., Massey, D., Milla, M., Ng, S. M. E., Oikonomou, I., Peeters, H., Proctor, D. D., Rahier, J. -F., Rutgeerts, P., Seibold, F., Stronati, L., Taylor, K. M., Torkvist, L., Ublick, K., Van Limbergen, J., Van Gossum, A., Vatn, M. H., Zhang, H., Zhang, W., Andrews, J. M., Bampton, P. A., Barclay, M., Florin, T. H., Gearry, R., Krishnaprasad, K., Lawrance, I. C., Mahy, G., Montgomery, G. W., Radford-Smith, G., Roberts, R. L., Simms, L. A., Hanigan, K., Croft, A., Amininijad, L., Cleynen, I., Dewit, O., Franchimont, D., Georges, M., Laukens, D., Theatre, E., Vermeire, S., Aumais, G., Baidoo, L., Barrie, A. M., Beck, K., Bernard, E. -J., Binion, D. G., Bitton, A., Brant, S. R., Cho, J. H., Cohen, A., Croitoru, K., Daly, M. J., Datta, L. W., Deslandres, C., Duerr, R. H., Dutridge, D., Ferguson, J., Fultz, J., Goyette, P., Greenberg, G. R., Haritunians, T., Jobin, G., Katz, S., Lahaie, R. G., Mcgovern, D. P., Nelson, L., Ng, S. M., Ning, K., Pare, P., Regueiro, M. D., Rioux, J. D., Ruggiero, E., Schumm, L. P., Schwartz, M., Scott, R., Sharma, Y.

    مصطلحات موضوعية: Crohn's disease, genetics, genome wide association

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/31316157; info:eu-repo/semantics/altIdentifier/wos/WOS:000475832500026; volume:9; issue:1; firstpage:10351; journal:SCIENTIFIC REPORTS; https://hdl.handle.net/11573/1399970Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85069470428

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Simms, L. E.; Ganushkina, N. Yu.; Kamp, M.; Balikhin, M.; Liemohn, M. W. (2023). "Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models." Space Weather 21(5): n/a-n/a.; https://hdl.handle.net/2027.42/176809Test; Space Weather; Roeder, J. L., Chen, M. W., Fennell, J. F., & Friedel, R. ( 2005 ). Empirical models of the low-energy plasma in the inner magnetosphere. Space Weather, 3 ( 12 ). https://doi.org/10.1029/2005SW000161Test; Pakhotin, I. P., Drozdov, A. Y., Shprits, Y. Y., Boynton, R. J., Subbotin, D. A., & Balikhin, M. A. ( 2014 ). Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8073 – 8086. https://doi.org/10.1002/2014JA020238Test; Paulikas, G., & Blake, J. ( 1979 ). Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In Quantitative modeling of magnetospheric processes (pp. 180 – 202 ). American Geophysical Union (AGU). https://doi.org/10.1029/GM021p0180Test; Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ), A02213. https://doi.org/10.1029/2010JA015735Test; Rowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three-axis stabilized geostationary platform. Space Weather, 10 ( 11 ). https://doi.org/10.1029/2012SW000816Test; Saito, T., & Rehmsmeier, M. ( 2015 ). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One, 10 ( 3 ), e0118432. https://doi.org/10.1371/journal.pone.0118432Test; Schaefer, J. T. ( 1990 ). The critical success index as an indicator of warning skill. Weather and Forecasting, 5 ( 4 ), 570 – 575. https://doi.org/10.1175/1520-0434Test; Shi, Y., Zesta, E., & Lyons, L. R. ( 2009 ). Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements. Annales Geophysicae, 27 ( 2 ), 851 – 859. https://doi.org/10.5194/angeo-27-851-2009Test; Sicard-Piet, A., Bourdarie, S., Boscher, D., Friedel, R. H. W., Thomsen, M., Goka, T., et al. ( 2008 ). A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV. Space Weather, 6 ( 7 ). https://doi.org/10.1029/2007SW000368Test; Sillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15 ( 12 ), 1602 – 1614. https://doi.org/10.1002/2017SW001698Test; Simms, L. E., & Engebretson, M. ( 2020 ). Classifier neural network models predict relativistic electron events at geosynchronous orbit better than multiple regression or ARMAX models. Journal of Geophysical Research: Space Physics, 125 ( 5 ), e2019JA027357. https://doi.org/10.1029/2019JA027357Test; Simms, L. E., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002Test; Simms, L. E., Engebretson, M., & Reeves, G. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research, 127 ( 2 ), e2021JA030021. https://doi.org/10.1029/2021JA030021Test; Simms, L. E., Engebretson, M. J., Clilverd, M. A., Rodger, C. J., & Reeves, G. D. ( 2018 ). Nonlinear and synergistic effects of ULF Pc5, VLF Chorus, and EMIC waves on relativistic electron flux at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 123 ( 6 ), 4755 – 4766. https://doi.org/10.1029/2017JA025003Test; Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414Test; Simms, L. E., Engebretson, M. J., Rodger, C. J., Gjerloev, J. W., & Reeves, G. D. ( 2019 ). Predicting lower band chorus with autoregressive-moving average transfer function (ARMAX) models. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5692 – 5708. https://doi.org/10.1029/2019ja026726Test; Simms, L. E., Ganushkina, N. Y., van de Kamp, M., Liemohn, M. W., & Dubyagin, S. ( 2022 ). Using ARMAX models to determine the drivers of 40-150 keV GOES electron fluxes. Journal of Geophysical Research, 127 ( 9 ), e2022JA030538. https://doi.org/10.1029/2022JA030538Test; Simms, L. E., Pilipenko, V., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955Test; Smirnov, A. G., Berrendorf, M., Shprits, Y. Y., Kronberg, E. A., Allison, H. J., Aseev, N. A., et al. ( 2020 ). Medium energy electron flux in Earth’s outer radiation belt (MERLIN): A machine learning model. Space Weather, 18 ( 11 ), e2020SW002532. https://doi.org/10.1029/2020SW002532Test; Smith, G. ( 2018 ). Step away from stepwise. Journal of Big Data, 5 ( 32 ), 32. https://doi.org/10.1186/s40537-018-0143-6Test; Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580Test; Subbotin, D. A., & Shprits, Y. Y. ( 2009 ). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7 ( 10 ). https://doi.org/10.1029/2008SW000452Test; Swiger, B. M., Liemohn, M. W., Ganushkina, N. Y., & Dubyagin, S. ( 2022 ). Energetic electron flux predictions in the near-earth plasma sheet from solar wind driving. Space Weather, 20 ( 11 ), e2022SW003150. https://doi.org/10.1029/2022SW003150Test; Thomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface-charging environment at geosynchronous orbit. Space Weather, 11 ( 5 ), 237 – 244. https://doi.org/10.1002/swe.20049Test; Tofallis, C. ( 2015 ). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66 ( 8 ), 1352 – 1362. https://doi.org/10.1057/jors.2014.103Test; Whittingham, M., Stephens, P., Bradbury, R., & Freckleton, R. ( 2006 ). Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75 ( 5 ), 1182 – 1189. https://doi.org/10.1111/j.1365-2656.2006.01141.xTest; Yerushalmy, J. ( 1947 ). Statistical problems in assessing methods of medical diagnosis, with special reference to X-Ray techniques. Public Health Reports, 62 ( 40 ), 1432 – 1449. https://doi.org/10.2307/4586294Test; Alpaydin, E. ( 2014 ). Introduction to machine learning (Vol. 3 ). MIT Press.; Balikhin, M. A., Boynton, R. J., Billings, S. A., Gedalin, M., Ganushkina, N., Coca, D., & Wei, H. ( 2010 ). Data based quest for solar wind-magnetosphere coupling function. Geophysical Research Letters, 37 ( 24 ), L24107. https://doi.org/10.1029/2010GL045733Test; Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ), L18105. https://doi.org/10.1029/2011GL048980Test; Balikhin, M. A., Rodriguez, J., Boynton, R. J., Walker, S., Aryan, H., Sibeck, D., & Billings, S. ( 2016 ). Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high-energy electrons at GEO. Space Weather, 14 ( 1 ), 22 – 31. https://doi.org/10.1002/2015SW001303Test; Berkson, J. ( 1944 ). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39 ( 227 ), 357 – 365. https://doi.org/10.2307/2280041Test; Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W., & Lepping, R. P. ( 1997 ). Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements. Geophysical Research Letters, 24 ( 8 ), 927 – 929. https://doi.org/10.1029/97GL00859Test; Boynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128Test; Boynton, R. J., Balikhin, M. A., & Billings, S. A. ( 2015 ). Online NARMAX model for electron fluxes at GEO. Annales Geophysicae, 33 ( 3 ), 405 – 411. https://doi.org/10.5194/angeo-33-405-2015Test; Boynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192Test; Boynton, R. J., Balikhin, M. A., Billings, S. A., Wei, H. L., & Ganushkina, N. ( 2011 ). Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere. Journal of Geophysical Research, 116 ( A5 ), A05218. https://doi.org/10.1029/2010JA015505Test; Boynton, R. J., Balikhin, M. A., Sibeck, D. G., Walker, S. N., Billings, S. A., & Ganushkina, N. ( 2016 ). Electron flux models for different energies at geostationary orbit. Space Weather, 14 ( 10 ), 846 – 860. https://doi.org/10.1002/2016SW001506Test; Camporeale, E., Wilkie, G. J., Drozdov, A. Y., & Bortnik, J. ( 2022 ). Data-driven discovery of fokker-planck equation for the earth’s radiation belts electrons using physics-informed neural networks. Journal of Geophysical Research: Space Physics, 127, e2022JA030377. https://doi.org/10.1029/2022JA030377Test; Capman, N. S. S., Simms, L. E., Engebretson, M. J., Clilverd, M. A., Rodger, C. J., Reeves, G. D., et al. ( 2019 ). Comparison of multiple and logistic regression analyses of relativistic electron flux enhancement at geosynchronous orbit following storms. Journal of Geophysical Research: Space Physics, 124 ( 12 ), 10246 – 10256. https://doi.org/10.1029/2019JA027132Test; Chakraborty, S., & Morley, S. K. ( 2020 ). Probabilistic prediction of geomagnetic storms and the Kp index. Journal of Space Weather and Space Climate, 10, 36. https://doi.org/10.1051/swsc/2020037Test; Chen, M. W., Lemon, C. L., Orlova, K., Shprits, Y., Hecht, J., & Walterscheid, R. L. ( 2015 ). Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm. Geophysical Research Letters, 42 ( 20 ), 8302 – 8311. https://doi.org/10.1002/2015GL065737Test; Chicco, D., & Jurman, G. ( 2020 ). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21 ( 6 ), 6. https://doi.org/10.1186/s2864-019-6413-7Test; Choi, H. S., Lee, J., Cho, K. S., Kwak, Y. S., Cho, I. H., Park, Y. D., et al. ( 2011 ). Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9 ( 5 ), 1 – 12. https://doi.org/10.1029/2010SW000597Test; Chu, X., Ma, D., Bortnik, J., Tobiska, A., Tobiska, W. K., Cruz, A., et al. ( 2021 ). Relativistic electron model in the outer radiation belt using a neural network approach. Space Weather, 19 ( 12 ), e2021SW002808. https://doi.org/10.1029/2021SW002808Test; Denton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M. F., Borovsky, J. E., Woodroffe, J., et al. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14 ( 7 ), 511 – 523. https://doi.org/10.1002/2016SW001409Test; Denton, M. H., Thomsen, M. F., Jordanova, V. K., Henderson, M. G., Borovsky, J. E., Denton, J. S., et al. ( 2015 ). An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 13 ( 4 ), 233 – 249. https://doi.org/10.1002/2015SW001168Test; Efron, B., & Tibshirani, R. ( 1986 ). Boostrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54 – 77. https://doi.org/10.1214/SS/1177013815Test; Fawcett, T. ( 2006 ). An introduction to ROC analysis. Pattern Recognition Letters, 27 ( 8 ), 861 – 874. https://doi.org/10.1016/j.patrec.2005.10.010Test; Fok, M.-C., Buzulukova, N. Y., Chen, S.-H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere-ionosphere model. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7522 – 7540. https://doi.org/10.1002/2014JA020239Test; Freeman, J. W. ( 1974 ). Kp dependence of plasma sheet boundary. Journal of Geophysical Research, 79 ( 28 ), 4315 – 4317. https://doi.org/10.1029/ja079i028p04315Test; Freeman, J. W., O’Brien, T. P., Chan, A. A., & Wolf, R. A. ( 1998 ). Energetic electrons at geostationary orbit during the November 3-4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network. Journal of Geophysical Research, 103 ( A11 ), 26251 – 26260. https://doi.org/10.1029/97JA03268Test; Ganushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low-energy electrons (5-50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 246 – 259. https://doi.org/10.1002/2013JA019304Test; Ganushkina, N. Y., Sillanpää, I., Welling, D., Haiducek, J., Liemohn, M., Dubyagin, S., & Rodriguez, J. V. ( 2019 ). Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with long-term GOES MAGED measurements of keV electron fluxes at geostationary orbit. Space Weather, 17 ( 5 ), 687 – 708. https://doi.org/10.1029/2018SW002028Test; Ganushkina, N. Y., Swiger, B., Dubyagin, S., Matéo-Vélez, J.-C., Liemohn, M. W., Sicard, A., & Payan, D. ( 2021 ). Worst-case severe environments for surface charging observed at LANL satellites as dependent on solar wind and geomagnetic conditions. Space Weather, 19 ( 9 ), e2021SW002732. https://doi.org/10.1029/2021SW002732Test; Ginet, G. P., O’Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., et al. ( 2013 ). AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179 ( 1–4 ), 579 – 615. https://doi.org/10.1007/s11214-013-9964-yTest; Glauert, S. A., Horne, R. B., & Meredith, N. P. ( 2014 ). Three-dimensional electron radiation belt simulations using the BAS radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 268 – 289. https://doi.org/10.1002/2013JA019281Test; Hartley, D. P., Denton, M. H., & Rodriguez, J. V. ( 2014 ). Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4556 – 4571. https://doi.org/10.1002/2014JA019779Test; Heidke, P. ( 1926 ). Measures of success and goodness of wind force forecasts by the gale-warning service. Geografiska Annaler, 8 ( 4 ), 301 – 349. https://doi.org/10.1080/20014422.1926.11881138Test; Hochreiter, S., & Schmidhuber, J. ( 1997 ). Long short-term memory. Neural Computation, 9 ( 8 ), 1735 – 1780. https://doi.org/10.1162/neco.1997.9.8.1735Test; Hurvich, C. M., & Tsai, C. ( 1990 ). The impact of model selection on inference in linear regression. The American Statistician, 44 ( 3 ), 214 – 217. https://doi.org/10.1080/00031305.1990.10475722Test; Hyndman, R., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice. Heathmont.; Iyemori, T., Takeda, M., Nose, M., Odagi, Y., & Toh, H. ( 2010 ). Mid-latitude geomagnetic indices ASY and SYM for 2009 (provisional). In Internal report of data analysis center for geomagnetism and space magnetism. Kyoto University.; Jordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A.-D., Reeves, G. D., & Kletzing, C. A. ( 2016 ). RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 double-dip storm. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8712 – 8727. https://doi.org/10.1002/2016JA022470Test; Katsavrias, C., Aminalragia-Giamini, S., Papadimitriou, C., Daglis, I. A., Sandberg, I., & Jiggens, P. ( 2022 ). Radiation belt model including semi-annual variation and solar driving (Sentinel). Space Weather, 20 ( 1 ), e2021SW002936. https://doi.org/10.1029/2021SW002936Test; Kellerman, A. C., & Shprits, Y. Y. ( 2012 ). On the influence of solar wind conditions on the outer-electron radiation belt. Journal of Geophysical Research, 117 ( A5 ). https://doi.org/10.1029/2011JA017253Test; Koons, H. C., & Gorney, D. J. ( 1991 ). A neural network model of the relativistic electron flux at geosynchronous orbit. Journal of Geophysical Research, 96 ( A4 ), 5549 – 5556. https://doi.org/10.1029/90JA02380Test; Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., & Anderson, P. C. ( 2000 ). The impact of the space environment on space systems. AFRL-VS-TR-20001578.; Korth, H., Thomsen, M. F., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25047 – 25061. https://doi.org/10.1029/1999JA900292Test; Lam, H.-L., Boteler, D. H., Burlton, B., & Evans, J. ( 2012 ). Anik-E1 and E2 satellite failures of January 1994 revisited. Space Weather, 10 ( 10 ). https://doi.org/10.1029/2012SW000811Test; Li, X., Baker, D. N., Temerin, M., Reeves, G., Friedel, R., & Shen, C. ( 2005 ). Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: Their responses to solar wind variations. Space Weather, 3 ( 4 ). https://doi.org/10.1029/2004SW000105Test; Li, X., Temerin, M., Baker, D. N., Reeves, G. D., & Larson, D. ( 2001 ). Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophysical Research Letters, 28 ( 9 ), 1887 – 1890. https://doi.org/10.1029/2000GL012681Test; Liemohn, M. W., Adam, J. G., & Ganushkina, N. Y. ( 2022 ). Analysis of features in a sliding threshold of observation for numeric evaluation (STONE) curve. Space Weather. e2022SW003102. https://doi.org/10.1029/2022SW003102Test; Liemohn, M. W., Azari, A. R., Ganushkina, N. Y., & Rastaetter, L. ( 2020 ). The STONE curve: A ROC-derived model performance assessment tool. Earth and Space Science, 7 ( 8 ), e2020EA001106. https://doi.org/10.1029/2020EA001106Test; Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., & Mukhopadhyay, A. ( 2021 ). RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218, 105624. https://doi.org/10.1016/j.jastp.2021.105624Test; Ling, A. G., Ginet, G. P., Hilmer, R. V., & Perry, K. L. ( 2010 ). A neural network-based geosynchronous relativistic electron flux forecasting model. Space Weather, 8 ( 9 ). https://doi.org/10.1029/2010SW000576Test; Loto’aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker, D., & Angelopoulos, V. ( 2015 ). Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather, 13 ( 8 ), 484 – 502. https://doi.org/10.1002/2015SW001239Test; Lyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophysical Research Letters, 35 ( 3 ), L03109. https://doi.org/10.1029/2007GL032524Test; Ma, D., Chu, X., Bortnik, J., Claudepierre, S. G., Tobiska, W. K., Cruz, A., et al. ( 2022 ). Modeling the dynamic variability of sub-relativistic outer radiation belt electron fluxes using machine learning. Space Weather, 20, e2022SW003079. https://doi.org/10.1029/2022SW003079Test; Matéo-Vélez, J.-C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sillanpäa, I. ( 2018 ). Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather, 16 ( 1 ), 89 – 106. https://doi.org/10.1002/2017SW001689Test; Morley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16 ( 1 ), 69 – 88. https://doi.org/10.1002/2017SW001669Test; Mundry, R., & Nunn, C. ( 2009 ). Stepwise model fitting and statistical inference: Turning noise into signal pollution. The American Naturalist, 173 ( 1 ), 119 – 123. https://doi.org/10.1086/593303Test; Neter, J., Kutner, M. H., & Wassermann, W. ( 1990 ). Applied linear statistical models ( 3rd ed. ). Irwin.

  9. 9
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Simms, L. E.; Engebretson, M. J.; Reeves, G. D. (2023). "Determining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression." Journal of Geophysical Research: Space Physics 128(1): n/a-n/a.; https://hdl.handle.net/2027.42/175744Test; Journal of Geophysical Research: Space Physics; Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414Test; Osmane, A., Savola, M., Kilpua, E., Koskinen, H., Borovsky, J. E., & Kalliokoski, M. ( 2022 ). Quantifying the non-linear dependence of energetic electron fluxes in the Earth’s radiation belts with radial diffusion drivers. Annales Geophysicae, 40 ( 1 ), 37 – 53. https://doi.org/10.5194/angeo-40-37-2022Test; Pankratz, A. ( 1991 ). Forecasting with dynamic regression models (p. 386 ). John Wiley & Sons Inc.; Potapov, A. S. ( 2017 ). Relativistic electrons of the outer radiation belt and methods of their forecast (review). Solar-Terrestrial Physics, 3 ( 1 ), 57 – 72. https://doi.org/10.12737/article_58f9703837c248.84596315Test; Reeves, G. D., Baker, D. N., Belian, R. D., Blake, J. B., Cayton, T. E., Fennell, J. F., et al. ( 1998 ). The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophysical Research Letters, 25 ( 17 ), 3265 – 3268. https://doi.org/10.1029/98gl02509Test; Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ), A02213. https://doi.org/10.1029/2010JA015735Test; Romanova, N., & Pilipenko, V. ( 2009 ). ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophysica, 57 ( 1 ), 158 – 170. https://doi.org/10.2478/s11600-008-0064-4Test; Rostoker, G., Skone, S., & Baker, D. N. ( 1998 ). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophysical Research Letters, 25 ( 19 ), 3701 – 3704. https://doi.org/10.1029/98gl02801Test; Sakaguchi, K., Nagatsuma, T., Reeves, G. D., & Spence, H. E. ( 2015 ). Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models. Space Weather, 13 ( 12 ), 853 – 867. https://doi.org/10.1002/2015SW001254Test; Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., & Kanekal, S. G. ( 2006 ). Outward radial diffusion driven by losses at magnetopause. Journal of Geophysical Research, 111 ( A11 ), A11214. https://doi.org/10.1029/2006JA011657Test; Simms, L., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002Test; Simms, L. E., Engebretson, M. J., Rodger, C. J., Gjerloev, J. W., & Reeves, G. D. ( 2019 ). Predicting lower band chorus with autoregressive-moving average transfer function (ARMAX) models. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5692 – 5708. https://doi.org/10.1029/2019JA026726Test; Simms, L. E., Ganushkina, N. Y., van de Kamp, M., Liemohn, M. W., & Dubyagin, S. ( 2022 ). Using ARMAX models to determine the drivers of 40-150 keV GOES electron fluxes. Journal of Geophysical Research: Space Physics, 127 ( 9 ), e2022JA030538. https://doi.org/10.1029/2022JA030538Test; Simms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux following storms at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955Test; Simms, L. E., Engebretson, M. J., & Reeves, G. D. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research: Space Physics, 127, 2. https://doi.org/10.1029/2021JA030021Test; SPSS. ( 2020 ). IBM SPSS Statistics for Windows (version 27.0). IBM Corp.; Staples, F. A., Kellerman, A., Murphy, K. R., Rae, I. J., Sandhu, J. K., & Forsyth, C. ( 2022 ). Resolving magnetopause shadowing using multimission measurements of phase space density. Journal of Geophysical Research: Space Physics, 127 ( 2 ), e2021JA029298. https://doi.org/10.1029/2021JA029298Test; Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580Test; Su, Y.-J., Quinn, J. M., Johnston, W. R., McCollough, J. P., & Starks, M. J. ( 2014 ). Specification of>2MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit. Space Weather, 12 ( 7 ), 470 – 486. https://doi.org/10.1002/2014SW001069Test; Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., & Anderson, R. R. ( 2002 ). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 29 ( 24 ), 27-1 – 27-4. https://doi.org/10.1029/2002GL016039Test; Takahashi, K., & Ukhorskiy, A. Y. ( 2007 ). Solar wind control of Pc5 pulsation power at geosynchronous orbit. Journal of Geophysical Research, 112 ( A11 ), A11205. https://doi.org/10.1029/2007JA012483Test; Tu, W., Xiang, Z., & Morley, S. K. ( 2019 ). Modeling the magnetopause shadowing loss during the June 2015 dropout event. Geophysical Research Letters, 46 ( 16 ), 9388 – 9396. https://doi.org/10.1029/2019GL084419Test; Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. ( 2016 ). Information theoretical approach to discovering solar wind drivers of the outer radiation belt. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 9378 – 9399. https://doi.org/10.1002/2016JA022711Test; Wing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. ( 2022 ). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2021JA030246. https://doi.org/10.1029/2021JA030246Test; Baker, D. N., Pulkkinen, T., Li, X., Kanekal, S., Ogilvie, K., Lepping, R., et al. ( 1998 ). A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophysical Research Letters, 25 ( 15 ), 2975 – 2978. https://doi.org/10.1029/98GL01134Test; Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ), L18105. https://doi.org/10.1029/2011GL048980Test; Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. ( 1997 ). Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102 ( A2 ), 2309 – 2324. https://doi.org/10.1029/96JA02870Test; Borovsky, J. E. ( 2017 ). Time-integral correlations of multiple variables with the relativistic-electron flux at geosynchronous orbit: The strong roles of substorm-injected electrons and the ion plasma sheet. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 11961 – 11990. https://doi.org/10.1002/2017JA024476Test; Borovsky, J. E., & Denton, M. H. ( 2014 ). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4307 – 4334. https://doi.org/10.1002/2014JA019876Test; Boyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Baker, D. N., et al. ( 2014 ). Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event. Geophysical Research Letters, 41 ( 7 ), 2275 – 2281. https://doi.org/10.1002/2014GL059626Test; Boynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128Test; Boynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192Test; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204Test; Elkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202Test; Friedel, R. H. W., Reeves, G. D., & Obara, T. ( 2002 ). Relativistic electron dynamics in the inner magnetosphere — A review. Journal of Atmospheric and Solar-Terrestrial Physics, 64 ( 2 ), 265 – 282. https://doi.org/10.1016/S1364-6826Test(01)00088-8; Holm, S. ( 1979 ). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6 ( 2 ), 65 – 70. https://doi.org/10.2307/4615733Test; Hwang, J. A., Lee, D.-Y., Lyons, L. R., Smith, A. J., Zou, S., Min, K. W., et al. ( 2007 ). Statistical significance of association between whistler-mode chorus enhancements and enhanced convection periods during highspeed streams. Journal of Geophysical Research, 112 ( A9 ), A09213. https://doi.org/10.1029/2007JA012388Test; Hyndman, R. J., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice ( 2nd ed., p. 291 ). OTexts, Heathmont.; Jaynes, A. N., Ali, A. F., Elkington, S. R., Malaspina, D. M., Baker, D. N., Li, X., et al. ( 2018 ). Fast diffusion of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event. Geophysical Research Letters, 45 ( 20 ), 10874 – 10882. https://doi.org/10.1029/2018GL079786Test; Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., et al. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7240 – 7254. https://doi.org/10.1002/2015JA021234Test; Kozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science, 55 ( 6 ), 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013Test; Lam, H.-L. ( 2004 ). On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 66 ( 2004 ), 1703 – 1714. https://doi.org/10.1016/j.jastp.2004.08.002Test; Loto’aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R., & Bonnell, J. W. ( 2010 ). Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research, 115 ( A12 ), A12245. https://doi.org/10.1029/2010JA015755Test; Lyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of geomagnetic disturbances and solar wind density on relativistic electrons at geostationary orbit. Journal of Geophysical Research, 113 ( A8 ), A08224. https://doi.org/10.1029/2008JA013048Test; Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. ( 1998 ). Forecasting: Methods and applications ( 3rd ed., p. 652 ). John Wiley and Sons.; Mathie, R. A., & Mann, I. R. ( 2000 ). A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophysical Research Letters, 27 ( 20 ), 3261 – 3264. https://doi.org/10.1029/2000GL003822Test; MATLAB. ( 2021 ). MATLAB version: 9.11.0.1809720 (R2021b) Update 1. The MathWorks Inc.; Neter, J., Wasserman, W., & Kutner, M. ( 1985 ). Applied linear statistical models ( 2 nd ed., p. 112 ). Richard D. Irwin, Inc.; O’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324Test; O’Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., & Singer, H. J. ( 2001 ). Which magnetic storms produce relativistic electrons at geosynchronous orbit? Journal of Geophysical Research, 106 ( A8 ), 15533 – 15544. https://doi.org/10.1029/2001JA000052Test

  10. 10
    دورية أكاديمية