يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Sigurðsson, Gylfi"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Department of Geosciences and Geography

    مصطلحات موضوعية: Geosciences

    وصف الملف: application/pdf

    العلاقة: We are grateful for the analytical help of C. Bosq and D. Auclair during the Sr and Nd isotope measurements. We thank G. Pedersen for providing shape-files of the lavas and M. T. Guðmundsson, H. Geirsson, F. Sigmundsson, B. Brandsdóttir, P. Einarsson, K. Grönvold, N. Óskarsson and K. Sæmundsson for helpful discussions and support. We thank S. Johnson, H. Rúnarsdóttir and Á. Ásmundsdóttir for assistance with sample preparation. The NordSIMS ion microprobe facility acknowledges support by the Swedish Research Council (grant no. 2017-00671), the Swedish Museum of Natural History and the University of Iceland; this is NordSIMS publication no. 713. The involvement of S.A.H. was partly in relation to H2020 project EUROVOLC, funded by the European Commission (grant no. 731070). This work was supported by the Icelandic Research Fund, grant no. 228933-051. We gratefully acknowledge constructive comments provided by A. Kent and K. Rubin that helped to improve this work. A.A. ackowledges funding from Italian Ministero Istruzione Università e Ricerca (Miur), grant PRIN2017-2017LMNLAW. We are grateful for the analytical help of C. Bosq and D. Auclair during the Sr and Nd isotope measurements. We thank G. Pedersen for providing shape-files of the lavas and M. T. Guðmundsson, H. Geirsson, F. Sigmundsson, B. Brandsdóttir, P. Einarsson, K. Grönvold, N. Óskarsson and K. Sæmundsson for helpful discussions and support. We thank S. Johnson, H. Rúnarsdóttir and Á. Ásmundsdóttir for assistance with sample preparation. The NordSIMS ion microprobe facility acknowledges support by the Swedish Research Council (grant no. 2017-00671), the Swedish Museum of Natural History and the University of Iceland; this is NordSIMS publication no. 713. The involvement of S.A.H. was partly in relation to H2020 project EUROVOLC, funded by the European Commission (grant no. 731070). This work was supported by the Icelandic Research Fund, grant no. 228933-051. We gratefully acknowledge constructive comments provided by A. Kent and K. Rubin that helped to improve this work. A.A. ackowledges funding from Italian Ministero Istruzione Università e Ricerca (Miur), grant PRIN2017-2017LMNLAW.; Halldórsson , S A , Marshall , E W , Caracciolo , A , Matthews , S , Bali , E , Rasmussen , M B , Ranta , E , Robin , J G , Guðfinnsson , G H , Sigmarsson , O , Maclennan , J , Jackson , M G , Whitehouse , M J , Jeon , H , van der Meer , Q H A , Mibei , G K , Kalliokoski , M H , Repczynska , M M , Rúnarsdóttir , R H , Sigurðsson , G , Pfeffer , M A , Scott , S W , Kjartansdóttir , R , Kleine , B I , Oppenheimer , C , Aiuppa , A , Ilyinskaya , E , Bitetto , M , Giudice , G & Stefánsson , A 2022 , ' Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland ' , Nature , vol. 609 , no. 7927 , pp. 529-534 . https://doi.org/10.1038/s41586-022-04981-xTest; ORCID: /0000-0003-3685-334X/work/154009264; http://hdl.handle.net/10138/571469Test; 91136078-50d2-45f3-9d37-44ec1aedad82; 85137887596

  2. 2
  3. 3
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia

    العلاقة: Nature; /609 (2022); Wright, T. J. et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat. Geosci. 5, 242–250 (2012). Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517, 191–195 (2014). Halldórsson, S. A. et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage. Contributions Mineral. Petrol. 173, 1–25 (2018). Sigurdsson, H. & Sparks, S. R. J. Lateral magma flow within rifted Icelandic crust. Nature 274, 126–130 (1978). Sigmundsson, F. New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano. Geophys. Res. Lett. 43, 12,423–12,427 (2016). Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017). Maclennan, J. Mafic tiers and transient mushes: evidence from Iceland. Philos. Trans. R. Soc. A 377, 20180021 (2019). Rubin, K. H., Sinton, J. M., MacLennan, J. & Hellebrand, E. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nat. Geosci. 2, 321–328 (2009). Herzberg, C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J. Petrol. 45, 2389–2405 (2004). Perfit, M. R. et al. Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet. Sci. Lett. 141, 91–108 (1996). Gregg, P. M., Behn, M. D., Lin, J. & Grove, T. L. Melt generation, crystallization, and extraction beneath segmented oceanic transform faults. J. Geophys. Res.: Solid Earth 114, 1–16 (2009). Sæmundsson, K., Sigurgeirsson, M. & Friðleifsson, G. Ó. Geology and structure of the Reykjanes volcanic system, Iceland. J. Volcanol. Geotherm. Res. 391, 106501 (2020). Sæmundsson, K. et al. Geological Map of Southwest Iceland, 1:100000 (Iceland GeoSurvey, 2016). Peate, D. W. et al. Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contributions Mineral. Petrol. 157, 359–382 (2009). Flóvenz, Ó. G. et al. Cyclical geothermal unrest as a precursor to Iceland’s 2021 Fagradalsfjall eruption. Nat. Geosci. 15, 397–404 (2022). Pedersen, G. B. M. et al. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption: results from near real-time photogrammetric monitoring. Geophys. Res. Lett. 1–20 https://doi.org/10.1029/2021GL097125Test (2022). Sinton, J. M., Grönvold, K. & Sæmundsson, K. Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem. Geophys. Geosyst. 6, Q12009 (2005). Koornneef, J. M. et al. Melting of a two-component source beneath Iceland. J. Petrol. 53, 127–157 (2012). Maclennan, J., McKenzie, D., Hilton, F., Grönvold, K. & Shimizu, N. Geochemical variability in a single flow from northern Iceland. J. Geophys. Res.: Solid Earth 108, ECV 4-1–ECV 4-21 (2003). Hartley, M. E., Bali, E., Maclennan, J., Neave, D. A. & Halldórsson, S. A. Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contributions Mineral. Petrol. 173, 1–23 (2018). Shorttle, O. & Maclennan, J. Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochem. Geophys. Geosyst. 12, Q11008 (2011). Weir, N. R. W. et al. Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J. Geophys. Res.: Solid Earth 106, 6347–6368 (2001). Spiegelman, M. & Kelemen, P. B. Extreme chemical variability as a consequence of channelized melt transport. Geochem. Geophys. Geosyst. 4, 1055 (2003). Jackson, M. G. & Dasgupta, R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175–186 (2008). Colman, A., Sinton, J. M. & Rubin, K. H. Magmatic processes at variable magma supply along the Galápagos Spreading Center: Constraints from single eruptive units. J. Petrol. 57, 981–1018 (2016). Bergmanis, E. C., Sinton, J. & Rubin, K. H. Recent eruptive history and magma reservoir dynamics on the southern East Pacific Rise at 17°30′′S. Geochem. Geophys. Geosyst. 8, Q12O06 (2007). Goss, A. R. et al. Geochemistry of lavas from the 2005-2006 eruption at the East Pacific Rise, 9°46’N-9°56N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem. Geophys. Geosyst. 11, 1–35 (2010). Clague, D. A. et al. Chemical variations in the 1998, 2011, and 2015 lava flows from axial seamount, Juan de Fuca Ridge: cooling during ascent, lateral transport, and flow. Geochem. Geophys. Geosyst. 19, 2915–2933 (2018). Greene, A. R. et al. Temporal geochemical variations in lavas from Kilauea’s Pu’u ’O’o eruption (1983-2010): cyclic variations from melting of source heterogeneities. Geochem. Geophys. Geosyst. 14, 4849–4873 (2013). Vlastélic, I. & Pietruszka, A. J. in Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala (eds Bachelery, P. et al.) 185–201 https://doi.org/10.1007/978-3-642-31395-0_11Test (Springer, 2016). Gansecki, C. et al. The tangled tale of Kīlauea’s 2018 eruption as told by geochemical monitoring. Science 366, eaaz0147 (2019). Mutch, E. J. F., Maclennan, J., Shorttle, O., Edmonds, M. & Rudge, J. F. Rapid transcrustal magma movement under Iceland. Nat. Geosci. 12, 569–574 (2019). Jackson, M. D., Blundy, J. & Sparks, R. S. J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. 34. Kamber, B. S. & Gladu, A. H. Comparison of Pb purification by anion-exchange resin methods and assessment of long-term reproducibility of Th/U/Pb ratio measurements by quadrupole ICP-MS. Geostand. Geoanalytical Res. 33, 169–181 (2009). 35. Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004). 36. Pin, C., Gannoun, A. & Dupont, A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J. Anal. At. Spectrom. 29, 1858–1870 (2014). 37. Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, 1–30 https://doi.org/10.1029Test/ 2006GC001283 (2006). 38. Caracciolo, A. et al. Oxygen isotope evidence for progressively assimilating trans-crustal magma plumbing systems in Iceland. Geology 50, 796–800 (2022). 39. Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R. & Portnyagin, M. V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500MPa. Chem. Geol. 277, 115–125 (2010). 40. Oppenheimer, C. & Kyle, P. R. Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J. Volcanol. Geotherm. Res. 177, 743–754 (2008). 41. Burton, M., Allard, P., Mure, F. & la Spina, A. Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity. Science 317, 227–230 (2007). 42. Aiuppa, A. et al. The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geotherm. Res. 182, 221–230 (2009). 43. Ilyinskaya, E. et al. Degassing regime of Hekla volcano 2012-2013. Geochim. Cosmochim. Acta 159, 80–99 (2015). 44. Liu, E. J. et al. Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes. Sci. Adv. 6, eabb9103 (2020). 45. Caracciolo, A. et al. Temporal evolution of magma and crystal mush storage conditions in the Bárðarbunga-Veiðivötn volcanic system, Iceland. Lithos 352–353, 105234 (2020). 46. Neave, D. A., Namur, O., Shorttle, O. & Holtz, F. Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth Planet. Sci. Lett. 520, 199–211 (2019). 47. Putirka, K. D., Mikaelian, H., Ryerson, F. & Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineralogist 88, 1542–1554 (2003). 48. van der Meer, Q. H. A., Bali, E., Guðfinnsson, G. H., Kahl, M. & Rasmussen, M. B. Warm and slightly reduced mantle under the off-rift Snæfellsnes Volcanic Zone, Iceland. J. Petrol. https://doi.org/10.1093/petrology/egab057Test (2021). 49. Nikolaev, G. S., Ariskin, A. A., Barmina, G. S., Nazarov, M. A. & Almeev, R. R. Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem. Int. 54, 301–320 (2016). 50. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008). 51. Neave, D. A. & Putirka, K. D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineralogist 102, 777–794 (2017). 52. Hill, E., Blundy, J. D. & Wood, B. J. Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. Contributions Mineral. Petrol. 161, 423–438 (2011). 53. Putirka, K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contributions Mineral. Petrol. 135, 151–163 (1999). 54. Neave, D. A. et al. Clinopyroxene-liquid equilibria and geothermobarometry in natural and experimental tholeiites: the 2014-2015 Holuhraun Eruption, Iceland. J. Petrol. 60, 1653–1680 (2019). 55. Ghiorso, M. S. & Gualda, G. A. R. An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions Mineral. Petrol. 169, 1–30 (2015). 56. Iacono-Marziano, G., Morizet, Y., le Trong, E. & Gaillard, F. New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012). 57. Shishkina, T. A. et al. Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem. Geol. 388, 112–129 (2014). 58. Maclennan, J. Bubble formation and decrepitation control the CO2 content of olivinehosted melt inclusions. Geochem. Geophys. Geosyst. 18, 597–616 (2017). 59. Matthews, S., Shorttle, O., Maclennan, J. & Rudge, J. F. The global melt inclusion C/Ba array: mantle variability, melting process, or degassing? Geochim. Cosmochim. Acta 293, 525–543 (2021). 60. Wieser, P. E., Iacovino, K., Matthews, S., Moore, G. & Allison, C. M. VESIcal Part II: a critical approach to volatile solubility modelling using an open-source Python3 engine. Earth Space Sci. e2021EA001932 (2021). 61. Aiuppa, A., Casetta, F., Coltorti, M., Stagno, V. & Tamburello, G. Carbon concentration increases with depth of melting in Earth’s upper mantle. Nat. Geosci. 14, 697–703 (2021). 62. Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A 366, 4559–4579 (2008). 63. Iacovino, K., Matthews, S., Wieser, P. E., Moore, G. M. & Begue, F. VESIcal Part I: an open-source thermodynamic model engine for mixed volatile (H2O-CO2) solubility in silicate melts. Earth Space Sci. https://doi.org/10.1029/2020EA001584Test (2021). 64. Presnall, J. et al. Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim. Cosmochim. Acta 66, 2073–2090 (2002). 65. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005). 66. Smith, P. M. & Asimow, P. D. Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem. Geophys. Geosyst. 6, https://doi.org/10.1029Test/ 2004GC000816 (2005). 67. Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002). 68. McKenzie, D. & O’Nions, R. K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021–1091 (1991). 69. McKenzie, D. & O’Nions, R. K. The source regions of ocean island basalts. J. Petrol. 36, 133–159 (1995).; http://hdl.handle.net/2122/15960Test; https://rdcu.be/c3PrLTest

  4. 4