يعرض 1 - 10 نتائج من 62 نتيجة بحث عن '"Scholte waves"', وقت الاستعلام: 1.27s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    تقرير
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Xiao, Han; Tanimoto, Toshiro; Spica, Zack J.; Gaite, Beatriz; Ruiz-Barajas, Sandra; Pan, Mohan; Viens, Loïc (2022). "Locating the Precise Sources of High- Frequency Microseisms Using Distributed Acoustic Sensing." Geophysical Research Letters 49(17): n/a-n/a.; https://hdl.handle.net/2027.42/174919Test; Geophysical Research Letters; Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. ( 2019 ). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10 ( 1 ), 5777. https://doi.org/10.1038/s41467-019-13793-zTest; Koper, K. D., & Burlacu, R. ( 2015 ). The fine structure of double-frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 120 ( 3 ), 1677 – 1691. https://doi.org/10.1002/2014JB011820Test; Koper, K. D., Seats, K., & Benz, H. ( 2010 ). On the composition of Earth’s short-period seismic noise field. Bulletin of the Seismological Society of America, 100 ( 2 ), 606 – 617. https://doi.org/10.1785/0120090120Test; Le Pape, F., Craig, D., & Bean, C. J. ( 2021 ). How deep ocean-land coupling controls the generation of secondary microseism Love waves. Nature Communications, 12 ( 1 ), 2332. https://doi.org/10.1038/s41467-021-22591-5Test; Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. ( 2019 ). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366 ( 6469 ), 1103 – 1107. https://doi.org/10.1126/science.aay5881Test; Longuet-Higgins, M. S. ( 1950 ). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London A-Mathematical and Physical Sciences, 243 ( 857 ), 1 – 35. https://doi.org/10.1098/rsta.1950.0012Test; Muanenda, Y. ( 2018 ). Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. Journal of Sensors, 3897873. https://doi.org/10.1155/2018/3897873Test; Nishida, K. ( 2017 ). Ambient seismic wave field. Proceedings of the Japan Academy, Series B, 93 ( 7 ), 423 – 448. https://doi.org/10.2183/pjab.93.026Test; Nishida, K., & Takagi, R. ( 2016 ). Teleseismic S wave microseisms. Science, 353 ( 6302 ), 919 – 921. https://doi.org/10.1126/science.aaf7573Test; Nolet, G., & Dorman, L. M. ( 1996 ). Waveform analysis of Scholte modes in ocean sediment layers. Geophysical Journal International, 125 ( 2 ), 385 – 396. https://doi.org/10.1111/j.1365-246X.1996.tb00006.xTest; Poli, P., Campillo, M., & Pedersen, H. ( 2012 ). Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science, 338 ( 6110 ), 1063 – 1065. https://doi.org/10.1126/science.1228194Test; Posey, R., Johnson, G. A., & Vohra, S. T. ( 2000 ). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36 ( 20 ), 1688 – 1689. https://doi.org/10.1049/el:20001200Test; Pyle, M. L., Koper, K. D., Euler, G. G., & Burlacu, R. ( 2015 ). Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays. Geophysical Research Letters, 42 ( 8 ), 2700 – 2708. https://doi.org/10.1002/2015GL063530Test; Retailleau, L., & Gualtieri, L. ( 2021 ). Multi-phase seismic source imprint of tropical cyclones. Nature Communications, 12 ( 1 ), 2064. https://doi.org/10.1038/s41467-021-22231-yTest; Scholte, J. G. J. ( 1958 ). Rayleigh waves in isotropic and anisotropic elastic media, Staatsdr.- en Uitgeverijledrijf. Retrieved from https://books.google.com/books?id=ETNHGQAACAAJTest; Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. ( 2005 ). High-resolution surface-wave tomography from ambient seismic noise. Science, 307 ( 5715 ), 1615 – 1618. https://doi.org/10.1126/science.1108339Test; Spica, Z. J., Gaite, B., & Ruiz-Barajas, S. ( 2020 ). The Valencia-Islalink Distributed Acoustic Sensing Experiment. [Data Set]. PubDAS. https://doi.org/10.7914/SN/ZH_2020Test; Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. ( 2020 ). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophysical Research Letters, 47 ( 16 ), e2020GL088360. https://doi.org/10.1029/2020GL088360Test; Tanimoto, T. ( 2007 ). Excitation of microseisms. Geophysical Research Letters, 34 ( 5 ). https://doi.org/10.1029/2006gl029046Test; Toksöz, M. N., & Lacoss, R. T. ( 1968 ). Microseisms: Mode structure and sources. Science, 159 ( 3817 ), 872 – 873. https://doi.org/10.1126/science.159.3817.872Test; Tolman, H. L. ( 2009 ). User manual and system documentation of WAVEWATCH III TM version 3.14. J Technical note, MMAB Contribution, 276, 220.; Wiechert, E. ( 1904 ). Discussion, Verhandlung der zweiten internationalen seismologischen Konferenz. Beitrage zur Geophysik, 2, 41 – 43.; Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. ( 2019 ). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10 ( 1 ), 5778. https://doi.org/10.1038/s41467-019-13262-7Test; Xiao, H., Tanimoto, T., & Xue, M. ( 2021 ). Study of S-wave microseisms generated by storms in the southeast Australia and north Atlantic. Geophysical Research Letters, 48 ( 15 ), e2021GL093728. https://doi.org/10.1029/2021GL093728Test; Xiao, H., Xue, M., Yang, T., Liu, C., Hua, Q., Xia, S., et al. ( 2018 ). The characteristics of microseisms in south China sea: Results from a combined data set of OBSs, broadband land seismic stations, and a global wave height model. Journal of Geophysical Research: Solid Earth, 123 ( 5 ), 3923 – 3942. https://doi.org/10.1029/2017JB015291Test; Zhang, J., Gerstoft, P., & Shearer, P. M. ( 2009 ). High-frequency P-wave seismic noise driven by ocean winds. Geophysical Research Letters, 36 ( 9 ), L09302. https://doi.org/10.1029/2009GL037761Test; Capon, J. ( 1969 ). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57 ( 8 ), 1408 – 1418. https://doi.org/10.1109/proc.1969.7278Test; Dahlen, F. A., & Tromp, J. ( 2021 ). Princeton University Press. https://doi.org/10.1515/9780691216157Test; Schweitzer, J., Fyen, J., Mykkeltveit, S., Kværna, T., & Bormann, P. ( 2002 ). Seismic arrays. In IASPEI new manual of seismological observatory practice (pp. 1 – 51 ).; Ardhuin, F., Gualtieri, L., & Stutzmann, E. ( 2015 ). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42 ( 3 ), 765 – 772. https://doi.org/10.1002/2014GL062782Test; Ardhuin, F., & Herbers, T. H. C. ( 2013 ). Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. Journal of Fluid Mechanics, 716, 316 – 348. https://doi.org/10.1017/jfm.2012.548Test; Ardhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. ( 2011 ). Ocean wave sources of seismic noise. Journal of Geophysical Research, 116 ( C9 ), C09004. https://doi.org/10.1029/2011JC006952Test; Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. ( 2008 ). Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science, 321 ( 5895 ), 1478 – 1481. https://doi.org/10.1126/science.1160943Test; Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. ( 2008 ). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1 ( 2 ), 126 – 130. https://doi.org/10.1038/ngeo104Test; Denolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. ( 2014 ). Strong ground motion prediction using virtual earthquakes. Science, 343 ( 6169 ), 399 – 403. https://doi.org/10.1126/science.1245678Test; Gal, M., Reading, A., Ellingsen, S., Koper, K., & Burlacu, R. ( 2017 ). Full wavefield decomposition of high-frequency secondary microseisms reveals distinct arrival azimuths for Rayleigh and Love waves. Journal of Geophysical Research: Solid Earth, 122 ( 6 ), 4660 – 4675. https://doi.org/10.1002/2017JB014141Test; Group, T. W. ( 1988 ). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18 ( 12 ), 1775 – 1810. https://doi.org/10.1175/1520-0485Test(1988)0182.0.co;2; Guerin, G., Rivet, D., van den Ende, M. P. A., Stutzmann, E., Sladen, A., & Ampuero, J.-P. ( 2022 ). Quantifying microseismic noise generation from coastal reflection of gravity waves recorded by seafloor DAS. Geophysical Journal International, 231 ( 1 ), 394 – 407. https://doi.org/10.1093/gji/ggac200Test; Hartog, A. H. ( 2017 ). An introduction to distributed optical fibre sensors. CRC press.; Hasselmann, K. ( 1963 ). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1 ( 2 ), 177 – 210. https://doi.org/10.1029/RG001i002p00177Test; Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. ( 2008 ). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 464 ( 2091 ), 777 – 793. https://doi.org/10.1098/rspa.2007.0277Test

  9. 9
    رسالة جامعية
  10. 10
    دورية أكاديمية