يعرض 1 - 10 نتائج من 968 نتيجة بحث عن '"S. Ten"', وقت الاستعلام: 1.22s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)

    مصطلحات موضوعية: Medicine, Science

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    تقرير
  10. 10
    دورية أكاديمية

    المساهمون: The work was carried out with partial financial support from the of the FEFU Endowment Fund (grant № 22-07-01-007), as part of the state assignment of the IAM FEB RAS (№ 075-01290-23-00), as well as within the framework of the state budget proposal: "Development of a climate monitoring system for the Far Eastern seas of Russia and the Northwestern Pacific Ocean based on multiplatform observations and operational hydrodynamic modeling" (№ 123072000039-5). The work of N.P. Perevalova was financially supported by the Ministry of Science and Higher Education of the Russian Federation (subsidy № 075-GZ/C3569/278). The work used the resources of the Shared Research Facilities "Center for Processing and Storage of Scientific Data of the Far Eastern Branch of the Russian Academy of Sciences", funded by the Ministry of Science and Higher Education of the Russian Federation under agreement № 075-15-2021-663., Работа выполнена при частичной финансовой поддержке Фонда целевого капитала ДВФУ (грант № 22-07-01-007), в рамках государственного задания ИПМ ДВО РАН (проект № 075-01290-23-00), а также в рамках госбюджетной темы: «Разработка системы климатического мониторинга дальневосточных морей России и северо-западной части Тихого океана на основе мультиплатформенных наблюдений и оперативного гидродинамического моделирования» (№ 123072000039-5). Работа Н.П. Переваловой поддержана Минобрнауки РФ (субсидия № 075-ГЗ/Ц3569/278). В работе использовались ресурсы ЦКП «Центр обработки и хранения научных данных ДВО РАН», финансируемого Минобрнауки РФ по соглашению №075-15- 2021-663.

    المصدر: Geodynamics & Tectonophysics; Том 15, № 1 (2024); 0738 ; Геодинамика и тектонофизика; Том 15, № 1 (2024); 0738 ; 2078-502X

    وصف الملف: application/pdf

    العلاقة: https://www.gt-crust.ru/jour/article/view/1790/798Test; E.A., Leonovich L.A., Lesyuta O.S., Palamartchouk K.S., Perevalova N.P., 2013. A Review of GPS/GLONASS Studies of the Ionospheric Response to Natural and Anthropogenic Processes and Phenomena. Journal of Space Weather and Space Climate 3, A27. https://doi.org/10.1051/swsc/2013049Test.; Афраймович Э.Л., Перевалова Н.П. GPS-мониторинг верхней атмосферы Земли. Иркутск, 2006. 479 с.; Artru J., Lognonne P., Blanc E., 2001. Normal Modes Modelling of Post-Seismic Ionospheric Oscillations. Geophysical Research Letters 28 (4), 697–700. https://doi.org/10.1029/2000GL000085Test.; Astafyeva E., 2019. Ionospheric Detection of Natural Hazards. Reviews of Geophysics 57, 1265–1288. https://doi.org/10.1029/2019RG000668Test.; Astafyeva E.I., Afraimovich E.L., 2006. Long-Distance Traveling Ionospheric Disturbances Caused by the Great Sumatra-Andaman Earthquake on 26 December 2004. Earth, Planets and Space 58, 1025–1031. https://doi.org/10.1186/BF03352607Test.; Astafyeva E., Heki K., Kiryushkin V., Afraimovich E., Shalimov S., 2009. Two-Mode Long-Distance Propagation of Coseismic Ionosphere Disturbances. Journal of Geophysical Research: Space Physics 114, A10. https://doi.org/10.1029/2008JA013853Test.; Astafyeva E., Maletckii B., Mikesell T.D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L., 2022. The 15 January 2022 Hunga Tonga Eruption History as Inferred from Ionospheric Observations. Geophysical Research Letters 49 (10), e2022GL098827. https://doi.org/10.1029/2022GL098827Test; Bagiya M.S., Kherani E.A., Sunil P.S., Sunil A.S., Sunda S., Ramesh D.S., 2017. Origin of the Ahead of Tsunami Traveling Ionospheric Disturbances during Sumatra Tsunami and Offshore Forecasting. Journal of Geophysical Research: Space Physics 122 (7), 7742–7749. https://doi.org/10.1002/2017JA023971Test.; Calais E., Minster J.B., 1995. GPS Detection of Ionospheric Perturbations Following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters 22 (9), 1045–1048. https://doi.org/10.1029/95GL00168Test.; Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J. et al., 2022. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sensing 14 (9), 2179. https://doi.org/10.3390/rs14092179Test.; Chum J., Hruska F., Zednik J., Lastovicka J., 2012. Ionospheric Disturbances (Infrasound Waves) over the Czech Republic Excited by the 2011 Tohoku Earthquake. Journal of Geophysical Research: Space Physics 117, A8. https://doi.org/10.1029/2012JA017767Test.; Dolgikh G.I., Dolgikh S.G., Ovcharenko V.V., 2022a. Atmospheric and Deformation Disturbances Caused by the Hunga-Tonga-Hunga-Ha’apai Volcano. Doklady Earth Sciences 505, 575–577. https://doi.org/10.1134/S1028334X22080074Test.; Dolgikh G., Dolgikh S., Ovcharenko V., 2022b. Initiation of Infrasonic Geosphere Waves Caused by Explosive Eruption of Hunga Tonga-Hunga Haʻapai Volcano. Journal of Marine Science and Engineering 10 (8), 1061. https://doi.org/10.3390/jmse10081061Test.; Duncombe J., 2022. The Surprising Reach of Tonga’s Giant Atmospheric Waves. Eos 103, B02202. https://doi.org/10.1029/2022eo220050Test.; Heki K., 2022. Ionospheric Signatures of Repeated Passages of Atmospheric Waves by the 2022 Jan. 15 Hunga Tonga-Hunga Ha’apai Eruption Detected by QZSS-TEC Observations in Japan. Earth, Planets and Space 74, 112. https://doi.org/10.1186/s40623-022-01674-7Test.; Hong J., Kil H., Lee W.K., Kwak Y.-S., Choi B.-K., Paxton L.J., 2022. Detection of Different Properties of Ionospheric Perturbations in the Vicinity of the Korean Peninsula after the Hunga-Tonga Volcanic Eruption on 15 January 2022. Geophysical Research Letters 49 (14), e2022GL099163. https://doi.org/10.1029/2022GL099163Test.; Jorgenson P.S., 1978. Ionospheric Measurements from NAVSTAR Satellites: Final Report. The Aerospace Corporation, El Segundo, USA, 48 p. https://archive.org/details/DTIC_ADA068809Test.; Muafiry I.N., Meilano I., Heki K., Wijaya D.D., Nugraha K.A., 2022. Ionospheric Disturbances after the 2022 Hunga Tonga-Hunga Ha’apai Eruption above Indonesia from GNSS-TEC Observations. Atmosphere 13 (10), 1615. https://doi.org/10.3390/atmos13101615Test.; Saito S., 2022. Ionospheric Disturbances Observed over Japan Following the Eruption of Hunga Tonga-Hunga Ha’apai on 15 January 2022. Earth, Planets and Space 74, 57. https://doi.org/10.1186/s40623-022-01619-0Test.; Shestakov N., Orlyakovskiy A., Perevalova N., Titkov N., Chebrov D., Ohzono M., Takahashi H., 2021. Investigation of Ionospheric Response to June 2009 Sarychev Peak Volcano Eruption. Remote Sensing 13 (4), 638. https://doi.org/10.3390/rs13040638Test.; Symons G.J. (Ed.), 1888. The Eruption of Krakatoa, and Subsequent Phenomena: Report of the Krakatoa Committee of the Royal Society. Trübner & Co., London, 494 p.; Taylor G.I., 1932. The Resonance Theory of Semidiurnal Atmospheric Oscillations. Memoirs of the Royal Meteorological Society 4, 41–52.; Themens D.R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P.T., 2022. Global Propagation of Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruption. Geophysical Research Letters 49 (7), e2022GL098158. https://doi.org/10.1029/2022GL098158Test.; Verhulst T.G.W., Altadill D., Barta B., Belehaki A., Burešová D., Cesaroni C., Galkin I., Guerra M. et al., 2022. Multi-Instrument Detection in Europe of Ionospheric Disturbances Caused by the 15 January 2022 Eruption of the Hunga Volcano. Journal of Space Weather and Space Climate 12, 35. https://doi.org/10.1051/swsc/2022032Test.; Wright C.J., Hindley N.P., Alexander M.J., Barlow M., Hoffmann L., Mitchell C.N., Prata F., Bouillon M. et al., 2022. Surface-to-Space Atmospheric Waves from Hunga Tonga– Hunga Ha’apai Eruption. Nature 609, 741–746. https://doi.org/10.1038/s41586-022-05012-5Test.; Zhang S.-R., Vierinen J., Aa E., Goncharenko L.P., Erickson P.J., Rideout W., Coster A.J., Spicher A., 2022. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Frontiers in Astronomy and Space Sciences 9, 871275. https://doi.org/10.3389/fspas.2022.871275Test.; https://www.gt-crust.ru/jour/article/view/1790Test