يعرض 1 - 10 نتائج من 123 نتيجة بحث عن '"S. Padilha"', وقت الاستعلام: 1.10s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    وصف الملف: 16 páginas; application/pdf

    العلاقة: Chemosensors; 2. Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem. Rev. 2020, 120, 526–622. [CrossRef] [PubMed]; 3. Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [CrossRef]; 4. Chang, H.; Karan, N.S.; Shin, K.; Bootharaju, M.S.; Nah, S.; Chae, S.I.; Baek, W.; Lee, S.; Kim, J.; Son, Y.J.; et al. Highly Fluorescent Gold Cluster Assembly. J. Am. Chem. Soc. 2021, 143, 326–334. [CrossRef] [PubMed]; 5. Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663. [CrossRef]; 6. Chen, Y.; Montana, D.M.; Wei, H.; Cordero, J.M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O.T.; Bawendi, M.G. Shortwave Infrared in Vivo Imaging with Gold Nanoclusters. Nano Lett. 2017, 17, 6330–6334. [CrossRef]; 7. Qu, X.; Li, Y.; Li, L.; Wang, Y.; Liang, J.; Liang, J. Fluorescent Gold Nanoclusters: Synthesis and Recent Biological Application. J. Nanomater. 2015, 2015, 1–23. [CrossRef]; 8. Cui, M.; Zhao, Y.; Song, Q. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends Anal. Chem. 2014, 57, 73–82. [CrossRef]; 9. Deng, H.-H.; Shi, X.-Q.; Wang, F.-F.; Peng, H.-P.; Liu, A.-L.; Xia, X.-H.; Chen, W. Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition. Chem. Mater. 2017, 29, 1362–1369. [CrossRef]; 11. Zhou, Y.; Ma, Z. Colorimetric detection of Hg2+ by Au nanoparticles formed by H2O2 reduction of HAuCl4 using Au nanoclusters as the catalyst. Sensors Actuators B Chem. 2017, 241, 1063–1068. [CrossRef]; 12. Chen, K.-J.; Hsu, I.-H.; Sun, Y.-C. Determination of methylmercury and inorganic mercury by coupling short-column ion chromatographic separation, on-line photocatalyst-assisted vapor generation, and inductively coupled plasma mass spectrometry. J. Chromatogr. A 2009, 1216, 8933–8938. [CrossRef] [PubMed]; 13. Suárez-Criado, L.; Queipo-Abad, S.; Rodríguez-Cea, A.; Rodríguez-González, P.; Alonso, J.I.G. Comparison of GC-ICP-MS, GC-EI-MS and GC-EI-MS/MS for the determination of methylmercury, ethylmercury and inorganic mercury in biological samples by triple spike species-specific isotope dilution mass spectrometry. J. Anal. At. Spectrom. 2022, 37, 1462–1470. [CrossRef]; 14. Xie, J.; Zheng, Y.; Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 2010, 46, 961–963. [CrossRef]; 15. Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R. Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg2+ Detection. Anal. Sci. 2011, 27, 591–596. [CrossRef]; 16. Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. Highly selective fluorescent sensors for Hg2+ based on bovine serum albumincapped gold nanoclusters. Anal. 2010, 135, 1411–1416. [CrossRef]; 17. Lin, Y.-H.; Tseng, W.-L. Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82, 9194–9200. [CrossRef]; 18. Liu, X.; Du, D.; Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 1997, 33, 1706–1716. [CrossRef]; 19. Wang, L.; Yin, K.; Deng, Q.; Huang, Q.; He, J.; Duan, J. Wetting Ridge-Guided Directional Water Self-Transport. Adv. Sci. 2022, 9, 2204891. [CrossRef]; 20. Tahir, T.; Pandoli, O.G.; Zaman, Q.; Concas, G.C.; Gisbert, M.J.d.S.; Cremona, M.; Freire, F.L.; Carvalho, I.C.S.; Bevilaqua, P.H.C.; de Sá, D.S.; et al. Thermoelastic pulsed laser ablation of silver thin films with organic metal–SiO2 adhesion layer in water: Application to the sustainable regeneration of glass microfluidic reactors for silver nanoparticles. J. Phys. Commun. 2022, 6, 055005. [CrossRef]; 21. Siano, S.; Agresti, J.; Cacciari, I.; Ciofini, D.; Mascalchi, M.; Osticioli, I.; Mencaglia, A.A. Laser cleaning in conservation of stone, metal, and painted artifacts: State of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A 2012, 106, 419–446. [CrossRef]; 22. Cheung, J.; Horwitz, J. Pulsed Laser Deposition History and Laser-Target Interactions. MRS Bull. 1992, 17, 30–36. [CrossRef]; 23. Amendola, V.; Amans, D.; Ishikawa, Y.; Koshizaki, N.; Scirè, S.; Compagnini, G.; Reichenberger, S.; Barcikowski, S. RoomTemperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chem.–A Eur. J. 2020, 26, 9206–9242. [CrossRef] [PubMed]; 24. Kalus, M.-R.; Lanyumba, R.; Lorenzo-Parodi, N.; Jochmann, M.A.; Kerpen, K.; Hagemann, U.; Schmidt, T.C.; Barcikowski, S.; Gökce, B. Determining the role of redox-active materials during laser-induced water decomposition. Phys. Chem. Chem. Phys. 2019, 21, 18636–18651. [CrossRef] [PubMed]; 25. Simakin, A.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.; Vedunova, M.V.; Sevost’Yanov, M.A.; Belosludtsev, K.N.; Gudkov, S.V. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J. Phys. Chem. B 2019, 123, 1869–1880. [CrossRef]; 26. Del Rosso, T.; A Rey, N.; Rosado, T.; Landi, S.; Larrude, D.G.; Romani, E.C.; Junior, F.L.F.; Quinteiro, S.M.; Cremona, M.; Aucelio, R.Q.; et al. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers. Nanotechnology 2016, 27, 255602. [CrossRef]; 27. Sylvestre, J.-P.; Poulin, S.; Kabashin, A.V.; Sacher, E.; Meunier, A.M.; Luong, J.H.T. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B 2004, 108, 16864–16869. [CrossRef]; 28. Del Rosso, T.; Louro, S.; Deepak, F.; Romani, E.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Junior, F.F.; De Beule, P.; et al. Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling. Appl. Surf. Sci. 2018, 441, 347–355. [CrossRef]; 29. Ziefuss, A.R.; Steenbock, T.; Benner, D.; Plech, A.; Göttlicher, J.; Teubner, M.; Grimm-Lebsanft, B.; Rehbock, C.; Comby-Zerbino, C.; Antoine, R.; et al. Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects. Adv. Mater. 2021, 33, e2101549. [CrossRef]; 30. Zaman, Q.; Souza, J.; Pandoli, O.; Costa, K.Q.; Dmitriev, V.; Fulvio, D.; Cremona, M.; Aucelio, R.Q.; Fontes, G.; Del Rosso, T. Two-color surface plasmon resonance nanosizer for gold nanoparticles. Opt. Express 2019, 27, 3200–3216. [CrossRef]; 31. Palazzo, G.; Valenza, G.; Dell’Aglio, M.; De Giacomo, A. On the stability of gold nanoparticles synthesized by laser ablation in liquids. J. Colloid Interface Sci. 2017, 489, 47–56. [CrossRef] [PubMed]; 32. Mei, Q.; Shi, Y.; Hua, Q.; Tong, B. Phosphorescent chemosensor for Hg2+ based on an iridium(iii) complex coordinated with 4-phenylquinazoline and carbazole dithiocarbamate. RSC Adv. 2015, 5, 74924–74931. [CrossRef]; 33. Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report). Pure Appl. Chem. 1997, 69, 297–328. [CrossRef]; 34. Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362. [CrossRef] [PubMed]; 35. Ziefuß, A.R.; Reichenberger, S.; Rehbock, C.; Chakraborty, I.; Gharib, M.; Parak, W.J.; Barcikowski, S. Laser Fragmentation of Colloidal Gold Nanoparticles with High-Intensity Nanosecond Pulses is Driven by a Single-Step Fragmentation Mechanism with a Defined Educt Particle-Size Threshold. J. Phys. Chem. C 2018, 122, 22125–22136. [CrossRef]; 36. Giorgetti, E.; Giusti, A.; Giammanco, F.; Laza, S.; Del Rosso, T.; Dellepiane, G. Photodegradation of PAMAM G5-stabilized aqueous suspensions of gold nanoparticles. Appl. Surf. Sci. 2007, 254, 1140–1144. [CrossRef]; 37. Giorgetti, E.; Cicchi, S.; Muniz-Miranda, M.; Margheri, G.; Del Rosso, T.; Giusti, A.; Rindi, A.; Ghini, G.; Sottini, S.; Marcelli, A.; et al. Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films. Phys. Chem. Chem. Phys. 2009, 11, 9798–9803. [CrossRef]; 38. Villa, A.M.; Doglia, S.M.; De Gioia, L.; Bertini, L.; Natalello, A. Anomalous Intrinsic Fluorescence of HCl and NaOH Aqueous Solutions. J. Phys. Chem. Lett. 2019, 10, 7230–7236. [CrossRef]; 39. Reyes-Gasga, J.; Tehuacanero-Nuñez, S.; Montejano-Carrizales, J.M.; Gao, X.; Jose-Yacaman, M. Analysis of the contrast in icosahedral gold nanoparticles. Top. Catal. 2007, 46, 23–30. [CrossRef]; 40. Braga, M.S.; Jaimes, R.F.V.V.; Borysow, W.; Gomes, O.F.; Salcedo, W.J. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification. Sensors 2017, 17, 1730. [CrossRef]; 41. Li, Y.-L.; Leng, Y.-M.; Zhang, Y.-J.; Li, T.-H.; Shen, Z.-Y.; Wu, A.-G. A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sensors Actuators B Chem. 2014, 200, 140–146. [CrossRef]; 42. Kim, M.; Taylor, T.J.; Gabbaï, F.P. Hg(II)···Pd(II) Metallophilic Interactions. J. Am. Chem. Soc. 2008, 130, 6332–6333. [CrossRef]; 43. Yang, J.-Y.; Yang, T.; Wang, X.-Y.; Chen, M.-L.; Yu, Y.-L.; Wang, J.-H. Mercury Speciation with Fluorescent Gold Nanocluster as a Probe. Anal. Chem. 2018, 90, 6945–6951. [CrossRef]; 44. Qiao, Y.; Zhang, Y.; Zhang, C.; Shi, L.; Zhang, G.; Shuang, S.; Dong, C.; Ma, H. Water-soluble gold nanoclusters-based fluorescence probe for highly selective and sensitive detection of Hg2+ . Sensors Actuators B Chem. 2016, 224, 458–464. [CrossRef]; 45. Wu, X.-J.; Kong, F.; Zhao, C.-Q.; Ding, S.-N. Ratiometric fluorescent nanosensors for ultra-sensitive detection of mercury ions based on AuNCs/MOFs. Analyst 2019, 144, 2523–2530. [CrossRef] [PubMed]; 46. Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597–636. [CrossRef]; 47. Echeverría, R.; López-De-Luzuriaga, J.M.; Monge, M.; Olmos, M.E. The gold(i)· · · lead(ii) interaction: A relativistic connection. Chem. Sci. 2015, 6, 2022–2026. [CrossRef] [PubMed]; 48. López-De-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Pascual, D.; Lasanta, T. Amalgamating at the molecular level. A study of the strong closed-shell Au(i)· · · Hg(ii) interaction. Chem. Commun. 2011, 47, 6795–6797. [CrossRef]; 49. Pyykkö, P.; Tamm, T. Theory of the d10−d 10 Closed-Shell Attraction. 4. X(AuL)n m+ Centered Systems. Organometallics 1998, 17, 4842–4852. [CrossRef]; 50. Kloo, L. On closed-shell interactions between heavy main-group elements. J. Comput. Chem. 2022, 43, 1985–1996. [CrossRef]; 51. Szalay, S.; Barcza, G.; Szilvási, T.; Veis, L.; Legeza, Ö. The correlation theory of the chemical bond. Sci. Rep. 2017, 7, 2237. [CrossRef] [PubMed]; 52. Sharma, S.; Baligar, R.S.; Singh, H.B.; Butcher, R.J. Reaction of a Metallamacrocycle Leading to a Mercury(II)·Palladium(II)·Mercury(II) Interaction. Angew. Chem. 2009, 121, 2021–2024. [CrossRef]; 53. Echeverría, R.; López-De-Luzuriaga, J.M.; Monge, M.; Moreno, S.; Olmos, M.E. New Insights into the Au(I)·Pb(II) Closed-Shell Interaction: Tuning of the Emissive Properties with the Intermetallic Distance. Inorg. Chem. 2016, 55, 10523–10534. [CrossRef] [PubMed]; 54. Yu, P.; Wen, X.; Toh, Y.-R.; Ma, X.; Tang, J. Fluorescent Metallic Nanoclusters: Electron Dynamics, Structure, and Applications. Part. Part. Syst. Charact. 2015, 32, 142–163. [CrossRef]; 16; 11; Tahir; Freire Jr, F.L.; Aucelio, R.Q.; Cremona, M.; Padilha, J.d.S.; Margheri, G.; Zaman, Q.; Concas, G.C.; Gisbert, M.; Ali, S.; et al. Quenching of the Photoluminescence of Gold Nanoclusters Synthesized by Pulsed Laser Ablation in Water upon Interaction with Toxic Metal Species in Aqueous Solution. Chemosensors 2023, 11, 118. https://doi.orgTest/ 10.3390/chemosensors11020118; https://hdl.handle.net/11323/10407Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
  7. 7
    دورية أكاديمية
  8. 8
  9. 9
    دورية أكاديمية
  10. 10