يعرض 1 - 10 نتائج من 853 نتيجة بحث عن '"Reeves, G. D."', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    تقرير
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: Science and Technology Facilities Council, Natural Environment Research Council

    المصدر: Frontiers in Astronomy and Space Sciences ; volume 9 ; ISSN 2296-987X

    مصطلحات موضوعية: Astronomy and Astrophysics

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Simms, L. E.; Engebretson, M. J.; Reeves, G. D. (2023). "Determining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression." Journal of Geophysical Research: Space Physics 128(1): n/a-n/a.; https://hdl.handle.net/2027.42/175744Test; Journal of Geophysical Research: Space Physics; Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414Test; Osmane, A., Savola, M., Kilpua, E., Koskinen, H., Borovsky, J. E., & Kalliokoski, M. ( 2022 ). Quantifying the non-linear dependence of energetic electron fluxes in the Earth’s radiation belts with radial diffusion drivers. Annales Geophysicae, 40 ( 1 ), 37 – 53. https://doi.org/10.5194/angeo-40-37-2022Test; Pankratz, A. ( 1991 ). Forecasting with dynamic regression models (p. 386 ). John Wiley & Sons Inc.; Potapov, A. S. ( 2017 ). Relativistic electrons of the outer radiation belt and methods of their forecast (review). Solar-Terrestrial Physics, 3 ( 1 ), 57 – 72. https://doi.org/10.12737/article_58f9703837c248.84596315Test; Reeves, G. D., Baker, D. N., Belian, R. D., Blake, J. B., Cayton, T. E., Fennell, J. F., et al. ( 1998 ). The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophysical Research Letters, 25 ( 17 ), 3265 – 3268. https://doi.org/10.1029/98gl02509Test; Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ), A02213. https://doi.org/10.1029/2010JA015735Test; Romanova, N., & Pilipenko, V. ( 2009 ). ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophysica, 57 ( 1 ), 158 – 170. https://doi.org/10.2478/s11600-008-0064-4Test; Rostoker, G., Skone, S., & Baker, D. N. ( 1998 ). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophysical Research Letters, 25 ( 19 ), 3701 – 3704. https://doi.org/10.1029/98gl02801Test; Sakaguchi, K., Nagatsuma, T., Reeves, G. D., & Spence, H. E. ( 2015 ). Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models. Space Weather, 13 ( 12 ), 853 – 867. https://doi.org/10.1002/2015SW001254Test; Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., & Kanekal, S. G. ( 2006 ). Outward radial diffusion driven by losses at magnetopause. Journal of Geophysical Research, 111 ( A11 ), A11214. https://doi.org/10.1029/2006JA011657Test; Simms, L., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002Test; Simms, L. E., Engebretson, M. J., Rodger, C. J., Gjerloev, J. W., & Reeves, G. D. ( 2019 ). Predicting lower band chorus with autoregressive-moving average transfer function (ARMAX) models. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5692 – 5708. https://doi.org/10.1029/2019JA026726Test; Simms, L. E., Ganushkina, N. Y., van de Kamp, M., Liemohn, M. W., & Dubyagin, S. ( 2022 ). Using ARMAX models to determine the drivers of 40-150 keV GOES electron fluxes. Journal of Geophysical Research: Space Physics, 127 ( 9 ), e2022JA030538. https://doi.org/10.1029/2022JA030538Test; Simms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux following storms at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955Test; Simms, L. E., Engebretson, M. J., & Reeves, G. D. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research: Space Physics, 127, 2. https://doi.org/10.1029/2021JA030021Test; SPSS. ( 2020 ). IBM SPSS Statistics for Windows (version 27.0). IBM Corp.; Staples, F. A., Kellerman, A., Murphy, K. R., Rae, I. J., Sandhu, J. K., & Forsyth, C. ( 2022 ). Resolving magnetopause shadowing using multimission measurements of phase space density. Journal of Geophysical Research: Space Physics, 127 ( 2 ), e2021JA029298. https://doi.org/10.1029/2021JA029298Test; Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580Test; Su, Y.-J., Quinn, J. M., Johnston, W. R., McCollough, J. P., & Starks, M. J. ( 2014 ). Specification of>2MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit. Space Weather, 12 ( 7 ), 470 – 486. https://doi.org/10.1002/2014SW001069Test; Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., & Anderson, R. R. ( 2002 ). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 29 ( 24 ), 27-1 – 27-4. https://doi.org/10.1029/2002GL016039Test; Takahashi, K., & Ukhorskiy, A. Y. ( 2007 ). Solar wind control of Pc5 pulsation power at geosynchronous orbit. Journal of Geophysical Research, 112 ( A11 ), A11205. https://doi.org/10.1029/2007JA012483Test; Tu, W., Xiang, Z., & Morley, S. K. ( 2019 ). Modeling the magnetopause shadowing loss during the June 2015 dropout event. Geophysical Research Letters, 46 ( 16 ), 9388 – 9396. https://doi.org/10.1029/2019GL084419Test; Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. ( 2016 ). Information theoretical approach to discovering solar wind drivers of the outer radiation belt. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 9378 – 9399. https://doi.org/10.1002/2016JA022711Test; Wing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. ( 2022 ). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2021JA030246. https://doi.org/10.1029/2021JA030246Test; Baker, D. N., Pulkkinen, T., Li, X., Kanekal, S., Ogilvie, K., Lepping, R., et al. ( 1998 ). A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophysical Research Letters, 25 ( 15 ), 2975 – 2978. https://doi.org/10.1029/98GL01134Test; Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ), L18105. https://doi.org/10.1029/2011GL048980Test; Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. ( 1997 ). Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102 ( A2 ), 2309 – 2324. https://doi.org/10.1029/96JA02870Test; Borovsky, J. E. ( 2017 ). Time-integral correlations of multiple variables with the relativistic-electron flux at geosynchronous orbit: The strong roles of substorm-injected electrons and the ion plasma sheet. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 11961 – 11990. https://doi.org/10.1002/2017JA024476Test; Borovsky, J. E., & Denton, M. H. ( 2014 ). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4307 – 4334. https://doi.org/10.1002/2014JA019876Test; Boyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Baker, D. N., et al. ( 2014 ). Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event. Geophysical Research Letters, 41 ( 7 ), 2275 – 2281. https://doi.org/10.1002/2014GL059626Test; Boynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128Test; Boynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192Test; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204Test; Elkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202Test; Friedel, R. H. W., Reeves, G. D., & Obara, T. ( 2002 ). Relativistic electron dynamics in the inner magnetosphere — A review. Journal of Atmospheric and Solar-Terrestrial Physics, 64 ( 2 ), 265 – 282. https://doi.org/10.1016/S1364-6826Test(01)00088-8; Holm, S. ( 1979 ). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6 ( 2 ), 65 – 70. https://doi.org/10.2307/4615733Test; Hwang, J. A., Lee, D.-Y., Lyons, L. R., Smith, A. J., Zou, S., Min, K. W., et al. ( 2007 ). Statistical significance of association between whistler-mode chorus enhancements and enhanced convection periods during highspeed streams. Journal of Geophysical Research, 112 ( A9 ), A09213. https://doi.org/10.1029/2007JA012388Test; Hyndman, R. J., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice ( 2nd ed., p. 291 ). OTexts, Heathmont.; Jaynes, A. N., Ali, A. F., Elkington, S. R., Malaspina, D. M., Baker, D. N., Li, X., et al. ( 2018 ). Fast diffusion of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event. Geophysical Research Letters, 45 ( 20 ), 10874 – 10882. https://doi.org/10.1029/2018GL079786Test; Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., et al. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7240 – 7254. https://doi.org/10.1002/2015JA021234Test; Kozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science, 55 ( 6 ), 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013Test; Lam, H.-L. ( 2004 ). On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 66 ( 2004 ), 1703 – 1714. https://doi.org/10.1016/j.jastp.2004.08.002Test; Loto’aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R., & Bonnell, J. W. ( 2010 ). Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research, 115 ( A12 ), A12245. https://doi.org/10.1029/2010JA015755Test; Lyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of geomagnetic disturbances and solar wind density on relativistic electrons at geostationary orbit. Journal of Geophysical Research, 113 ( A8 ), A08224. https://doi.org/10.1029/2008JA013048Test; Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. ( 1998 ). Forecasting: Methods and applications ( 3rd ed., p. 652 ). John Wiley and Sons.; Mathie, R. A., & Mann, I. R. ( 2000 ). A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophysical Research Letters, 27 ( 20 ), 3261 – 3264. https://doi.org/10.1029/2000GL003822Test; MATLAB. ( 2021 ). MATLAB version: 9.11.0.1809720 (R2021b) Update 1. The MathWorks Inc.; Neter, J., Wasserman, W., & Kutner, M. ( 1985 ). Applied linear statistical models ( 2 nd ed., p. 112 ). Richard D. Irwin, Inc.; O’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324Test; O’Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., & Singer, H. J. ( 2001 ). Which magnetic storms produce relativistic electrons at geosynchronous orbit? Journal of Geophysical Research, 106 ( A8 ), 15533 – 15544. https://doi.org/10.1029/2001JA000052Test

  10. 10
    دورية أكاديمية