يعرض 1 - 10 نتائج من 213 نتيجة بحث عن '"Red bone marrow"', وقت الاستعلام: 1.34s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    العلاقة: Quantitative and qualitative changes in monocyte sprout and red bone marrow microenvironment cells under long-term administration of tryptorelin with quercetin in the experiment / R. V. Martynenko, V. I. Shepytko, Ye. V. Stetsuk [et al.] // Вісник проблем біології і медицини. – 2023. – Вип. 3 (170) – С. 407–411.; http://repository.pdmu.edu.ua/handle/123456789/21915Test

  6. 6
    دورية أكاديمية

    العلاقة: Quantitative and qualitative changes in red bone marrow monocyte dipherone and microenvironmental cells during long-term triptorelin acetate administration in the experiment / R. V. Martynenko, V. I. Shepitko, L. B. Pelypenko [et al.] // Світ медицини та біології. – 2023. – № 1 (83). – С. 214–218.; http://repository.pdmu.edu.ua/handle/123456789/20459Test

  7. 7
    دورية أكاديمية

    العلاقة: Expression of Ki67 and CD68+ cells of red bone marrow monocyte sprout under triptorelin administration in the hypothalamicpituitary-testis regulatory system: the experimental study / R. V. Martynenko, V. I. Shepitko, Ye. V. Stetsuk [та ін.] // Міжнародний ендокринологічний журнал. – 2023. – Т. 19, № 6. – С. 13–19.; 2224-0721 (print); 2307-1427 (online); http://repository.pdmu.edu.ua/handle/123456789/22132Test; https://doi.org/10.22141/2224-0721.19.6.2023.1308Test

  8. 8
    دورية أكاديمية

    المساهمون: The work was funded within the framework of the federal target program “Ensuring Nuclear and Radiation safety for 2016-2020 and for the period up to 2030” R&D., Финансирование работы осуществлялось в рамках федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2016–2020 годы и на период до 2030 года» НИОКР.

    المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 15, № 4 (2022); 7-14 ; Радиационная гигиена; Том 15, № 4 (2022); 7-14 ; 2409-9082 ; 1998-426X ; 10.21514/1998-426X-2022-15-4

    وصف الملف: application/pdf

    العلاقة: https://www.radhyg.ru/jour/article/view/907/806Test; Krestinina L.Yu., Davis F.G., Schonfeld S., et al. Leukaemia incidence in the Techa River Cohort: 1953–2007 // British Journal of Cancer. 2013. Vol. 109. P. 2886-2893. DOI:10.1038/bjc.2013.614. PubMed PMID: 24129230; PubMed Central PMCID: PMCPMC3844904.; Preston D.L., Sokolnikov M.E., Krestinina L.Y., et al. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies // Radiation Protection Dosimetry. 2017. Vol. 173, No 1-3. P. 26-31. DOI:10.1093/rpd/ncw316. PubMed PMID: 27885076.; ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).; Cristy M., Eckerman K.F. Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. Oak Ridge, TN: Oak Ridge National Laboratory. 1987. ORNL/TM8381. Vol. 1-6.; Han E., Bolch W., Eckerman K. Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema // Health Physics. 2006. Vol. 90. No 4. P. 337-56.; Maynard M.R., Shagina N.B., Tolstykh E.I., et al. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts, part 1: Urals-based series of fetal computational phantoms // Radiation and Environmental Biophysics. 2015. Vol. 54, No 1. P. 37-46. DOI:10.1007/s00411-014-0571-4.; Maynard M.R., Shagina N.B., Tolstykh E.I., et al. Fetal organ dosimetry for the Techa River and Ozyorsk Offspring Cohorts, part 2: radionuclide S values for fetal self-dose and maternal cross-dose // Radiation and Environmental Biophysics. 2015. Vol. 54, No 1. P. 47-59. DOI:10.1007/ s00411-014-0570-5.; Hough M., Johnson P., Rajon D., et al. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources // Physics in Medicine and Biology. 2011. Vol. 56, No 8. P. 2309–46. https://doiTest. org/10.1088/0031-9155/56/8/001 PMID: 21427487.; Bolch W.E., Eckerman K., Endo A., et al. ICRP Publication 143: Paediatric Reference Computational Phantoms // Annals of the ICRP. 2020. Vol. 49, No 1. P. 5–297. https://doiTest. org/10.1177/0146645320915031 PMID: 33000625; Pafundi D., Lee C., Watchman C., et al. An image-based skeletal tissue model for the ICRP reference newborn // Physics in Medicine and Biology. 2009. Vol. 54, No 14. P. 4497–531. https://doi.org/10.1088/0031-9155/54/14/009Test PMID: 19556686.; Shah A.P., Jokisch D.W., Rajon D.A., et al. Chord-based versus voxel-based methods of electron transport in the skeletal tissues // Medical Physics. 2005. Vol. 32, No 10. P. 3151-9. DOI:10.1118/1.2040712. PubMed PMID: 16279069; Abadi E., Segars W.P., Sturgeon G.M., et al. Modeling “Textured” Bones in Virtual Human Phantoms // IEEE Transactions on Radiation and Plasma Medical Sciences. 2019. Vol. 3, No 1. P. 47–53.; Degteva M.O., Tolstykh E.I., Shishkina E.A., et al. Stochastic Parametric Skeletal Dosimetry model for humans: General description // PLoS ONE. 2021. Vol. 16, No 10. https://doiTest. org/10.1371/journal. pone.0257605; Дёгтева М.О., Шишкина Е.А., Толстых Е.И., и др. Методологический подход к разработке дозиметрических моделей скелета человека для бета-излучающих радионуклидов // Радиационная гигиена. 2019. Т. 12, № 2. С. 66- 75. https://doi.org/10.21514/1998-426X-2019-12-2-66-75Test.; Shishkina E.A., Zalyapin V.I., Timofeev Yu.S., et al. Parametric stochastic model of bone structures to be used in computational dosimetric phantoms of human skeleton // Radiation & Applications. 2018. Vol. 3, No 2. P. 133-137.; Shishkina E.A., Timofeev Y.S., Volchkova A.Yu., et al. Trabecula: A Random Generator of Computational Phantoms for Bone Marrow Dosimetry // Health Physics. 2020. Vol. 118, No 1. P. 53-9. DOI:10.1097/hp.0000000000001127. PMID: 31764420.; Шарагин П.А., Толстых Е.И., Шишкина Е.А., и др. Дозиметрическое моделирование кости для остеотропных бета-излучающих радионуклидов: размерные параметры и сегментация. Материалы международной научной конференции «Современные проблемы радиобиологии». Беларусь, Гомель, 23-24 сентября 2021. C. 200-204.; Толстых Е.И., Шарагин П.А., Шарагин П.А., и др. Формирование доз облучения красного костного мозга человека от 89,90Sr, оценка параметров трабекулярной кости для дозиметрического моделирования. Материалы международной научной конференции «Современные проблемы радиобиологии». Беларусь, Гомель, 23-24 сентября 2021. C. 176-179.; Acquaah F., Robson Brown K.A., Ahmed F. Early Trabecular Development in Human Vertebrae: Overproduction, Constructive Regression, and Refinement // Frontiers in Endocrinology. 2015. Vol. 6, No 67. DOI:10.3389/ fendo.2015.00067.; Kneissel M., Roschger P., Steiner W., et al. Cancellous Bone Structure in the Growing and Aging Lumbar Spine in a Historic Nubian Population // Calcified Tissue International. 1997. No 61. P. 95–100.; Ponrartana S., Aggabao P.C., Dharmavaram N.L., et al. Sexual Dimorphism in Newborn Vertebrae and its Potential Implications // The Journal of Pediatrics. 2015. No 167. P. 416–21.; Pafundi D. Image-based skeletal tissue and electron dosimetry models for the ICRP reference pediatric age series Biomedical Engineering. PhD Dissertation. University of Florida, 2009.; ICRP, 2002. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. ICRP Publication 89. Ann. ICRP 32(3-4).; Robinson R.A. Chemical analysis and electron microscopy of bone // Bone as a Tissue. In: Rodahl K., Nicholson J.T., Brown E.M., editor. Bone as a Tissue. New York: McGraw-Hill Book Company, 1960. P. 186-250.; Tissue Properties Database V4.0. URL: https://itis.swiss/virtual-population/tissue-properties/database/elementsTest (Дата обращения: 15.05.2018.); Zalyapin V., Timofeev Yu., Shishkina E. A parametric stochastic model of bone geometry // Bulletin of the South Ural State University Ser Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS). 2018. Vol. 11. P. 44-57. DOI:10.14529/mmp180204.; Volchkova A.Yu., Sharagin P.A., Shishkina E.A. Internal bone marrow dosimetry: the effect of the exposure due to 90Sr incorporated in the adjacent bone segments // Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS). (In press).; Шишкина Е.А., Шарагин П.А., Волчкова А.Ю. Аналитическое описание дозообразования в костном мозге от 90Sr, инкорпорированного в кальцифицированных тканях // Вопросы радиационной безопасности. 2021. № 3. C. 72-82.; https://www.radhyg.ru/jour/article/view/907Test

  9. 9
    دورية أكاديمية

    المؤلفون: Fedzianin S. D.

    المصدر: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 18, Iss 5, Pp 564-568 (2020)

    مصطلحات موضوعية: surgical infection, red bone marrow, chronic wound, Medicine

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية