يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Quintero Arias, Jesús David"', وقت الاستعلام: 1.34s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    رسالة جامعية

    المؤلفون: Quintero Arias, Jesús David

    المساهمون: Dobrosz-Gómez, Izabela, Gómez García, Miguel Ángel, Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma), Quintero Arias, Jesús David https://orcid.org/0009000168190862Test

    وصف الملف: 440 páginas; application/pdf

    العلاقة: Abd-Alredha, L.; Al-Rubaie, R.; Jameel Mhessn, R. (2011). Synthesis and Characterization of Azo Dye Para Red and New Derivatives. Journal of Chemistry, 9(1), 465-470. https://doi.org/10.1155/2012/206076Test; Abdessalem, A. K.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. (2008). Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental, 78(3-4), 334- 341. https://doi.org/10.1016/j.apcatb.2007.09.032Test; Aboulhassan, M.A.; Souabi, S.; Yaacoubi A.; Baudu, M. (2005). Treatment of Textile Wastewater Using a Natural Flocculant. Environmental Technology. 26, 705-711. https://doi.org/10.1080/09593330.2001.9619510Test; Addai-Mensah, J.; Prestidge, C. A. (2005). Structure formation in dispersed systems. In: Stechemesser H and Dobiáš B (eds) Coagulation and Flocculation. USA: Taylor & Francis, 135-216.; Aguas de Manizales S.A. E.S.P-BIC, (2023). Tarifas, https://www.aguasdemanizales.com.co/Aguas-de-Manizales-SA-ESP/Atenci%C3%B3n-y-Servicios-al-Usuario/Informaci%C3%B3n-GeneralTest; Aguilar, M.I.; Saez, J.; Liorens, M.; Soler, A.; Ortuno, J.F. (2002). Nutrient removal and sludge production in the coagulation–flocculation process. Wat. Res. 36, 2910– 2919. https://doi.org/10.1016/s0043-1354Test(01)00508-5; Ahmed, F.; Dewani, R., Pervez, M. K.; Mahboob, S. J.; Soomro, S. A. (2016). Non-destructive FT-IR analysis of mono azo dyes. Bulgarian Chemical Communications, 48(1), 71 – 77.; Al-adilee, K. J.; Hatem, B. A.; Hatem, O. A. (2021). Synthesis and spectral characterization of new azo dye derived from benzimidazole and its complexation with selected transition metal ions. Journal of Physics: Conference Series, 1999 (1), 012123. https://doi.org/10.1088/1742-6596/1999/1/012123Test; Ali, A.; Shaikh, I.; Abid, T.; Samina, F.; Islam, S.; Khalid, A.; Firdous, N.; Javed, M. (2019). Reuse of Textile Wastewater After Treating with Combined Process of Chemical Coagulation and Electrocoagulation. Polish Journal of Environmental Studies, 28(4), 2565-2570. https://doi.org/10.15244/pjoes/91940Test; Al-Qodah, Z.; Tawalbeh, M.; Al-Shannag, M.; Al-Anber, Z.; Bani-Melhem, K. (2020). Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Science of The Total Environment, 744, 140806. https://doi.org/10.1016/j.scitotenv.2020.140806Test; Al-Rubaie, L; Mhessn, R. J. (2012). Synthesis and characterization of azo dye para red and new derivatives. E-Journal of Chemistry, 9(1), 465-470.; Amador-Díaz, A.; Veliz-Lorenzo, E.; Bataller-Venta, M. (2015). Tratamiento de lodos, generalidades y aplicaciones. Revista CENIC. Ciencias Químicas. 46, 1-10.; Amani-Ghadima, A.R.; Aber, S.; Olad, A.; Ashassi-Sorkhabi, H. (2011). Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochim. Acta, 56, 1373–1380. https://doi.org/10.1016/j.electacta.2010.10.089Test; Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Materials, 286, 261–268. https://doi.org/10.1016/j.jhazmat.2014.12.036Test; Amour, A.; Merzouk, B.; Leclerc, J.-P.; Lapicque, F. (2016). Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell. Desalination and Water Treatment, 57(48-49), 22764-22773. https://doi.org/10.1080/19443994.2015.1106094Test; ANDI, BID, CIA-Universidad de Antioquia, CIDI-Universidad Pontificia Bolivariana (Eds.). (1997). Manual de caracterización de aguas residuales industriales (Ideas Graficas Ltda.). ANDI.; Andres, L. A.; Sislen, D.; Marin, P. (2010). Charting a New Course: Structural Reforms in Colombia’s Water Supply and Sanitation Sector. World Bank. https://doi.org/10.1596/27920Test; Anglada, Á.; Urtiaga, A.; Ortiz, I.; Mantzavinos, D.; Diamadopoulos, E. (2011). Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design. Waste Management, 31(8), 1833-1840. https://doi.org/10.1016/j.wasman.2011.03.023Test; Aoudj, S.; Khelifa, A.; Drouiche, N.; Hecini, M.; Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical Engineering and Processing: Process Intensification, 49(11), 1176-1182. https://doi.org/10.1016/j.cep.2010.08.019Test; Aquino, J.; Pereira. G.; Rocha, R.; Bocchi, N.; Biaggio. S. (2016). Combined Coagulation and Electrochemical process to treat and detoxify a real textile effluent. Water. Air. Soil Pollut., 227 (8) 266. https://doi.org/10.1007/s11270-016-2967-zTest; Arboleda Valencia, J. (2000). Teoría y práctica de la purificación del agua. 3ra Ed. Mc-Graw Hill.; Argun, M. E.; Karatas, M. (2011). Application of Fenton process for decolorization of reactive black 5 from synthetic wastewater: Kinetics and thermodynamics. Environmental Progress & Sustainable Energy, 30(4), 540-548. https://doi.org/10.1002/ep.10504Test; Aris, A.; Sharratt, P. N. (2004). Fenton Oxidation of Reactive Black 5: Effect of Mixing Intensity and Reagent Addition Strategy. Environmental Technology, 25(5), 601-612. https://doi.org/10.1080/09593330.2004.9619350Test; Arslan, I.; Balcioğlu, I. A. (1999). Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2), 95-108. https://doi.org/10.1016/S0143-7208Test(99)00048-0; Asgari, G.; Alahabadi, A.; Shomoossi, N.; Yazdani Aval, M.; Shabanloo, A.; Darvishmotevalli, M.; Zolghadr, H.; Salari, M. (2023). Mineralization and biodegradability improvement of textile wastewater using persulfate/dithionite process. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04128-6Test; ASTM D2035-19. (2019). Standard Practice for Coagulation-Flocculation Jar Test of Water: West Conshohocken, PA. United States: ASTM International. https://doi.org/10.1520/D2035-19Test; ATSDR. (11 de 06 de 2019). Toxic Substances Portal - Naphthalene, 1-Methylnapthalene, 2-Methylnapthalene. Obtenido de Agency for Toxic Substances and Disease Registry https://www.atsdr.cdc.gov/phsTest; Aygun, A.; Nas, B.; Sevimli, M. F. (2019). Treatment of reactive dyebath wastewater by electrocoagulation process: Optimization and cost-estimation. Korean Journal of Chemical Engineering, 36(9), 1441-1449. https://doi.org/10.1007/s11814-019-0334-7Test; Babuponnusami, A,; Karuppan, M. (2014). A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. Journal of Environmental Chemical Engineering, 2(1), 557-72. https://doi.org/10.1016/j.jece.2013.10.011Test; Baghel, R.; Upadhyaya, S.; Chaurasia, S. P.; Singh, K.; Kalla, S. (2018). Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. Journal of Cleaner Production, 199, 900-915. https://doi.org/10.1016/j.jclepro.2018.07.214Test; Bakar, A. F. A.; Halim, A. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). AIP Conference Proceedings, 1571, 524-529. https://doi.org/10.1063/1.4858708Test; Balapure, K.; Aghera, P.; Bhatt, N.; Madamwar, D. (2019). Community Synergism: Degradation of Triazine Dye Reactive Black 1 by Mixed Bacterial Cultures KND_PR under Microaerophilic and Aerobic Conditions. Environmental Processes, 6(3), 713-739. https://doi.org/10.1007/s40710-019-00378-7Test; Bali, U.; Karagozoglu, B. (2007). Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133. Dyes and Pigments, 74(1), 73-80. https://doi.org/10.1016/j.dyepig.2006.01.013Test; Balla, W.; Essadki, A. H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M. (2010). Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Journal of Hazardous Materials, 184(1-3), 710-716. https://doi.org/10.1016/j.jhazmat.2010.08.097Test; Baneshi, M. M.; Naraghi, B.; Rahdar, S.; Biglari, H.; Ahamadabadi, M.; Narooie, M. R.; Salimi, A.; Khaksefidi, R.; Alipour, V. (2016). Removal of remazol black b dye from aqueous solution by electrocoagulation equipped with iron and aluminium electrodes. 7, 8.; Bannoud, A. H.; Persin, F.; Rumeau, M. (1993). A study of the perfection of an electrochemical reactor for softening water. Wat. Res., 27, 1385 – 1391. https://doi.org/10.1016/0043-1354Test(93)90226-8; Bard, A. J.; Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed). Wiley.; Barrenechea Martel, A.; Cánepa de Vargas, L.; Maldonado Yactayo, V.; Zumaeta, M. A. (2004). Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I (Vol. 1). Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente.; Barrera-Díaz, C.; Cañizares, P.; Fernández, F. J.; Natividad, R.; Rodrigo, M. A. (2017). Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents. Journal of the Mexican Chemical Society, 58(3). https://doi.org/10.29356/jmcs.v58i3.133Test; Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero, M. (2003). A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater, Radiat. Phys. Chem., 67, 657–663. https://doi.org/10.1016/S0969-806XTest(02)00497-8; Bartošová, A.; Blinová, L.; Sirotiak, M.; Michalíková, A. (2017). Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 103-111. https://doi.org/10.1515/rput-2017-0012Test; Bassyouni, D. G.; Hamad, H. A.; El-Ashtoukhy, E.-S. Z.; Amin, N. K.; El-Latif, M. M. A. (2017). Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium. Journal of Hazardous Materials, 335, 176.2-187. https://doi.org/10.1016/j.jhazmat.2017.04.045Test; Basturk, E.; Karatas, M. (2014). Advanced oxidation of Reactive Blue 181 solution: A comparison between Fenton and Sono-Fenton Process. Ultrasonics Sonochemistry, 21(5), 1881-1885. https://doi.org/10.1016/j.ultsonch.2014.03.026Test; Bautista, P.; Mohedano, A. F.; Casas, J. A.; Zazo, J. A.; Rodríguez, J. J. (2008). An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment. Journal of Chemical Technology & Biotechnology, 83(10):1323-38. https://doi.org/10.1002/jctb.1988Test; Bayar, S.; Erdogan, M. (2019). Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: Kinetic studies. Applied Ecology and Environmental Research, 17(2), 1516.2-1529. https://doi.org/10.15666/aeer/1702_15171529Test; Bayramoglu, M.; Eyvaz, M.; Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation. Chemical Engineering Journal, 128(2-3), 155-161. https://doi.org/10.1016/j.cej.2006.10.008Test; Bayramoglu, M.; Kobya, M.; Can, O. T.; Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117-125. https://doi.org/10.1016/j.seppur.2003.09.002Test; Bazrafshan, E.; Mahvi, A. H.; Zazouli, M. ali. (2014). Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes. Iranian Journal of Health Sciences, 2(1), 16-29. https://doi.org/10.18869/acadpub.jhs.2.1.16Test; Behnajady, M. A.; Modirshahla, N.; Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003Test; Bell-Ajy, K.; Abbaszadegan, M.; Ibrahim, E.; Verges, D.; Le Chevallier, M. (2000). Conventional and Optimized Coagulation for NOM Removal. Journal of the American Water Works Association, 92 (10), 44–58. https://doi.org/10.1002/j.1551-8833.2000.tb09023.xTest; Bello, M. M.; Abdul Raman, A. A.; Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119-140. https://doi.org/10.1016/j.psep.2019.03.028Test; Belouafa, S.; Habti, F.; Benhar, S.; Belafkih, B.; Tayane, S.; Hamdouch, S.; Bennamara, A.; Abourriche, A. (2017). Statistical tools and approaches to validate analytical methods: Methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. https://doi.org/10.1051/ijmqe/2016030Test; Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010Test; Benhadji, A.; Ahmed, M. T.; Maachi, R. (2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination. 277, 128 – 134. https://doi:10.1016/j.desal.2011.04.014Test; Benitez, F.J.; Acero, J.L.; Real, F.J.; Rubio, F.J.; Leal, A.I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res., 35, 1338–1343. https://doi.org/10.1016/S0043-1354Test(00)00364-X; Bernal, E. (2014). Limit of Detection and Limit of Quantification Determination in Gas Chromatography. En X. Guo (Ed.), Advances in Gas Chromatography. InTech. https://doi.org/10.5772/57341Test; Bes-Piá, A.; Mendoza-Roca, J. A.; Alcaina-Miranda, M. I.; Iborra-Clar, A.; Iborra-Clar, M. I. (2002). Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination, 149(1-3), 169-174. https://doi.org/10.1016/S0011-9164Test(02)00750-6; Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019Test; Bhatnagar, R.; Joshi, H.; Mall, I. D.; Srivastava, V. C. (2014). Electrochemical treatment of acrylic dye-bearing textile wastewater: Optimization of operating parameters. Desalination and Water Treatment, 52(1-3), 111-122. https://doi.org/10.1080/19443994.2013.786653Test; Bidhendi, G. R.; Torabian, A.; Ehsani, H.; Razmkhah. (2007). Evaluation of Industrial Dyeing Wastewatre Treatment with Coagulants and Polyelectrolyte as a Coagulant Aid. Iran J. Environ. Health. Sci. Eng. 4, 1, 29 -36.; Bigda, R. J. (1995). Consider Fenton’s Chemistry for Wastewater Treatment. Chemical Engineering Progress, 5.; Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992-1001. https://doi.org/10.1016/j.cej.2018.10.093Test; Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. (2009). Transport Phenomena (2nd ed). Wiley.; Blanco, J.; Torrades, F.; De la Varga, M.; García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394–399., https://doi.org/10.1016/j.desal.2011.11.055Test; Blanco, J.; Torrades, F.; Moron, M.; Marolda, B.-A.; Garcia, J. (2014). Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes. Chem. Eng. J., 469-475. https://doi.org/10.1016/j.cej.2013.10.101Test; Borchate, S. S; Kulkarni, G. S; Kore, V. S. (2014). A Review on Applications of Coagulation- Flocculation and Ballast Flocculation for Water and Wastewater. International Journal of Innovations in Engineering and Technology, 4(4), 216 - 223.; Bratby, J. (2016). Coagulation and Flocculation in Water and Wastewater Treatment. Water Intelligence Online, 15(0), (2nd edition). IWA Publishing., https://doi.org/10.2166/9781780407500Test; Brillas, E. (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere, 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198Test; Brillas, E.; Martinez-Huitle, C.A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016Test; Brüschweiler, B. J.; Küng, S.; Bürgi, D.; Muralt, L.; Nyfeler, E. (2014). Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Regulatory Toxicology and Pharmacology, 69(2), 263-272. https://doi.org/10.1016/j.yrtph.2014.04.011Test; Butler, E.; Hung, Y.-T.; Yeh, R. Y.-L.; Suleiman Al Ahmad, M. (2011). Electrocoagulation in Wastewater Treatment. Water, 3(2), 495-525. https://doi.org/10.3390/w3020495Test; Butnaru, R.; Savin, I.-I. (2008). Wastewater characteristics in textile finishing mills. Environmental Engineering and Management Journal, 7(6), 859-864. https://doi.org/10.30638/eemj.2008.113Test; Cabot, F. A. (2012). El Camino Invisible de un Bien Preciado. Infografía.; Çalik, Ç.; Çifçi D. İ. (2022) Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater. Journal of Environmental Management. 304, 114234. https://doi.org/10.1016/j.jenvman.2021.114234Test; Can, O. T.; Bayramoğlu, M.; Kobya, M. (2003). Decolorization of Reactive Dye Solutions by Electrocoagulation Using Aluminum Electrodes. Industrial Engineering Chemistry Research, 42(14), 3391-3396. https://doi.org/10.1021/ie020951gTest; Cañizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; Rodrigo, M. A. (2006). Coagulation and Electrocoagulation of Wastes Polluted with Dyes. Environmental Science Technology, 40(20), 6418-6424. https://doi.org/10.1021/es0608390Test; Cárdenas Torrado, G.; Molina Pérez, F. J. (2022). Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería, Vol. 27 No. 3 https://doi.org/10.14483/23448393.17945Test; Carmona, I. (2013). De colorantes sintéticos a naturales en la industria alimentaria. Argentina.: Agrimundo.; Carolina Investigations® for AP® Biology (2014). Carolina Investigations® for AP® Biology: Transformation Kit: Teacher's Manual and Students Guide. https://www.carolina.com/teacher-resources/Document/ap-biology-transformation-kit-manual/tr37235.trTest; Carvalho, J. R. S.; Amaral, F. M.; Florencio, L.; Kato, M. T.; Delforno, T. P.; Gavazza, S. (2020). Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22. Chemosphere, 242, 125157. https://doi.org/10.1016/j.chemosphere.2019.125157Test; Çatıkkaş, B. (2017). Raman and FT-IR spectra, DFT and SQMFF calculations for N, N-dimethylaniline. Periodicals of Engineering and Natural Sciences, 5(2).; Cavazzuti, M. (2013). Optimization methods: From theory to design: scientific and technological aspects in mechanics. Springer.; Centro del Agua. (15 de 09 de 2017). Los Recursos Hídricos en América Latina. Recuperado el 22 de 08 de 2017, de Centro del Agua.: http://www.centrodelagua.orgTest; Cepillo, D.-I. S. (2011). Diseño Óptimo de Laminados en Materiales Compuestos. Aplicación del MEF y el Método de las Superficies de Respuesta. Universidad de Sevilla.; Cestarolli, D. T.; das Graças de Oliveira, A.; Guerra, E. M. (2019). Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Applied Water Science, 9(4). https://doi.org/10.1007/s13201-019-0985-xTest; Chafi, M.; Gourich, B.; Essadki, A. H.; Vial, C.; Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285-292. https://doi.org/10.1016/j.desal.2011.08.004Test; Chan, K. H.; Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51(4), 305-311. https://doi.org/10.1016/S0045-6535Test(02)00812-3; Chandana, L.; Lakshminarayana, B.; Subrahmanyam, C. (2015). Influence of hydrogen peroxide on the simultaneous removal of Cr(VI) and methylene blue from aqueous medium under atmospheric pressure plasma jet. Journal of Environmental Chemical Engineering, 3(4): 2760–2767. https://doi.org/10.1016/j.jece.2015.09.030Test; Chang, E. E.; Hsing, H.-J.; Ko, C. S.; Chiang, P. C. (2007). Decolorization, mineralization, and toxicity reduction of acid orange 6 by iron-sacrificed plates in the electrocoagulation process. Journal of Chemical Technology & Biotechnology, 82(5), 486.2-495. https://doi.org/10.1002/jctb.1696Test; Chang, S. H.; Chuang, S. H.; Li, H. C.; Liang, H. H.; Huang, L. C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2-3), 1279-1288. https://doi.org/10.1016/j.jhazmat.2008.12.042Test; Chantes, P.; Jarusutthirak, C.; Kanchanapiya, P.; Danwittayakul, S. (2015). Treatment of Textile Dyeing Wastewater by Electrocoagulation. Key Engineering Materials, 659, 284-288. https://doi.org/10.4028/www.scientific.net/KEM.659.284Test; Chen, J.; Tyagi, R.D.; Li, J.; Zhang, X.; Drogui, P.; Sun, F. (2018). Economic assessment of biodiesel production from wastewater sludge. Biores. Technol., 253, 41–48. https://doi.org/10.1016/j.biortech.2018.01.016Test; Chi, G. T.; Nagy, Z. K.; Huddersman, K. D. (2011). Kinetic Modelling of the Fenton-Like Oxidation of Maleic Acid Using a Heterogeneous Modified Polyacrylonitrile (Pan) Catalyst. Progress in Reaction Kinetics and Mechanism, 36(3), 189-214. https://doi.org/10.3184/146867811X13021847366179Test; Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261. https://doi.org/10.1080/10590501.2016.1236602Test; Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.) pp. 10815–10837. John Wiley & Sons; Collivignarelli, M. C.; Abbà, A.; Miino, M. C.; Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727 – 745, https://doi.org/10.1016/j.jenvman.2018.11.094Test; Colorants. (18 de Marzo de 2013). Recuperado el 28 de 08 de 2017, The Essential Chemical Industry.: http://www.essentialchemicalindustry.orgTest; CONPES. (2002). Acciones prioritarias y lineamientos para la formulación del plan nacional de manejo de aguas residuales (3177; p. 27). Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3177.pdfTest; Contreras, C. A.; Sugita, S.; Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. Advances in Technology of Materials and Materials Processing Journal, 8 (2), 122.; Cooper, P. (Ed.). (1995). Colour in dyehouse effluent. Society of Dyers and Colourists.; CORPOCALDAS. (2014). Por medio de la cual se ajustan los objetivos de calidad del recurso hidrico en la subcuenca del rfo Chinchina, y se definen para la microcuenca de la quebrada Manizales jurisdicción de la Corporación Autónoma Regiaonal de Caldas, CORPOCALDAS (Resolución 496; p. 6).; Crittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J.; Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118131473Test; CTA, GSI-LAC, COSUDE, IDEAM. (2015). Evaluación Multisectorial de la Huella Hídrica en Colombia. Resultados por subzonas hidrográficas en el marco del Estudio Nacional del Agua 2014. Medellín.; Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40 (3), 586-593. https://doi.org/10.1021/ac60259a007Test; Currie, L. A. (1985). The limitations of models and measurements as revealed through chemometric intercomparison. Journal of Research of the National Bureau of Standards, 90 (6), 409. https://doi.org/10.6028/jres.090.033Test; Currie, L. A. (1999). Detection and quantification limits: Origins and historical overview. Analytica Chimica Acta, 8.; Dalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N. M. (2011). Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process: Electrocoagulation of Textile Wastewater. CLEAN - Soil, Air, Water, 39(7), 665-672. https://doi.org/10.1002/clen.201000233Test; DANE. (23 de 6 de 2020). DANE. Recuperado el 22 de 08 de 2017, de Departamento Administrativo Nacional de Estadística.: www.dane.gov.co; Daneshvar, N.; Khataee, A. R.; Amani Ghadim, A. R.; Rasoulifard, M. H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566-572. https://doi.org/10.1016/j.jhazmat.2007.03.028Test; Danzer, K.; Currie, L. A. (1998). Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70(4), 993-1014. https://doi.org/10.1351/pac199870040993Test; Deghles, A. (2019). Treatment of Tannery Wastewater by the Application of Electrocoagulation Process Using Iron and Aluminum Electrodes. Green and Sustainable Chemistry. 9, 119-134. https://doi.org/10.4236/gsc.2019.94009Test; Demirci, Y.; Pekel, L. C.; Alpbaz, M. (2015). Investigation of Different Electrode Connections in Electrocoagulation of Textile Wastewater Treatment. Int. J. Electrochem. Sci.; 10, 9.; Dempsey, B. A. (2006). Chapter 2 - Coagulant characteristics and reactions. En: Interface Science and Technology, Gayle Newcombe, David Dixon Editor(s). Elsevier, https://doi.org/10.1016/S1573-4285Test(06)80071-2; Deng, Y.; Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009Test; Dentel, S. K. (1991). Coagulant control in water treatment. Critical Reviews in Environmental Control, 21(1), 41-135. https://doi.org/10.1080/10643389109388409Test; Dermentzis, K.; Valsamidou, E.; Chatzichristou, C.; Mitkidou, S. (2013). Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods. Journal of Engineering Science and Technology Review, 6(1), 33-37. https://doi.org/10.25103/jestr.061.07Test; Devi, O. Z.; Basavaiah, K.; Vinay, K. B. (2012). Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals. Journal of Applied Spectroscopy, 78(6), 873-883. https://doi.org/10.1007/s10812-012-9547-9Test; DIAN. (2021). Dirección de Impuestos y Aduanas Nacionales [Consultas Arancel]. Dirección de Impuestos y Aduanas Nacionales. https://www.dian.gov.coTest/; Dilaver, M.; Hocaoğlu, S. M.; Soydemir, G.; Dursun, M.; Keskinler, B.; Koyuncu, I.; Ağtaş, M. (2018). Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry. Journal of Cleaner Production, 171, 220 – 233. https://doi.org/10.1016/j.jclepro.2017.10.015Test; Do, S. H.; Batchelor, B.; Lee, H. K.; Kong, S. H. (2009). Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. https://doi.org/10.1016/j.chemosphere.2008.11.075Test; Dobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2021). Integration of environmental and economic performance of Electro-Coagulation-Anodic Oxidation sequential process for the treatment of soluble coffee industrial effluent. The Science of The Total Environment, 837: 155880. https://doi.org/10.1016/j.scitotenv.2022.155880Test; Dobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2022). Treatment of soluble coffee industrial effluent by electro coagulation–electro oxidation process: multiobjective optimization and kinetic study. International journal of Environmental Science and Technology, 19(7). https://doi.org/10.1007/s13762-022-04050-wTest; Domènech, X.; Jardim, W.; Litter, M. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. Colección Documentos, 29.; Donadelli, J. A.; Carlos, L.; Arques, A.; García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of Rahman azo dyes decolorization by ZVI-assisted Fenton systems: PH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51-61. https://doi.org/10.1016/j.apcatb.2018.02.057Test; Drumond Chequer, F. M.; de Oliveira, G. A. R.; Anastacio Ferraz, E. R.; Carvalho, J.; Boldrin Zanoni, M. V.; de Oliveir, D. P. (2013). Textile Dyes: Dyeing Process and Environmental Impact. En M. Gunay (Ed.), Eco-Friendly Textile Dyeing and Finishing. InTech. https://doi.org/10.5772/53659Test; Du, Y.; Zhou, M.; Lei, L. (2006) Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, B136, 859 – 865. https://doi.org/10.1016/j.jhazmat.2006.01.022Test; Du, Y.; Zhou, M.; Lei, L. (2007). Kinetic model of 4-CP degradation by Fenton/O2 system. Water Research, 41(5), 1121-1133. https://doi.org/10.1016/j.watres.2006.11.038Test; Dulov, A.; Dulova, N.; Trapido, M. (2011). Combined Physicochemical Treatment of Textile and Mixed Industrial Wastewater. Ozone: Science & Engineering. 33(4):285-93. https://doi:10.1080/01919512.2011.583136Test; Duque-Escobar, G. (2017). El Paisaje Cultural Cafetero. Manizales: Universidad Nacional de Colombia sede Manizales.; Echeverri, M. J. (2017). Manizales’ Water Distribution System – Aguas de Manizales S.A. E.S.P. Procedia Engineering, 186, 36-43. https://doi.org/10.1016/j.proeng.2017.03.205Test; EcoSiglos. (2017). Recuperado el 22 de 08 de 2017, de Infografía: La Huella del Agua.: http://waterfootprint.orgTest; Edwards, F. G.; Fendley, D. L.; Lunsford, J. V. (2006). Electrolytic Treatment of an Industrial Wastewater from a Hosiery Plant. Water Environment Research, 78(4), 435-441. https://doi.org/10.2175/106143006X98831Test; El Colombiano. (10 de 6 de 2016). Obtenido de Identifican a otra empresa de textiles que está tiñendo el río Medellín: http://www.elcolombiano.com/medio-ambiente/identifican-a-otra-empresa-de-textiles-que-esta-tinendo-el-rio-medellin-IE4363659Test; El Colombiano. (3 de 6 de 2016). Obtenido de Así cazan a las empresas que tiñen de colores el río Medellín: http://www.elcolombiano.com/antioquia/asi-son-los-operativos-contra-los-que-contaminan-el-rio-medellin-CM4284455Test; El-Gohary, F.; Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010Test; El-Hosiny, F. I.; Abdel-Khalek, M. A.; Selim, K. A.; Osama, I. (2018). Physicochemical study of dye removal using electro-coagulation-flotation process. Physicochemical Problems of Mineral Processing; ISSN 2084-4735. https://doi.org/10.5277/ppmp1825Test; Eliyas, A.; Ljutzkanov, L.; Stambolova, I.; Blaskov, V.; Vassilev, S.; Razkazova-Velkova, E.; Mehandjiev, D. (2013). Visible light photocatalytic activity of TiO2 deposited on activated carbon. Open Chemistry, 11(3). https://doi.org/10.2478/s11532-012-0183-2Test; El-Khorassani, H., Trebuchon, P., Bitar, H., Thomas, O. A. (1999). Simple UV spectrophotometric procedure for the survey of industrial sewage system. Water Sc. Technol., 39 (10–11), 77–82. https://doi.org/10.2166/wst.1999.0633Test; Ellouzea, E.; Ellouzea, D.; Jradb, A.; Ben Amara, R. (2011). Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes. Desalination and Water Treatment. 33, 118–124. https://doi.org/10.5004/dwt.2011.2612Test; Emamjomeh, M.; Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663-1679. https://doi.org/10.1016/j.jenvman.2008.12.011Test; EMAS (2021). Empresa Metropolitana de Aseo S.A E.S.P. Cotización realizada en junio de 2021.; EPA. (1997). Profile of the textile industry. Washington.: Environmental Protection Agency.; Erdem, E., Sari, E. Y., Kilinçarslan, R., Kabay, N. (2009). Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes. Transition Metal Chemistry, 34(2), 167-174. https://doi.org/10.1007/s11243-008-9173-9Test; Ertugay, N.; Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163. https://doi.org/10.1016/j.arabjc.2013.02.009Test; EWA. (2005). Efficient use of water in the textile finishing industry. Brussels: Official Publication of the European Water Association (EWA).; Eyvaz, M.; Kirlaroglu, M.; Aktas, T. S.; Yuksel, E. (2009). The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chemical Engineering Journal, 153(1-3), 16-22. https://doi.org/10.1016/j.cej.2009.05.028Test; Fajardo, A. S.; Martins, R. C.; Silva, D. R.; Martínez-Huitle, C. A.; Quinta-Ferreira, R. M. (2017). Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 801, 30-37. https://doi.org/10.1016/j.jelechem.2017.07.015Test; FAO. (15 de 09 de 2017). Food and Agriculture Organizacion of the United Nations. Recuperado el 22 de 08 de 2017, de World Water Resources by Country.: http://www.fao.orgTest; Faust, S.D.; Aly, O.M. (1998). Chemistry of Water Treatment, 2nd edition. Taylor & Francis.; Favero, B. M.; Favero, A. C.; Taffarel, S. R.; Souza, F. S. (2018). Evaluation of the efficiency of coagulation/flocculation and Fenton process in reduction of colour, turbidity and COD of a textile effluent. Environmental Technology, 1-10. https://doi.org/10.1080/09593330.2018.1542035Test; Ferrari-Lima, A. M.; Ueda, A. C.; Bergamo, E. A.; Marques, R. G.; Ferri, E. A. V.; Pinto, C. S.; Pereira, C. A. A.; Yassue-Cordeiro, P. H.; Souza, R. P. (2017). Perovskite-type titanate zirconate as photocatalyst for textile wastewater treatment. Environmental Science and Pollution Research, 24(14), 12529-12537. https://doi.org/10.1007/s11356-016-7590-4Test; Fogler, H. S. (2020). Elements of chemical reaction engineering (Sixth edition). Pearson.; Forero, J.-E.; Ortiz, O.-P. (2005). Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería. 3, 14.; Freitas, T. K. F. S.; Almeida, C. A.; Manholer, D. D.; Geraldino, H. C. L.; de Souza, M. T. F.; Garcia, J. C. (2018). Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. En S. S. Muthu (Ed.), Detox Fashion (pp. 27-79). Springer Singapore. https://doi.org/10.1007/978-981-10-4780-0_2Test; Freitas, T. K. F. S.; Oliveira, V. M.; de Souza, M. T. F.; Geraldino, H. C. L.; Almeida, V. C., Fávaro, S. L.; Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538-544. https://doi.org/10.1016/j.indcrop.2015.06.027Test; Georgiou, D.; Aivazidis, A.; Hatiras, J.; Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354Test(02)00481-5; Ghafari, S.; Aziz, H. A.; Isa, M. H.; Zinatizadeh, A. A. (2009). Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2-3), 650-656. https://doi.org/10.1016/j.jhazmat.2008.07.090Test; Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. V. (2013). Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology, 05 (01). https://doi.org/10.4172/2157-7048.1000182Test; Ghanbari, F.; Moradi, M.; Eslami, A.; Emamjomeh, M. M. (2014). Electrocoagulation/Flotation of Textile Wastewater with Simultaneous Application of Aluminum and Iron as Anode. Environmental Processes, 1(4), 447-457. https://doi.org/10.1007/s40710-014-0029-3Test; Ghernaout, D.; Elboughdiri, N.; Ghareba, S. (2020). Fenton Technology for Wastewater Treatment: Dares and Trends, Open Access Library Journal, 7, 1-26. https://doi:10.4236/oalib.1106045Test; Ghernaout, D.; Ghernaout, B.; Kellil, A. (2009). Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalin. Water Treat., 2, 203–222. https://doi:10.5004/dwt.2009.116Test; Ghodake, G.; Jadhav, U.; Tamboli, D.; Kagalkar, A.; Govindwar, S. (2011). Decolorization of Textile Dyes and Degradation of Mono-Azo Dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol., 51(4), 501–508. http://doi:10.1007/s12088-011-0131-4Test; Ghosh, P.; Samanta, A. N.; Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton’s oxidation. The Canadian Journal of Chemical Engineering, 88(6), 1021-1026. https://doi.org/10.1002/cjce.20353Test; GilPavas, E. (2020). Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil. Tesis de doctorado. Departamento de Ingeniería Química, Universidad Nacional de Colombia – Sede Manizales. https://repositorio.unal.edu.co/handle/unal/78505Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2011). The removal of the trivalent chromium from the leather tannery wastewater: The optimisation of the electro-coagulation process parameters. Water Science and Technology, 63(3), 385-394. https://doi.org/10.2166/wst.2011.232Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2012). Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: The Response Surface Methodology as the optimization tool. Water Science and Technology, 65(10), 1795-1800. https://doi.org/10.2166/wst.2012.078Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2017). Coagulation-Flocculation Sequential with Fenton or Photo-Fenton Processes as an Alternative for the Industrial Textile Wastewater Treatment. Journal of Environmental Management. 191:189-97. https://doi:10.1016/j.jenvman.2017.01.015Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater. Journal of Water Process Engineering, 24, 49-55 https://doi.org/10.1016/j.jwpe.2018.05.007Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125Test; GilPavas, E.; Molina-Tirado, K.; Gómez-García, M. Á. (2009). Treatment of automotive industry oily wastewater by electrocoagulation: Statistical optimization of the operational parameters. Water Science and Technology, 60(10), 2581-2588. https://doi.org/10.2166/wst.2009.519Test; Glaze, W. H.; Kang, J.-W.; Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering: The Journal of the International Ozone Association, 9(4), 335-352. https://doi.org/10.1080/01919518708552148Test; Glugoski, L. P.; de Jesus Cubas, P.; Fujiwara, S. T. (2017). Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3+. Environmental Science and Pollution Research, 24(7), 6143-6150. https://doi.org/10.1007/s11356-016-6820-0Test; Gogate, P.R.; Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 8 (3–4), 501–551. https://doi.org/10.1016/S1093-0191Test(03)00032-7; Gohil, C.; Makwana, A. R. (2019). Navy Blue 3G Dye Electrocoagulation using Stainless Steel Electrode in Presence and Absence of Granular Activated Carbon Particle Electrode. International Journal of Engineering and Advanced Technology, 8(6), 741-745. https://doi.org/10.35940/ijeat.F9218.088619Test; Gökkuş, Ö.; Yıldız, Y. Ş. (2014). Investigation of the effect of process parameters on the coagulation flocculation. Fresenius Environmental Bulletin, 23(2), 463-470.; Golob, V.; Vinder, A.; Simonic, M. (2005). Efficiency of coagulation/flocculation method for treatment of dye bath effluents. Dyes and Pigments, 67, 93-97. https://doi.org/10.1016/j.dyepig.2004.11.003Test; Gómez, C. A.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2023) Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. The Scientific World Journal. https://doi.org/10.1155/1969/4724606Test; Gonçalves, M. V. B.; Oliveira, S. C. D.; Abreu, B. M. P. N.; Guerra, E. M.; Cestarolli, D. T. (2016). Electrocoagulation/electroflotation Process Applied to Decolourization of a Solution Containing the Dye Yellow Sirius K-CF. International Journal of Electrochemical Science, 7576-7583. https://doi.org/10.20964/2016.09.42Test; Govindan, K.; Oren, Y.; Noel, M. (2014). Effect of dye molecules and electrode material on the settling behavior of flocs in an electrocoagulation induced settling tank reactor (EISTR). Separation and Purification Technology, 133, 396-406. https://doi.org/10.1016/j.seppur.2014.04.046Test; Grenda, K.; Arnold, J.; Hunkeler, D.; Gamelas, J. A. F.; Rasteiro, M. G. (2018). Tannin-based Coagulants from Laboratory to Pilot Plant Scales for Coloured Wastewater Treatment. BioResources, 13(2). https://doi.org/10.15376/biores.13.2.2727-2747Test; Gunawan, D.; Kuswadi, V. B.; Sapei, L.; Riadi, L. (2017). Yarn dyed wastewater treatment using hybrid electrocoagulation-Fenton method in a continuous system: Technical and economical viewpoint. Environmental Engineering Research, 23(1), 114-119. https://doi.org/10.4491/eer.2017.108Test; Gündüz, Z.; Atabey, M. (2019). Effects of Operational Parameters on the Decolourisation of Reactive Red 195 Dye from Aqueous Solutions by Electrochemical Treatmen. International Journal of Electrochemical Science, 5868-5885. https://doi.org/10.20964/2019.06.37Test; Guo, Y.; Xue, Q.; Zhang, H.; Wang, N.; Chang, S.; Fang, Y.; Wang, H.; Yuan, F.; Pang, H.; Chen, H. (2018). Highly efficient treatment of real benzene dye intermediate wastewater by simple limestone and lime neutralization-coagulation with improved Fenton oxidation. Environmental Science and Pollution Research, 25(31), 31125-31135. https://doi.org/10.1007/s11356-018-3101-0Test; Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M. S. (2016). Dyes and Pigments: Their Structure and Properties. En A. Gürses, M. Açıkyıldız, K. Güneş, M. S. Gürses, Dyes and Pigments (pp. 13-29). Springer International Publishing. https://doi.org/10.1007/978-3-319-33892-7_2Test; Gutiérrez Pulido, H.; Vara Salazar, R.; Cano Carrasco, A.; Osorio Sánchez, M. (2008). Análisis y diseño de experimentos (2.a Ed., Vol. 1). Mc Graw-Hill.; Hakizimana, J. N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. https://doi.org/10.1016/j.desal.2016.10.011Test; Hall, P.; Selinger, B. (1989). A statistical justification to relating interlaboratory coefficients of variation with concentration levels. Analytical Chemistry, 61(13), 1465-1466. https://doi.org/10.1021/ac00188a033Test; Hao, O. J.; Kim, H.; Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology., Vol. 30, pp 449-505.; Harris, D. C. (2010). Quantitative chemical analysis (8th ed). W.H. Freeman and Co.; Hassan, H.; Wan, Z. (2012). Fenton-like oxidation of Reactive Black 5 solutions using acid-activated Kuala Kangsar clay. 2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC), 6-11. https://doi.org/10.1109/BEIAC.2012.6226108Test; Hayati, F.; Khodabakhshi, M. R.; Isari, A. A.; Moradi, S.; Kakavandi, B. (2020). LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: Optimization, performance and reaction mechanism studies, Journal of Water Process Engineering, 38: 101693. https://doi.org/10.1016/j.jwpe.2020.101693Test; He, Y. Q. (2011). Experiment on Treating the Dying Wastewater with Blast-Furnace Ash and Fenton Reagent. Advanced Materials Research, 295-297:1120-23. https://doi:10.4028/www.scientific.net/AMR.295-297.1120Test; He, Z.; Huang, C.; Wang, Q.; Jiang, Z.; Chen, J.; Song, S. (2011). Preparation of a Praseodymium Modified Ti/SnO2-Sb/PbO2 Electrode and its Application in the Anodic Degradation of the Azo Dye Acid Black 194. Int. J. Electrochem. Sci., 6, 14. https://doi.org/10.1016/S1452-3981Test(23)18332-5; Helmes, C. T.; Sigman, C. C.; Fung, V. A.; Thompson, K.; Doeltz, M. K.; Mackie, M.; Klein, T. E.; Lent, D. (1984). A study of azo and nitro dyes for the selection of candidates for carcinogen bioassay. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 19(2), 97-231. https://doi.org/10.1080/10934528409375152Test; Herbst, W.; Hunger, K.; Wilker, G. (2004). Industrial organic pigments: Production, properties, applications (3rd, completely rev. ed.). Wiley-VCH.; Hill, C. G.; Root, T. W. (2014). An introduction to chemical engineering kinetics and reactor design (Second edition). John Wiley & Sons, Inc.; Holt, P. K.; Barton, G. W.; Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355-367. https://doi.org/10.1016/j.chemosphere.2004.10.023Test; Hooshmandfar, A.; Ayati, B.; Khodadadi Darban, A. (2016). Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation. Water Science and Technology, 73(1), 192-202. https://doi.org/10.2166/wst.2015.477Test; Horning, R. H. (1977). Characterization and Treatment Of Textile Dyeing Wastewaters. Textile Chemist & Colorist, 9, 4.; Horning, R. H. (1978). Textile dyeing wastewaters: Characterization and treatment. Environmental Protection Agency, Office of Research and Development; for sale by the National Technical Information Service. https://catalog.hathitrust.org/Record/100966545Test; Horwitz, W. (1982). Evaluation of analytical methods used for regulation of foods and drugs. Analytical Chemistry, 54(1), 67-76. https://doi.org/10.1021/ac00238a002Test; Horwitz, W.; Albert, R. (2006). The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision. Journal of AOAC International, 89(4), 1095-1109. https://doi.org/10.1093/jaoac/89.4.1095Test; Horwitz, W.; Kamps, L. V. R.; Boyer, K. W. (1980). Quality Assurance in the Analysis of Foods for Trace Constituents. Journal of AOAC International, 63(6), 1344-1354. https://doi.org/10.1093/jaoac/63.6.1344Test; Hsueh, C.-L.; Huang, Y.-H.; Wang, C.-C.; Chen, C.-Y. (2006). Photoassisted Fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A: Chemical, 245(1-2), 78-86. https://doi.org/10.1016/j.molcata.2005.09.044Test; Hu, H.; Xu, K. (2020). Physicochemical technologies for HRPs and risk control. En High-Risk Pollutants in Wastewater (pp. 169-207). Elsevier. https://doi.org/10.1016/B976.2-0-12-816446.2-8.00006.2-3Test; Huang, L. Z.; Zhu, M.; Liu, Z.; Wang, Z.; Hansen, H. C. B. (2019). Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials, 364, 39-47. https://doi.org/10.1016/j.jhazmat.2018.10.026Test; Huang, Y.-H.; Huang, Y.-F.; Chang, P.-S.; Chen, C.-Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of Hazardous Materials, 154(1-3), 655-662. https://doi.org/10.1016/j.jhazmat.2007.10.077Test; Huang, Y. F.; Shih, C. H.; Chiueh, P. T.; Lo, S. L. (2015). Microwave co-pyrolysis of sewage sludge and rice straw. Energy. 87, 638–644. https://doi.org/10.1016/j.energy.2015.05.039Test; Huber, L. (2010). Validation of Analytical Methods. Agilent Technologies.; Hussain, I.; Hussain, J.; Arif, M. (2013). Environmental impact of dyeing and printing industry of Sanganer, Rajasthan (India). Turkish Journal Of Engineering And Environmental Sciences, 37, 272-285. https://doi.org/10.3906/muh-1310-8Test; Hussain, J.; Hussain, I.; Arif, M. (2004). Characterization of Textile Wastewater. Journal of Industrial Pollution Control., 20, 137-144.; Ibarra, H.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimización Multiobjetivo del Proceso Fenton en el Tratamiento de Aguas Residuales provenientes de la Producción de Café Soluble. Información tecnológica, 29(5):111-122. https://doi.org/10.4067/S0718-07642018000500111Test; Ibarra, H.; GilPavas, E., Blatchley, E.R.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2017). Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 200: 530-538, https://doi.org/10.1016/j.jenvman.2017.05.095Test; Ibrahim, G. P. S.; Isloor, A. M.; Inamuddin, A. M.; Ismail, N.; Ismail, A. F.; Ashraf, G. M. (2017). Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16131-9Test; ICONTEC. (1995). Calidad Del Agua. Muestreo. Parte 2. Técnicas Generales De Muestreo (p. 17). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; ICONTEC. (2004). Calidad Del Agua. Muestreo. Parte 3: Directrices Para La Preservación Y Manejo De Las Muestras (p. 57). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; ICONTEC. (2010). Calidad Del Agua. Muestreo. Parte 1. Directrices para el diseño de programas y técnicas de muestreo (p. 31). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; IDEAM (2015). Toma y preservación de muestras. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. http://www.ideam.gov.co/documents/14691/38158/Toma_Muestras_AguasResiduales.pdf/f5baddf0-7d86-4598-bebd-0e123479d428Test; IDEAM. (2002a). Guía para el Monitoreo de Vertimientos, Aguas Superficiales y Aguas Subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834Test; IDEAM. (2002b). Tipificación De Procesos Industriales. IDEAM. http://www.ideam.gov.co/documents/14691/38158/Tipificacion_+procesosindustriales.pdf/b145f0d9-803f-4bee-8d75-9d2a637dd221Test; IDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM.; International Trade Centre. (2021, marzo). International Trade Centre. [Trade Map]. International Trade Centre. https://www.intracen.orgTest/; International Trade Centre. (2022, marzo). International Trade Centre [Trade Map]. International Trade Centre. https://www.intracen.orgTest/; Irfan, M.; Butt, T.; Imtiaz, N.; Abbas, N.; Khan, R. A.; Shafique, A. (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10, S2307-S2318. https://doi.org/10.1016/j.arabjc.2013.08.007Test; ISO 5667-1. (2006). Water quality—Sampling—Part 1: Guidance on the design of sampling programmes and sampling techniques (p. 31). International Organization for Standardization. https://www.iso.org/standard/36693.htmlTest; ISO 5667-10. (1992). Water quality—Sampling—Part 10: Guidance on sampling of waste waters. International Organization for Standardization. https://www.iso.org/standard/11773.htmlTest; ISO 5667-16 (2000). Calidad del agua. Muestreo. Parte 16: Guía para el ensayo biológico de muestras. https://tienda.icontec.org/gp-calidad-del-agua-muestreo-parte-16-guia-para-el-ensayo-biologico-de-muestras-ntc-iso5667-16-2000.htmlTest; ISO 5667-3. (2003). Water quality—Sampling—Part 3: Guidance on the preservation and handling of water samples. International Organization for Standardization. https://www.iso.org/standard/33486.htmlTest; ISO 6341 (2012). Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0051030Test; ISO 7887 (2011) Water quality — Examination and determination of colour. https://www.iso.org/standard/46425.htmlTest; Issa, Y. M.; El-Hawary, W.F.; Youssef, A.F.A.; Senosy, A.R. (2012). Synthesis and Structural Study of the Ion-Associates of Sildenafil Citrate with Chromotropic Acid Azo Dyes. European Chemical Bulletin, 1(6), 205-209.; Jiang, B.; Niu, Q.; Li, C.; Oturan, N.; Oturan, M. A. (2020). Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species. Applied Catalysis B: Environmental, 272, 119002. https://doi.org/10.1016/j.apcatb.2020.119002Test; Joo, D. J.; Shin, W. S.; Choi, J.-H.; Choi, S. J.; Kim, M.-C.; Han, M. H.; Ha, T. W.; Kim, Y.-H. (2007). Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73(1), 59-64. https://doi.org/10.1016/j.dyepig.2005.10.011Test; Jorfi, S.; Barzegar, G.; Ahmadi, M.; Cheshmeh, R.; Jafarzadeh, N.; Takdastan, A.; Saeedi, R.; Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/ synthesized MgO nanoparticles. J. Environ. Manage, 177, 111-118. https://doi.org/10.1016/j.jenvman.2016.04.005Test; Jose, R. L.; Gigimol, M. G.; Mathew, B. (2020). Adsorptive Removal of Anionic Azo Dye Acid Black 194 from Aqueous Solution using NNMBA-Crosslinked Poly N-Vinyl Pyrrolidone Hydrogel. Asian Journal of Chemistry, 32(2), 311-316. https://doi.org/10.14233/ajchem.2020.22338Test; Jung, Y. S.; Lim, W. T.; Park, J. Y.; Kim, Y. H. (2009). Effect of pH on Fenton and Fenton‐like oxidation. Environmental Technology, 30(2), 183-190. https://doi.org/10.1080/09593330802468848Test; Kakoi, B.; Kaluli, J. W.; Ndiba, P.; Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124-1134. https://doi.org/10.1016/j.jclepro.2017.06.240Test; Kang, L.-S. (1994). Flocculation kinetics using Fe(III) coagulant in water treatment: The effects of sulfate and temperature (p. 6453506) [Doctor of Philosophy, Iowa State University, Digital Repository]. https://doi.org/10.31274/rtd-180813-11468Test; Kang, S.-F.; Liao, C.-H.; Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928. https://doi.org/10.1016/S0045-6535Test(01)00159-X; Kang, Y. W.; Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research. 34 (10) 2786–2790. https://doi.org/10.1016/S0043-1354Test(99)00388-7; Kanth, S. V.; Venba, R.; Jayakumar, G. C.; Chandrababu, N. K. (2009). Kinetics of leather dyeing pretreated with enzymes: Role of acid protease. Bioresource Technology, 100(8), 2430-2435. https://doi.org/10.1016/j.biortech.2008.11.026Test; Kavak, D. (2017). Treatment of dye solutions by DL nanofiltration membrane. Desalination and Water Treatment, 69, 116-122. https://doi.org/10.5004/dwt.2017.20277Test; Kehinde, F.; Aziz, H. A. (2014). Textile Waste Water and the advanced Oxidative Treatment Process, an Overview. International Journal of Innovative Research in Science, Engineering and Technology, 03(08), 15310-15317. https://doi.org/10.15680/IJIRSET.2014.0308034Test; Keskin, C. S.; Özdemir, A.; Şengil, İ. A. (2011). Simultaneous decolorization of binary mixture of Reactive Yellow and Acid Violet from wastewaters by electrocoagulation. Water Science and Technology, 63(8), 1644-1650. https://doi.org/10.2166/wst.2011.306Test; Khamaruddin, P. F.; Bustam, M. A.; Omar, A. A. (2011). Using Fenton’s Reagents for the Degradation of Diisopropanolamine: Effect of Temperature and pH. International Conference on Environment and Industrial Innovation, 12.; Khan, M. A.; Khan, M. I.; Zafar, S. (2017). Removal of different anionic dyes from aqueous solution by anion exchange membrane. Membrane Water Treatment, 8(3), 259-277. https://doi.org/10.12989/mwt.2017.8.3.259Test; Khataee, A.R.; Vatanpour, V.; Amani Ghadim, A.R. (2009). Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazardous Mat., 161 (2–3), 1225-1233. https://doi.org/10.1016/j.jhazmat.2008.04.075Test; Khorram, A. G.; Fallah, N. (2018). Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM. Journal of Environmental Chemical Engineering, 6(1), 635-642. https://doi.org/10.1016/j.jece.2017.12.054Test; Khorram, A. G.; Fallah, N. (2019). Comparison of sludge settling velocity and filtration time after electrocoagulation process in treating industrial textile dyeing wastewater: RSM optimization. International Journal of Environmental Science and Technology, 16(7), 3437-3446. https://doi.org/10.1007/s13762-018-1731-xTest; Khosravi, R.; Hazrati, S.; Fazlzadeh, M. (2016). Decolorization of AR18 dye solution by electrocoagulation: Sludge production and electrode loss in different current densities. Desalination and Water Treatment, 57(31), 14656-14664. https://doi.org/10.1080/19443994.2015.1063092Test; Kim, H.-L.; Cho, J.-B.; Park, Y.-J.; Cho, I.-H. (2016). Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process. Journal of Environmental Science and Health, Part A, 1-8. https://doi.org/10.1080/10934529.2016.1159877Test; Kim, S.M.; Geissen, S.U.; Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Water Sci. Technol., 35 (4), 239–248. https://doi.org/10.2166/wst.1997.0128Test; Kim, S-M.; Vogelpohl, A. (1999). Degradation of Organic Pollutants by the Photo-Fenton-Process. Chemical & Engineering Technology. 21(2), 187-191. https://doi.org/10.1002Test/(SICI)1521-4125(199802)21:23.0.CO;2-H; Kobya, M.; Gengec, E.; Demirbas. (2016). Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification. 101, 87-100. https://doi.org/10.1016/j.cep.2015.11.012Test.; Kobya, M.; Gengec, E.; Sensoy, M. T.; Demirbas, E. (2014). Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: Optimisation of operating parameters using central composite design. Coloration Technology, 130(3), 226-235. https://doi.org/10.1111/cote.12090Test; Korpe, S.; Rao, P. V. (2021). Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater - A Review. Journal of Environmental Chemical Engineering, 9(3), 105234 https://doi.org/10.1016/j.jece.2021.105234Test; Köse, T. E.; Bi̇Roğul, Çaliskan N. (2016). Real Textile Wastewater Reclamation using a Combined Coagulation/ Flocculation/ Membrane Filtration System and the Evaluation of Several Natural Materials as Flocculant Aids. Gazi University Journal of Science, 29, 565 - 572.; Krause, M. (2009). The political economy of water and sanitation. Routledge.; Kulik, N.; Panova, Y.; Trapido, M. (2007). The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions. Separation Science and Technology, 42(7), 1521-1534. https://doi.org/10.1080/01496390701290185Test; Kumar, N.; Sinha, S.; Mehrotra, T.; Singh, R.; Tandon, S.; Thakur, I. S. (2019). Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresource Technology Reports, 8, 100311. https://doi.org/10.1016/j.biteb.2019.100311Test; Kumar, P.; Prasad, B.; Mishra, I. M.; Chand, S. (2008). Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation. Journal of Hazardous Materials, 153 (1-2), 635-645. https://doi.org/10.1016/j.jhazmat.2007.09.007Test; Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26(7), 881-886. https://doi.org/10.1016/0043-1354Test(92)90192-7; Kwan, W. P. (Wai P. (1999). Kinetics of the Fe(III) initiated decomposition of hydrogen peroxide: Experimental and model results [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/80211Test; La Patria. (10 de 04 de 2020). Daño en empresa de Maltería provocó coloración azul de la quebrada Manizales. Obtenido de La Patria: https://www.lapatria.com/medioambiente/dano-en-empresa-de-malteria-provoco-coloracion-azul-de-la-quebrada-manizalesTest; La Patria. (10 de 05 de 2020). El azul de la quebrada Manizales era tinta para dulces. Obtenido de La Patria: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338Test; Lakshmanan, D.; Clifford, D. A.; Samanta, G. (2009). Ferrous and Ferric Ion Generation During Iron Electrocoagulation. Environmental Science Technology, 43(10), 3853-3859. https://doi.org/10.1021/es8036669Test; Lal, K.; Garg, A. (2017). Physico-chemical treatment of pulping effluent: Characterization of flocs and sludge generated after treatment. Separation Science and Technology, 52(9), 1583–1593. http://dx.doi.org/10.1080/01496395.2017.1292294Test; Larkin, P. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation. Elsevier.; Lau, I. W. C.; Wang, P.; Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. J. Environ. Eng., 27 (7), 666–669.; LegisComex. (2012). Inteligencia de Mercados-Textiles y Confecciones en Colombia. LegisComex.; Li, Y. F.; Zhang, L. L.; Yuan, X. D.; Zhang. X. Y. (2006). Experimental study on coagulation-Fenton process for the treatment of printing and dyeing wastewater. Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science). 22:136-40.; Lide, D. R. (2006). CRC Handbook of Chemistry and Physics, 91th Edition (87. ed.; 2006-2007). CRC, Taylor Francis.; Lieberman, M. (1999). A Brine Shrimp Bioassay for Measuring Toxicity and Remediation of Chemicals. Journal of Chemical Education, 76(12), 1689. https://doi.org/10.1021/ed076p1689Test; Lin, S. H.; Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354Test(97)00024-9; Lin, S. H.; Peng, C. F. (1995). A Continuous Fenton’s Process for Treatment of Textile Wastewater. Environmental Technology, 16(7), 693-699. https://doi.org/10.1080/09593330.1995.9618268Test; Liu T.; Zhu Y.; Zhang X.; Zhang To.; Zhang Ta. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64(23), 2575-2577. https://10.1016/j.matlet.2010.08.050Test; Liu, H.; Zhao, X.; Qu, J. (2010). Electrocoagulation in Water Treatment. En C. Comninellis G. Chen (Eds.), Electrochemistry for the Environment (pp. 245-262). Springer New York. https://doi.org/10.1007/978-0-387-68318-8_10Test; Liu, J.; Peng, G.; Jing, X.; Yi, Z. (2018). Treatment of methyl orange by the catalytic wet peroxide oxidation process in batch and continuous fixed bed reactors using Fe-impregnated 13X as catalyst. Water Science and Technology, 78(4), 936-946. https://doi.org/10.2166/wst.2018.372Test; Liu, W., Yu, Y. (2021). Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101644Test; Liu, X.; Qiu, M.; Huang, C. (2011). Degradation of the Reactive Black 5 by Fenton and Fenton-like system. Procedia Engineering, 15, 4835-4840. https://doi.org/10.1016/j.proeng.2011.08.902Test; Liu, Y.; Lu, X.; Zhang, P.; Rao, T. (2009). Study on the Treatment Simulated Dye Wastewater by Electro-coagulation-floatation Method. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDJT200902005.htmTest; Lodha, B.; Chaudhari, S. (2007). Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials, 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061Test; Lofrano, G.; Meriç, S.; Zengin, G. E.; Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461-462, 265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004Test; Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A. (2004). Fenton’s pretreatment of mature landfill leachate. Chemosphere, 54 (7), 1000–1005. https://doi.org/j.chemosphere.2003.09.015Test; Lu, M. C.; Chen, J. N.; Chang, C. P. (1999). Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. Journal of Hazardous Materials, 65(3), 276-288. https://doi.org/10.1016/S0304-3894Test(98)00266.2-4; Lucas, M. P. (2009). Application of Advanced Oxidation Processes To Wastewater Treatment. Vila Real.: University of Trás-os-Montes and Alto Douro.; Lucas, M. S.; Dias, A. A.; Sampaio, A.; Amaral, C.; Peres, J. A. (2007). Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41(5), 1103-1109. https://doi.org/10.1016/j.watres.2006.12.013Test; Lucas, M.; Peres, J. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007Test; MADS. (2010). Decreto 3930 de 2010. Bogota: Ministerio de Ambiente y Desarrollo Sostenible.; MADS. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C.: Ministerio de Ambiente, Vivienda y Desarrollo Territorial.; MADS. (2021). Por la cual se reglamenta el uso de las aguas residuales y se adoptan otras disposiciones (Resolución 1256; p. 4; Decreto 1076 de 2015). Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/wp-content/uploads/2021/12/Resolucion-1256-de-2021.pdfTest; Magnusson, B.; Örnemark, U. (2014). The fitness for purpose of analytical methods: A laboratory guide to method validation and related topics (Eurachem Guide, Ed.; 2ed.). https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdfTest; Mahmoodi, N. M.; Dalvand, A. (2013). Treatment of colored textile wastewater containing acid dye using electrocoagulation process. Desalination and Water Treatment, 51(31-33), 5959-5964. https://doi.org/10.1080/19443994.2013.791769Test; Majeed, H. A. S.; Al-Ahmad, A. Y.; Hussain, K. A. (2011). The Preparation, Characterization and the Study of the Linear Optical Properties of a New Azo. Journal of Basrah Researches (Sciences), 37(2A).; Malik, P. K.; Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31(3), 241-250. https://doi.org/10.1016/S1383-5866Test(02)00200-9; Mamelkina, M. A.; Tuunila, R.; Silänpää, M.; Häkkinen, A. (2019). Systematic study on sulfate removal from mining waters by electrocoagulation. Separation and Purification Technology, 216, 43 – 50. https://doi.org/10.1016/j.seppur.2019.01.056Test; Manara, P.; Zabaniotou A. (2012). Towards sewage sludge-based biofuels via thermochemical conversion – a review. Renew. Sustain. Energy Rev., 16, 2566–2582. https://doi.org/10.1016/j.rser.2012.01.074Test; Manenti, D. R.; Módenes, A. N.; Soares, P. A.; Espinoza-Quiñones, F. R.; Boaventura, R. A. R.; Bergamasco, R.; Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120-130. https://doi.org/10.1016/j.cej.2014.04.096Test; Mantzavinos, D.; Livingston, A. G.; Hellenbrand, R.; Metcalfe, I. S. (1996). Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Chemical Engineering Science, 51(18), 4219-4235. https://doi.org/10.1016/0009-2509Test(96)00272-2; Markets and Markets. (2016). Dyes & Pigments Market.; Marmanis, D.; Konstantinos, D.; Christoforidis, A. (2016). Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters. Journal of Engineering Science and Technology Review, 9(1), 111-115. https://doi.org/10.25103/jestr.091.17Test; Márquez, A. A.; Coreño, O.; Nava, J. L. (2022). An innovative process combining electrocoagulation and photoelectro-Fenton-like methods during the abatement of Acid Blue 113 dye. Process Safety and Environmental Protection, 163, 475-486. https://doi.org/10.1016/j.psep.2022.05.061Test; Martínez Navarro, F. (2007). Tratamiento de aguas residuales industriales mediante electrocoagulación y coagulación convencional. Ediciones de la Universidad de Castilla-La Mancha. https://ruidera.uclm.es/xmlui/handle/10578/984Test; Martins, A.; Vasconcelos, T.; Wilde, M. (2005). Influence of variables of the combined coagulation–Fenton-sedimentation process in the treatment of trifluraline effluent. Journal of Hazardous Materials, 127(1-3), 111-119. https://doi.org/10.1016/j.jhazmat.2005.06.028Test; Martins, J. E. C. A.; Abdala Neto, E. F.; Lima, A. C. A. de, Ribeiro, J. P.; Maia, F. E. F.; Nascimento, R. F. do. (2017). Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada. Engenharia Sanitaria e Ambiental, 22(6), 1055-1064. https://doi.org/10.1590/s1413-41522017150743Test; Masiello, C. A.; Gallagher, M. E.; Randerson, J. T.; Deco, R. M.; Chadwick, O. A. (2008). Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research, 113(G3). https://doi.org/10.1029/2007JG000534Test; Mathur, N.; Krishnatrey, R.; Sharma, S.; Sharma, K. (2003). Toxic effects of textile printing industry effluents on liver and testes of albino rats. Bull Environ Contam Toxicol., 71, 453–457. https://doi.org/10.1007/s00128-003-8781-5Test; Maurer-Jones, M. A.; Love, S. A.; Meierhofer, S.; Marquis, B. J.; Liu, Z.; Haynes, C. L. (2013). Toxicity of Nanoparticles to Brine Shrimp: An Introduction to Nanotoxicity and Interdisciplinary Science. Journal of Chemical Education, 90(4), 475-478. https://doi.org/10.1021/ed3005424Test; Mbarek, W. B.; Azabou, M.; Pineda, E.; Fiol, N.; Escoda, L.; Suñol, J. J.; Khitouni, M. (2017). Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC Advances, 7, 12620-12628, https://doi.org/10.1039/C6RA28578CTest; Mbarek, W. B.; Saurina, J.; Escoda, L.; Pineda, E.; Khitouni, M.; Suñol, J. J. (2020) Effects of the Addition of Fe, Co on the Azo Dye Degradation Ability of Mn-Al Mechanically Alloyed Powders. Metals, 10, 1578-1594. https://doi:10.3390/met10121578Test; McCabe, W. L.; Smith, J. C.; Harriott, P. (1998). Operaciones unitarias en ingeniería química. McGraw-Hill.; McCleskey, R. B. (2011). Electrical Conductivity of Electrolytes Found In Natural Waters from (5 to 90)°C. Journal of Chemical Engineering Data, 56(2), 317-327. https://doi.org/10.1021/je101012nTest; McCleskey, R. B.; Nordstrom, D. K.; Ryan, J. N. (2012). Comparison of electrical conductivity calculation methods for natural waters: Methods for calculation of conductivity. Limnology and Oceanography: Methods, 10(11), 952-967. https://doi.org/10.4319/lom.2012.10.952Test; Meriç, S.; Kaptan, D.; Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54(3), 435-441. https://doi.org/10.1016/j.chemosphere.2003.08.01Test; Meriç, S.; Lofrano, G.; Belgiorno, V. (2005). Treatment of reactive dyes and textile finishing wastewater using Fenton’s oxidation for reuse. International Journal of Environment and Pollution, 23(3), 248. https://doi.org/10.1504/IJEP.2005.006865Test; Merzouk, B.; Gourich, B.; Madani, K.; Vial, C.; Sekki, A. (2011). Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination, 272(1-3), 246-253. https://doi.org/10.1016/j.desal.2011.01.029Test; Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Vial, C.; Barkaoui, M. (2009). Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 149(1-3), 207-214. https://doi.org/10.1016/j.cej.2008.10.018Test; Merzouk, B.; Yakoubi, M.; Zongo, I.; Leclerc, J. P.; Paternotte, G.; Pontvianne, S.; Lapicque, F. (2011). Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination, 275(1-3), 181-186. https://doi.org/10.1016/j.desal.2011.02.055Test; Mickley, M. (2009). Treatment of Concentrate (Report 155; Desalination and Water Purification Research and Development Program). https://www.usbr.gov/research/dwpr/reportpdfs/report155.pdfTest; Miller, J. N.; Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed). Prentice Hall/Pearson.; Ministerio de Vivienda, Ciudad y Territorio (MinVivienda). (2014). Decreto 1287 de 2014 compilado con el Decreto 1077 de 2015. https://www.minvivienda.gov.co/sites/default/files/normativa/1287%20-%202014.pdfTest; Módenes, A. N.; Espinoza-Quiñones, F. R.; Borba, F. H.; Manenti, D. R. (2012). Performance evaluation of an integrated photo-Fenton – Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chemical Engineering Journal, 197, 1-9. https://doi.org/10.1016/j.cej.2012.05.015Test; Mollah, M. Y. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. (2001). Electrocoagulation (EC)—Science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894Test(01)00176-5; Mondal, B.; Srivastava, V. C.; Mall, I. D. (2012). Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. Journal of Environmental Science and Health, Part A, 47(13), 2040-2051. https://doi.org/10.1080/10934529.2012.695675Test; Montgomery, D. C. (2019). Design and analysis of experiments (10th Edition). John Wiley & Sons, Inc.; Montgomery, D. C.; Runger, G. C. (2014). Applied statistics and probability for engineers (Sixth edition). John Wiley and Sons, Inc.; Mook, W. T.; Aroua, M. K.; Szlachta, M.; Lee, C. S. (2017). Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology. Water Science and Technology, 75(4), 952-962. https://doi.org/10.2166/wst.2016.563Test; Moradi, M.; Eslami, A.; Ghanbari, F. (2014). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: Response surface modeling and optimization. Desalination and Water Treatment, 1-12. https://doi.org/10.1080/19443994.2014.995714Test; Moradi, M.; Ghanbari, F. (2014). Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process. Biodegradability improvement. Journal of Water Process Engineering. 4, 67 – 73. http://dx.doi.org/10.1016/j.jwpe.2014.09.002Test; Moraga C, P.; Ávila P, R.; Vilaxa O, A. (2015). Salinidad y temperatura óptimas para reproducción ovípara y desarrollo de Artemia franciscana. Idesia (Arica), 33(1), 85-92. https://doi.org/10.4067/S0718-34292015000100009Test; Mordor Intelligence. (2018). Global Pigments Market (Chemicals & Materials 46248). (https://www.mordorintelligence.com/industry-reports/pigments-marketTest); Moreno, A. D.; Lorenzo, E. G.; De Bazúa, C. D.; De La Torre, J. M.; Zamora, R. M. R. (2003). Fenton’s reagent and coagulation-flocculation as pretreatments of combined wastewater for reuse. Water Science and Technology, 47(11), 145-151. https://doi.org/10.2166/wst.2003.0598Test; Mouedhen, G.; Feki, M.; Wery, M. D. P.; Ayedi, H. F. (2008). Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials, 150(1), 124-135. https://doi.org/10.1016/j.jhazmat.2007.04.090Test; Mountassir, Y.; Benyaich, A.; Berçot, P.; Rezrazi, M. (2015). Potential use of clay in electrocoagulation process of textile wastewater: Treatment performance and flocs characterization. Journal of Environmental Chemical Engineering, 3(4), 2900-2908. https://doi.org/10.1016/j.jece.2015.10.004Test; Murthy, U. N.; Rekha, H. B. (2011). Electrochemical Treatment of Textile Dye Wastewater Using Stainless Steel Electrode.; Naje, A. S.; Abbas, S. A. (2013). Electrocoagulation Technology in Wastewater Treatment: A Review of Methods and Applications. Civil and Environmental Research, 15.; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2015). Treatment Performance of Textile Wastewater Using Electrocoagulation (EC) Process under Combined Electrical Connection of Electrodes. Int. J. Electrochem. Sci., 10, 18.; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2016). Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Journal of Environmental Management, 176, 34-44. https://doi.org/10.1016/j.jenvman.2016.03.034Test; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Ajeel, M. A.; Alaba, P. A. (2016). A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 33(3). https://doi.org/10.1515/revce-2016-0019Test; Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds (6th ed). Wiley.; Nesheiwat, F.K.; Swanson, A.G. (2000). Clean contaminated sites using Fenton’s reagent. Chem. Eng. Prog., 96(4), 61-66.; Neyens, E.; Baeyens, J. (2003). A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. Journal of Hazardous Materials 98(1-3):33-50. https://doi.org/10.1016/S0304-3894Test(02)00282-0; Nourmoradi, H.; Rahmati, Z.; Javaheri, M.; Moradnejadi, K.; Noorimotlagh, Z. (2015). Effect of Praestol as a Coagulant-Aid to Improve Coagulation-Flocculation in Dye containing Wastewaters. Global NEST Journal, 18 (1), 38-46. https://doi.org/10.30955/gnj.001738Test; NSF/ANSI-60. (2013). NSF/ANSI Drinking Water Treatment Chemicals - Health Effects. International Standard / American National Standard.; Núñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. (2019). Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. Journal of Hazardous Materials, 371, 705-711. https://doi.org/10.1016/j.jhazmat.2019.03.030Test; Obiora-Okafo I. A.; Onukwuli O. D. (2015). Optimization of coagulation-flocculation process for colour removal from synthetic dye wastewater using natural organic polymers: Response surface methodology applied. International Journal of Scientific & Engineering Research, 6(12), 12.; Oldham, K. B.; Myland, J. C.; Bond, A. M. (2013). Electrochemical science and technology: Fundamentals and applications (Reprinted with corrections). Wiley.; Oller, I.; Malato, S.; Sánchez-Pérez, J. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061Test; Olvera-Vargas, H.; Zheng, X.; Garcia-Rodriguez, O.; Lefebvre, O. (2019). Sequential “electrochemical peroxidation e Electro-Fenton” process for anaerobic sludge treatment. Water Res., 154, 277-286. https://doi.org/10.1016/j.watres.2019.01.063Test; Ong, H. R.; Hegde, G.; Chigrinov, V. G.; Khan, Md. M. R. (2016). Sulfuric disazo dye stabilized copper nanoparticle composite mixture: Synthesis and characterization. RSC Advances. 6(18), 15094-15100. https://doi.org/10.1039/C5RA26492HTest; Ong, S. T.; Keng, P.-S.; Lee, W. N.; Ha, S. T.; Hung, Y.-T. (2011). Dye Waste Treatment. Water, Vol 3, pp 157-176.; OSHA. (22 de 06 de 2019). Hexavalent Chromium. Obtenido de Occupational Safety and Health Administration: https://www.osha.gov/SLTC/hexavalentchromiumTest/; Osorio, P. C.; Peña, D. (1999). Determinación de la relación DQO/DBO5 en aguas residuales de comunas con población menor a 25.000 habitantes en la VIII región. Antofagasta: XIII Congreso de Ingeniería Sanitaria y Ambiental.; Özdemir, C.; Öden, M. K.; Şahinkaya, S.; Kalipçi, E. (2011). Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. CLEAN - Soil, Air, Water, 39(1), 60-67. https://doi.org/10.1002/clen.201000263Test; Pajootan, E.; Arami, M.; Bahrami, H. (2016). Optimization of the combined UV/electrocoagulation process for dye removal from textile wastewater using response surface methodology. Environmental Engineering and Management Journal, 15(1), 189-198.; Patabandige, D. S. B. T.; Wadumethrige, S. H.; Wanniarachchi, S. (2020). Decolorization and COD removal from synthetic and real textile dye bath wastewater containing Reactive Black 5. Desalination And Water Treatment, 197, 392-401. https://doi.org/10.5004/dwt.2020.25954Test; Patel, D. K.; Tipre, D. R.; Dave, S. R. (2017). Enzyme mediate bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 77, 1–9. http://dx.doi.org/10.1016/j.jtice.2017.02.027Test; Patel, U. D.; Ruparelia, J. P.; Patel, M. U. (2011). Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anode. Journal of Hazardous Materials, 197, 128-136. https://doi.org/10.1016/j.jhazmat.2011.09.064Test; Patil, A. D.; Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an Advanced Oxidation Process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 29-32. https://doi.org/10.9790/2402-081032932Test; Peplowski, L.; Szczesny, R.; Skowronski, L.; Krupka, A.; Smokal, V.; Derkowska-Zielinska, B. (2022). Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 120, 103377. https://doi.org/10.1016/j.vibspec.2022.103377Test; Pereira, L.; Alves, M. (2012). Dyes—Environmental Impact and Remediation. En A. Malik & E. Grohmann (Eds.), Environmental Protection Strategies for Sustainable Development (pp. 111-162). Springer Netherlands. https://doi.org/10.1007/978-94-007-1591-2_4Test; Pérez, O. P.; Lazo, F. J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. 25(1), 10.; Pérez, S.; Morales, J.B.; Félix, R.M.; Hernández, O.M.; 2011. Evaluation of the Eletrocoagulation Process for the Removal of Turbidity of River Water, Wastewater and Pond Water. Rev. Mex. Ing. Química, 10, 79–91.; Phalakornkule, C.; Polgumhang, S.; Tongdaung, W.; Karakat, B.; Nuyut, T. (2010). Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Journal of Environmental Management, 91(4), 918-926. https://doi.org/10.1016/j.jenvman.2009.11.008Test; Pi, K.-W.; Xiao, Q.; Zhang, H.-Q.; Xia, M.; Gerson, A. R. (2014). Decolorization of synthetic Methyl Orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, 92(6), 796-806. https://doi.org/10.1016/j.psep.2014.02.008Test; Pignatello, J. J. (1992). Dark and photo-assisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951. https://doi.org/10.1021/es00029a012Test; Pinheiro, H. M.; Touraud; E.; Thomas O. (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61, 121–139. https://doi.org/10.1016/j.dyepig.2003.10.009Test; Pirkarami, A.; Olya, M. E. (2017). Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. Journal of Saudi Chemical Society, 21, S179-S186. https://doi.org/10.1016/j.jscs.2013.12.008Test; Pouran, S. R.; Raman, A. A. A.; Daud, W. M. A. W. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013Test; Pourbaix, M.; Burbank, J. (1964). Atlas D-Equilibres Electrochimiques. Journal of The Electrochemical Society, 111(1), 14C. https://doi.org/10.1149/1.2426051Test; Pourrezaei, P.; Afzal, A.; Ding, N.; Islam, S.; Moustafa, A.; Drzewicz, P.; Chelme-Ayala, P.; Gamal El-Din, M. Physico-Chemical Processes. (2010). Water Environment Research, 82, 10, 997 – 1072.; Poyatos, J. M.; Muñio, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. (2010). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. https://doi.org/10.1007/s11270-009-0065-1Test; Pretsch, E.; Bühlmann, P.; Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data (4th Ed.). Springer.; Priesing, C. P. (1962). A theory of coagulation useful for design. Industrial & Engineering Chemistry, 54 (8), 38-45. https://doi.org/10.1021/ie50632a006Test; Primo, O.; Rivero, M. J.; Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053Test; Procolombia. (2018). Paints and Dyes in Colombia. (https://procolombia.coTest/); Procolombia. (9 de 01 de 2020). Inversión en el sector Sistema Moda. Recuperado el 23 de 08 de 2017, de Exportaciones turismo inversión marca país.: http://inviertaencolombia.com.coTest; Pysarevska, S.; Dubenska, L.; Spanik, I.; Kovalyshyn, J.; Tvorynska, S. (2013). Reactions of o,o′-Dihydroxy Azo Dyes with the Third Group M(III) Ions: A Spectroscopic and Electrochemical Study. Journal of Chemistry, 2013, 1-10. https://doi.org/10.1155/2013/853763Test; Qiu, M.; Shou, J.; Ren, P.; Lin, J. (2014). Treatment of the azo dye in the solution by fenton-SBR process. Journal of Chemical and Pharmaceutical Research, 6(7), 2039-2045.; Radin Mohamed, R. M. S.; Mt. Nanyan, N.; Rahman, N.; Kutty, N.; Mohd Kassim, A. H. (2014). Colour Removal of Reactive Dye from Textile Industrial Wastewater using Different Types of Coagulants. Asian Journal of Applied Sciences, 2, 650-657.; Raja, A. S. M.; Arputharaj, A.; Saxena, S.; Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. En Water in Textiles and Fashion (pp. 155-173). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00009-9Test; Ramírez, J. H.; Costa, C. A.; Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 107-108, 68 – 76. https://doi.org/10.1016/j.cattod.2005.07.060Test; Ramírez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M.; Lopez-Peinado, A. J.; Martin-Aranda R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71, 44 – 56. https://doi.org/10.1016/j.apcatb.2006.08.012Test; Rana, S.; Suresh, S. (2017). Comparison of different Coagulants for Reduction of COD from Textile industry wastewater. Materials Today: Proceedings, 4(2), 567-574. https://doi.org/10.1016/j.matpr.2017.01.058Test; Rand View Research. (2017). Dyes & Pigments Market.; Ravina, L. (1991). Everything You Want to Know about Coagulation & Flocculation. Zeta-Meter, Inc.; Rebhun, M.; Lurie, M. (1993). Control of organic-matter by coagulation and floc separation. Water Science and Technology, 27. 1 – 20. https://doi.org/10.4236/gsc.2013.32013Test; Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E. (2017). Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study. IOP Conference Series: Materials Science and Engineering, 162(1), 012026. https://doi.org/10.1088/1756.2-899X/162/1/012026Test; Ribeiro, J. P.; Nunes, M. I. (2021). Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review. Environmental Research, 197, 110957. https://doi.org/10.1016/j.envres.2021.110957Test; Ricordel, C.; Darchen, A.; Hadjiev, D. (2010). Electrocoagulation–electroflotation as a surface water treatment for industrial uses. Separation and Purification Technology. 74, 342 –347. https://doi:10.1016/j.seppur.2010.06.024Test; Rigg, T.; Taylor, W.; Weiss, J. (1954). The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions. The Journal of Chemical Physics, 22(4), 575-577. https://doi.org/10.1063/1.1740127Test; Riva, V.; Mapelli, F.; Syranidou, E.; Crotti, E.; Choukrallah, R.; Kalogerakis, N.; Borin, S. (2019). Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms, 7(10), 384. https://doi.org/10.3390/microorganisms7100384Test; Rivas, F. J.; Beltrán, F. J.; Frades, J.; Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Res. 35(2), 387-396. https://doi.org/10.1016/S0043-1354Test(00)00285-2; Rodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014a). A new strategy for treating a cotton dyeing wastewater—Integration of physical-chemical and advanced oxidation processes. International Journal of Environment and Waste Management, 14(3), 232. https://doi.org/10.1504/IJEWM.2014.064583Test; Rodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014b). Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton’s oxidation. Environmental Technology, 35(10), 1307-1319. https://doi.org/10.1080/09593330.2013.866983Test; Romero Rojas, Jairo Alberto. 1999. Potabilización del agua: 3ª edición, Escuela Colombiana de Ingeniería. Editorial Alfaomega.; Rubio-Clemente, A.; Chica, E. L.; Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical wastewater. Ingeniería y Competitividad, 2, 13.; Sadri Moghaddam, S.; Alavi Moghaddam, M. R.; Arami, M. (2011). Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant. Journal of Environmental Management, 92(4), 1284-1291. https://doi.org/10.1016/j.jenvman.2010.12.015Test; Sahu, O.; Mazumdar, B.; Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, 21(4), 2397-2413. https://doi.org/10.1007/s11356-013-2208-6Test; Samanta, K. K.; Pandit, P.; Samanta, P.; Basak, S. (2019). Water consumption in textile processing and sustainable approaches for its conservation. En Water in Textiles and Fashion (pp. 41-59). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00003-8Test; Sanchez, M.; Rivero, M. J.; Ortiz, I. (2011). Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Applied Catalysis B: Environmental, 101(3-4), 515-521. https://doi.org/10.1016/j.apcatb.2010.10.023Test; Santana da R.; R. M.; Charamba, L. C. V.; do Nascimento, G. E.; de Oliveira, J. G. C.; Sales, D. C. S.; Duarte, M. M. M. B.; Napoleão, D. C. (2019). Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria. Water, Air, & Soil Pollution, 230(6). https://doi.org/10.1007/s11270-019-4178-xTest; Sarayu, K.; Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Appl Biochem Biotechnol., Vol 167, pp 645–661.; Sass, B. M.; Rai, D. (1987). Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorganic Chemistry, 26, 14, 2228–2232. https://doi.org/10.1021/ic00261a013Test; Sasson, M. B.; Calmano, W.; Adin, A. (2009). Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Journal of Hazardous Materials, 171(1-3), 704-709. https://doi.org/10.1016/j.jhazmat.2009.06.057Test; Sawyer, C.; McCarty, P.; Parkin, G. (2003). Chemistry for Environmental Engineering and Science, fifth ed. McGraw-Hill Education, New York; Scopus. (2023, febrero 21). Scopus—Analyze search results. https://www-scopus-comTest; SDC-AATCC. (2019). Colour Index: Fourth Edition. United Kingdom: Society of Dyers and Colourists; Association of Textile Chemists and Colorists.; Seader, J. D.; Henley, E. J.; Roper, D. K. (2011). Separation process principles: Chemical and biochemical operations (3rd ed). Wiley.; Sebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., Citterio, A. (2012). Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes and Pigments, 94(2), 258–265. https://doi.org/10.1016/j.dyepig.2011.12.014Test; Şengil, İ. A.; Özacar, M. (2009). The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161(2-3), 1369-1376. https://doi.org/10.1016/j.jhazmat.2008.04.100Test; Serna-Galvis, E.A.; Silva-Agredo, J.; Lee, J.; Echavarría-Isaza, A.; Torres-Palma, R.A. (2023). Possibilities and Limitations of the Sono-Fenton Process Using Mid-High-Frequency Ultrasound for the Degradation of Organic Pollutants. Molecules. 28, 1113. https://doi.org/10.3390/molecules28031113Test; Shaikh, M. A. (2009). Water conservation in textile industry. Pakistan Textile Journal, 58; pp 48-51.; Sharma, L.; Kimura, T. (2003). FT‐IR Investigation into the miscible interactions in new materials for optical devices. Polymers for Advanced Technologies, 14(6), 392-399.; Sharma, S.; Mathur, S.; Sharma, R. (2011). Efficacy of Electrocoagulation in Treatment of Textile Wastewater Containing Basic Red Dye Using Iron Electrodes. Nature Environment and Pollution Technology, 10(2), 4.; Sharygin, A. V.; Mokbel, I.; Xiao, C.; Wood, R. H. (2001). Tests of Equations for the Electrical Conductance of Electrolyte Mixtures: Measurements of Association of NaCl (Aq) and Na2SO4(aq) at High Temperatures. The Journal of Physical Chemistry B, 105(1), 229-237. https://doi.org/10.1021/jp002564vTest; Siche, R.; Falguera, V.; Ibarz, A. (2015). Use of Response Surface Methodology to Describe the Combined Effect of Temperature and Fiber on the Rheological Properties of Orange Juice: Orange Juice with Fiber RSM. Journal of Texture Studies, 46(2), 67-73. https://doi.org/10.1111/jtxs.12112Test; Silva, L. C. da, Neto, B. de B.; Silva, V. L. da. (2009). Homogeneous degradation of the Remazol Black B dye by Fenton and photo-Fenton processes in aqueous medium. Afinidad LXVI, 66, 232.; Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. (2005). Spectrometric identification of organic compounds (7th ed). John Wiley & Sons.; Singh, H.; Singh, G.; Bhatti, M. S.; Reddy, A. S. (2015). Textile dyebath wastewater decolorization by electrolytic processes: Response surface optimization using IV-optimal design. Desalination and Water Treatment, 56(3), 665-676. https://doi.org/10.1080/19443994.2014.937763Test; Singh, P. K.; Kumar, P.; Seth, T.; Rhee, H.-W.; Bhattacharya, B. (2012). Preparation, characterization and application of Nano CdS doped with alum composite electrolyte. Journal of Physics and Chemistry of Solids, 73, 1159–1163. http://dx.doi.org/10.1016/j.jpcs.2012.05.008Test; Skoog, D. A., Holler, F. J., Crouch, S. R. (2018). Principles of instrumental analysis (7th Ed.). Cengage Learning.; Solbrig, R. (1982). Raman and infrared spectroscopy of the oxo-bridged iron (III) complex, [Cl3Fe O FeCl3]−2 as a spectroscopic model for the oxo bridge in hemerythrin and ribonucleotide reductase. Journal of Inorganic Biochemistry, 17(1), 69-74. https://doi.org/10.1016/S0162-0134Test(00)80231-7; Standard Methods Committee, American Public Health Association, American Water Works Association, Water Environment Federation, Bridgewater, L. L., Baird, R. B., Eaton, A. D., & Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition, Vol. 1). American Public Health Association APHA Press. https://doi.org/10.2105/SMWW.2882.002Test; Stephenson, R. J.; Duff, S. J. B. (1996) Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Research, 30. 781-792. https://doi:10.1016/0043-1354Test(95)00213-8; Stergiopoulos, D.; Konstantinos, D.; Giannakoudakis, P.; Sotiropoulos, S. (2014). Electrochemical Decolorization and Removal of Indigo Carmine Textile Dye from Wastewater. Global NEST Journal, 16(3), 499-506. https://doi.org/10.30955/gnj.001330Test; Streli, C.; Wobrauschek, P.; Kregsamer, P. (2017). X-Ray Fluorescence Spectroscopy, Applications. En Encyclopedia of Spectroscopy and Spectrometry (pp. 707-715). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00315-0Test; Stumm, W.; Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed). Wiley.; Stumm, W.; O’Melia, C. R. (1968). Stoichiometry of Coagulation. Journal - American Water Works Association, 60(5), 514-539. https://doi.org/10.1002/j.1551-8833.1968.tb03579.xTest; Sum, O. S. N.; Feng, J.; Hub, X.; Yue, P. L. (2005). Photo-assisted fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1-4), 233-242. https://doi.org/10.1007/s11244-005-2532-2Test; Sun, J.; Sun, S.; Sun, J.; Sun, R.; Qiao, L.; Guo, H.; Fan, M. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14(6), 761-766. https://doi.org/10.1016/j.ultsonch.2006.12.010Test; Sun, J.; Zhou, Y.; Jiang, X.; Fan, J. (2022). Different adsorption behaviors and mechanisms of anionic azo dyes on polydopamine–polyethyleneimine modified thermoplastic polyurethane nanofiber membranes. Water. 14, 3865. https://doi.org/10.3390/w14233865Test; Sun, J. H.; Sun, S. P.; Wang, G. L.; Qiao, L. P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006Test; Sun, S.-P.; Li, C.-J.; Sun, J.-H.; Shi, S.-H.; Fan, M.-H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3), 1052-1057. https://doi.org/10.1016/j.jhazmat.2008.04.080Test; Superintendente de Sociedades. (2017). Desempeño del sector textil-confección informe. Bogotá D.C.: Superintendente de Sociedades.; Swaminathan, K.; Sandhya, S.; Carmalin Sophia, A.; Pachhade, K.; Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere, 50(5), 619-625. https://doi.org/10.1016/S0045-6535Test(02)00615-X; Sylwan, I.; Thorin, E. (2021). Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water. 13(8), 1121. https://doi.org/10.3390/w13081121Test; Taghried A, S.; Mayasa I, A. (2019). Eriochrome Black T dye adsorption onto natural and modified orange peel. Research Journal of Chemistry and Environment, 23(1), 155-169.; Taheri, M.; Moghaddam, M. R. A.; Arami, M. (2012). Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology. Iranian Journal of Environmental Health Science Engineering, 9(1), 23. https://doi.org/10.1186/1735-2746-9-23Test; Tantak, N.; Chaudhari, S. (2006). Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. Journal of Hazardous Materials, 136(3), 698-705. https://doi.org/10.1016/j.jhazmat.2005.12.049Test; Tanveer, R.; Yasar, A.; Tabinda, A.-B.; Ikhlaq, A.; Nissar, H.; Nizami, A.-S. (2022). Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation. Journal of Water Process Engineering, 46, 102547. https://doi.org/10.1016/j.jwpe.2021.102547Test; Technavio. (2016). Global Dyes And Pigments Market. (https://www.technavio.com/report/dyes-and-pigments-market-analysisTest); Teh, C. Y.; Budiman, P. M.; Shak, K. P. Y.; Wu, T. Y. (2016). Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Industrial & Engineering Chemistry Research, 55(16), 4363-4389. https://doi.org/10.1021/acs.iecr.5b04703Test; Tejedor, A. S. (08 de 2017). La industria de los colorantes y pigmentos. Recuperado el 28 de 08 de 2017, de Química Orgánica Industrial.: https://www.eii.uva.esTest; Tezcan Un, U.; Aytac, E. (2013). Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. Journal of Environmental Management, 123, 113-119. https://doi.org/10.1016/j.jenvman.2013.03.016Test; Tezcan Ün, Ü.; Koparal, A. S.; Bakir Öğütveren, Ü. (2009). Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. Journal of Hazardous Materials, 164(2-3), 580-586. https://doi.org/10.1016/j.jhazmat.2008.08.045Test; Tharpa, K.; Basavaiah, K.; Vinay, K. B. (2009). Spectrophotometric Determination of Furosemide in Pharmaceuticals Using Permanganate. Jordan Journal of Chemistry, 4(4), 387-397.; Théraulaz, F.; Djellal L.; Thomas, O. (1996). Simple LAS determination in sewage using advanced UV spectrophotometry. Tenside Surfactants Detergents, 33,447–451.; Thiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014a). Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 150-151, 116-125. https://doi.org/10.1016/j.apcatb.2013.12.011Test; Thiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014b). A first pre-pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs: Treatment of dye pollutants by combined electrocoagulation/EAOPs. Journal of Chemical Technology & Biotechnology, 89(8), 1136-1144. https://doi.org/10.1002/jctb.4358Test; Tizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023Test; Tony, M. A.; Mansour, S. A. (2019). Removal of the commercial reactive dye Procion Blue MX-7RX from real textile wastewater using the synthesized Fe2O3 nanoparticles at different particle sizes as a source of Fenton’s reagent. Nanoscale Advances, 1(4), 1362-1371. https://doi.org/10.1039/C8NA00129DTest; Torrades, F.; Garcı́a-Montaño, J.; Garcı́a-Hortal, J.A. Domènech, X.; Peral, J. (2004). Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Solar Energy. 77(5), 573-581. https://doi.org/10.1016/j.solener.2004.05.004Test; Torres-Segundo, C.; Vergara-Sánchez, J.; Reyes-Romero, P. G.; Gómez-Díaz, A.; Rodríguez-Albarrán, M. J.; Martínez-Valencia, H. (2019). Effect on Discoloration By Nonthermal Plasma In Dissolved Textile Dyes: Acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939-947. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/TorresTest; TRM dólar histórico. (2023). https://www.dolar-colombia.com/historicoTest; Tsitonaki, A.; Petri, B.; Crimi, B.; Mosbaek, H.; Siegrist, R. L.; Bjerg, P. L. (2010). In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 40 (1), 55-91, https://doi.org/10.1080/10643380802039303Test; Tünay, O.; Kabdasli, I.; Eremektar, G.; Orhon, D. (1996). Color removal from textile wastewaters. Water Science and Technology, 34(11), 9-16. https://doi.org/10.1016/S0273-1223Test(96)00815-3; Tyagi, N.; Mathur, S.; Kumar, D. (2014). Electrocoagulation process for textile wastewater treatment in continuous upflow reactor. Journal of Scientific & Industrial Research. 73, 195-198; Tzoupanos, N. D.; Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents. 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering And Environment (HTE'08). Rhodes, Greece, August 20-22, 2008. 309 - 317; Ubale, M. A.; Salkar, V. D. (2017). Experimental study on electrocoagulation of textile wastewater by continuous horizontal flow through aluminum baffles. Korean Journal of Chemical Engineering, 34(4), 1044-1050. https://doi.org/10.1007/s11814-016-0351-8Test; Uner, H.; Dogruel, S.; Arslan-Alaton, I.; Babuna, F. G.; Orhon, D. (2006). Evaluation of Coagulation-Flocculation on a COD-Based Molecular Size Distribution for a Textile Finishing Mill Effluent. Journal of Environmental Science and Health Part A, 41:1899–1908. https://doi.org/10.1080/10934520600779158Test; UN-WATER/WWAP. (2017). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. París, Francia: Unesco.; Uppala, R.; Sundar, K.; Muthukumaran, A. (2019). Response surface methodology mediated optimization of decolorization of azo dye amido black 10B by Kocuria kristinae RC3. International Journal of Environmental Science and Technology, 16(8), 4203-4214. https://doi.org/10.1007/s13762-018-1888-3Test; UPS. (2022). US Pharmacopeia [1225 Validation of Compendial Procedures]. The United States Pharmacopeial Convention. https://www.usp.orgTest/; US EPA, O. (2015, septiembre 22). Chromium in Drinking Water [Overviews and Factsheets]. https://www.epa.gov/sdwa/chromium-drinking-waterTest; Vanhaecke, P., Persoone, G., Claus, C., Sorgeloos, P. (1981). Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicology and Environmental Safety. 5(3), 382-387. https://doi.org/10.1016/0147-6513Test(81)90012-9; Veerakumar, P.; Jeyapragasam, T.; Surabhi Salamalai, K.; Maiyalagan, T.; Lin, K.-C. (2019). Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution. Journal of Chemical & Engineering Data, 64(4), 1305-1321. https://doi.org/10.1021/acs.jced.8b00878Test; Vepsäläinen, M.; Sillanpää, M. (2020). Chapter 1. Electrocoagulation in the treatment of industrial waters and wastewaters. En: Advanced Water Treatment (Editor: Mika Sillanpää), pp. 1 – 78. https://doi.org/10.1016/B978-0-12-819227-6.00001-2Test; Verma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168-172. https://doi.org/10.1016/j.jwpe.2017.11.001Test; Verma, A. K.; Bhunia, P.; Dash, R. R. (2014). Reclamation of wastewater using composite coagulants: A sustainable solution to the textile industries. Chemical Engineering Transactions, 175-180. https://doi.org/10.3303/CET1442030Test; Verma, A. K.; Dash, R. R.; Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012Test; Verma, S. K.; Khandegar, V.; Saroha, A. K. (2013). Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste., 17, 146 – 152. https://doi.org/10.1061Test/(ASCE)HZ.2153-5515.0000170; Vidal, J.; Espinoza, C.; Contreras, N.; Salazar, R. (2017). Elimination of industrial textile dye by electrocoagulation using iron electrodes. Journal of the Chilean Chemical Society, 62(2), 3519-3524. https://doi.org/10.4067/S0717-97072017000200019Test; Vidal, J.; Villegas, L.; Peralta-Hernández, J. M.; Salazar González, R. (2016). Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, Part A, 51(4), 289-296. https://doi.org/10.1080/10934529.2015.1109385Test; Vineta, S.; Silvana, Z.; Sanja, R.; Golomeova, S. (2014). Methods for waste waters treatment in textile industry. International Scientific Conference., 248-252.; Vogel, A. I.; Jeffery, G. H. (Eds.). (1989). Vogel’s textbook of quantitative chemical analysis (5 ed.). Longman.; Walling, C.; Goosen, A. (1973). Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society, 95(9), 2987-2991. https://doi.org/10.1021/ja00790a042Test; Wan, Z.; Hassan, H. (2012). Heterogeneous catalyst acid-activated clamshell for fenton-like oxidation of reactive black 5 solutions. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 277-281. https://doi.org/10.1109/SHUSER.2012.6268861Test; Wang, L. P.; Chuan Guo, Y.; Zhong Chen, Y.; Deng Du, E.; Jing Mao, Y. (2011). The Treatment of Printing and Dyeing Wastewater by Using Coagulation and Fenton Reagent Oxidation Combined Process. Advanced Materials Research. 331:368-71. https://doi:10.4028/www.scientific.net/AMR.331.368Test; Wang, N.; Zheng, T.; Zhang, G.; Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4: 762–787. https://doi.org/10.1016/j.jece.2015.12.016Test; Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76(3), 714-720. https://doi.org/10.1016/j.dyepig.2007.01.012Test; Wang, X.; Su, D.; Li, H. B. (2011). Treatment of Textile Dye Wastewater by Electrocoagulation Method. Advanced Materials Research, 281, 276-279. https://doi.org/10.4028/www.scientific.net/AMR.281.276Test; Wang, Z.; Fang, C.; Megharaj, M. (2014). Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022-1025. https://doi.org/10.1021/sc500021nTest; Wang, Z.; Xue, M.; Huang, K.; Liu, Z. (2011). Textile Dyeing Wastewater Treatment. (Peter J. Hauser Ed.), Advances in Treating Textile Effluent. InTech. https://doi.org/10.5772/22670Test; Wang, Z.; Yu, C.; Fang, C.; Mallavarapu, M. (2014). Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology & Innovation, 1-2, 29-34. https://doi.org/10.1016/j.eti.2014.08.003Test; WHO. (2017). Guidelines for drinking-water quality.; Win, T. T.; Swe, T. M.; Ei, H. H.; Win, N. N.; Swe, K. K.; Nandar, W.; Ko, T. K.; Fu, P. (2021). An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan. Biodegradation 32(6):697-710. https://doi:10.1007/s10532-021-09961-yTest; Wojciechowski, K.; Szuster, L. (2016). [Azo-Hyd] Tautomerism and Structure of Selected Metal Complex Dyes AM1 and ZINDO/1 Methods. Computational Chemistry, 04(04), 97-118. https://doi.org/10.4236/cc.2016.44010Test; Wong, P. W.; Teng, T. T.; & Norulaini, N. A. R. N. (2007). Efficiency of the Coagulation-Flocculation Method for the Treatment of Dye Mixtures Containing Disperse and Reactive Dye. Water Quality Research Journal, 42(1), 54-62. https://doi.org/10.2166/wqrj.2007.008Test; Workman Jr., J. (2000). The Handbook of Organic Compounds, First edition. Academic Press, USA, eBook ISBN: 9780080533650; World Health Organization, 2004. Guidelines for Drinking e Water Quality. World Health Organization, Geneva, Switzerland, pp. 301-303.; WQA. (2012, agosto 2). Chromium in Drinking Water [Chromium in Drinking Water]. Water Quality Association. https://www.wqa.org/learn-aboutwater/commoncontaminants/chromiumTest; Xiao, X.; Sun, Y.; Sun, W.; Shen, H.; Zheng, H.; Xu, Y.; Zhao, J.; Wu, H.; Liu, C. (2017). Advanced treatment of actual textile dye wastewater by Fenton-flocculation process. The Canadian Journal of Chemical Engineering, 95(7), 1245-1252. https://doi.org/10.1002/cjce.22752Test; Xiaoxu, S.; Jin, X.; Xingyu, L. (2017). Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation. IOP Conference Series: Earth and Environmental Science, 100, 012199. https://doi.org/10.1088/1755-1315/100/1/012199Test; Xue, D.; Li, C.; Dengchao, L.; Jiang, H.; Xiaowen, L.; Zhang, H. (2014). Oxidation treatment of printing and dyeing wastewater by flocculation-Fenton reagent. Chinese Journal of Environmental Engineering. 8:3601-6.; Yadav, A.; Mukherji, S.; Garg, A. (2013). Removal of Chemical Oxygen Demand and Color from Simulated Textile Wastewater Using a Combination of Chemical/Physicochemical Processes. Industrial & Engineering Chemistry Research. 52(30):10063-71. https://doi:10.1021/ie400855bTest.; Yaseen, D. A.; Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193-1226. https://doi.org/10.1007/s13762-018-2130-zTest; Yaser, A. Z.; Nurmin, B.; Rosalam, S. (2013). Coagulation/Flocculation of Anaerobically Treated Palm Oil Mill Effluent (AnPOME): A Review. En: Pogaku, R.; Bono, A.; Chu, C. (Eds). Developments in Sustainable Chemical and Bioprocess Technology. Springer. New York.; Yavuz, Y.; Shahbazi, R.; Koparal, A. S.; Öğütveren, Ü. B. (2014). Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environmental Science and Pollution Research, 21(14), 8603-8609. https://doi.org/10.1007/s11356-014-2789-8Test; Ye, C.; Wang, D.; Shi, B.; Yu, J.; Qu, J.; Edwards, M.; Tang, H. (2007), Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids and Surfaces A: Physicochem. and Engin. Aspects, 294, 163–173. https://doi.org/10.1016/j.colsurfa.2006.08.005Test; Yesil, H.; Molaey, R.; Calli, B.; Tugtas, A. E. (2021). Removal and recovery of heavy metals from sewage sludge via three stage integrated process. Chemosphere 280, 130650. https://doi.org/10.1016/j.chemosphere.2021.130650Test; Yılmaz, A. (2012). Determination of the optimum conditions in the removal of color from synthetic textile wastewater using electrocoagulation method. Fresenius Environmental Bulletin, 21, 1052-1059.; Yoon, J.; Lee, Y.; Kim, S. (2001). Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 44(5), 15-21.; Yuksel, E.; Eyvaz, M.; Gurbulak, E. (2013). Electrochemical treatment of colour index reactive orange 84 and textile wastewater by using stainless steel and iron electrodes. Environmental Progress Sustainable Energy, 32(1), 60-68. https://doi.org/10.1002/ep.10601Test; Yuksel, E.; Gurbulak, E.; Eyvaz, M. (2012). Decolorization of a reactive dye solution and treatment of a textile wastewater by electrocoagulation and chemical coagulation: Techno-economic comparison. Environmental Progress Sustainable Energy, 31(4), 524-535. https://doi.org/10.1002/ep.10574Test; Yukseler, H., Uzal, N., Sahinkaya, E., Kitis, M., Dilek, F.B., Yetis, U. (2017). Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. Journal of Environmental Management, 203, 1118-1125. https://doi.org/j.jenvman.2017.03.041Test; Zaharia, C.; Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. En Tomasz Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update. InTech. https://doi.org/10.5772/32373Test; Zarei, M.; Niaei, A.; Salari, D.; Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173(1-3), 544-551. https://doi.org/10.1016/j.jhazmat.2009.08.120Test; Zaroual, Z.; Azzi, M.; Saib, N.; Chainet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent. Journal of Hazardous Materials, 131(1-3), 73-78. https://doi.org/10.1016/j.jhazmat.2005.09.021Test; Zayed, M. A.; El-desawy, M.; Eladly, A. A. (2018). Experimental and theoretical spectroscopic studies in relation to molecular structure investigation of para chloro, para fluoro and para nitro maleanilinic acids. Computational Biology and Chemistry. 76, 338–356. https://doi.org/10.1016/j.compbiolchem.2018.08.006Test; Zazou, H.; Afanga, H.; Akhouairi, S.; Ouchtak, H.; Addi, A. A.; Akbour, R. A.; Assabbane, A.; Douch, J.; Elmchaouri, A.; Duplay, J.; Jada, A.; Hamdani, M. (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering, 28, 214-221. https://doi.org/10.1016/j.jwpe.2019.02.006Test; Zemskov, A. V.; Rodionova, G. N.; Tuchin, Yu. G.; Karpov, V. V. (1988). IR spectra and structure of some azo dyes - P-azobenzene derivatives - In various aggregate states. Journal of Applied Spectroscopy, 49(4), 1020-1024. https://doi.org/10.1007/BF00657220Test; Zhai, J.; Ma, H.; Liao, J.; Rahaman, M. H.; Yang, Z.; Chen, Z. (2018). Comparison of Fenton, ultraviolet–Fenton and ultrasonic–Fenton processes on organics and color removal from pre-treated natural gas produced water. International Journal of Environmental Science and Technology, 15(11), 2411-2422. https://doi.org/10.1007/s13762-017-1604-8Test; Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180Test; Zhang, Q.; Hu, J.; Lee, D-J.; Chang, Y.; Lee, Y-J. (2017). Sludge Treatment: Current Research Trends. Bioresource Technology, http://dx.doi.org/10.1016/j.biortech.2017.07.070Test; Zhao, M.; Wang, X.; Wang, S.; Mingming, G. (2024). Cr-containing wastewater treatment based on Cr self-catalysis: a critical review. Front. Environ. Sci. Eng., 18, 1-22. https://doi.org/10.1007/s11783-024-1761-1Test; Zhou, Y.-L.; Huang, W.; Yu, Y.-B.; Wu, L.-Y.; Hong, J.-M.; Zhang, Q. (2019). Electrocatalytic degradation of organic dye RBk5 by oxide graphene. China Environmental Science, 39(11), 4653-4659.; Zodi, S.; Potier, O.; Lapicque, F.; Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1-2), 186-190. https://doi.org/10.1016/j.desal.2010.04.024Test; Zonoozi, M. H.; Moghaddam, M. R. A.; Arami, M. (2009). Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Science and Technology, 59(7), 1343-1351. https://doi.org/10.2166/wst.2009.128Test; Zuluaga, S.; Ibarra, H. N.; Dobrosz-Gómez, I.; Gómez, M.-Á. (2018). Ajuste de Parámetros Cinéticos y Cálculo de sus Desviaciones usando Matlab. Formación universitaria, 11(6), 53-62. https://doi.org/10.4067/S0718-50062018000600053Test; https://repositorio.unal.edu.co/handle/unal/86293Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

    الإتاحة: https://doi.org/10.1155/2012/20607610.1016/j.apcatb.2007.09.03210.1080/09593330.2001.961951010.1016/s0043-1354Test(01)00508-510.1088/1742-6596/1999/1/01212310.15244/pjoes/9194010.1016/j.scitotenv.2020.14080610.1016/j.electacta.2010.10.08910.1016/j.jhazmat.2014.12.03610.1080/19443994.2015.110609410.1596/2792010.1016/j.wasman.2011.03.02310.1016/j.cep.2010.08.01910.1007/s11270-016-2967-z10.1080/09593330.2004.961935010.1016/S0143-7208(99)00048-010.1007/s13399-023-04128-610.1520/D2035-1910.1007/s11814-019-0334-710.1016/j.jece.2013.10.01110.1016/j.jclepro.2018.07.21410.1063/1.485870810.1007/s40710-019-00378-710.1016/j.dyepig.2006.01.01310.1016/j.jhazmat.2010.08.09710.1016/0043-1354(93)90226-810.29356/jmcs.v58i3.13310.1016/S0969-806X(02)00497-810.1515/rput-2017-001210.1016/j.jhazmat.2017.04.04510.1016/j.ultsonch.2014.03.02610.15666/aeer/1702_1517152910.1016/j.cej.2006.10.00810.1016/j.seppur.2003.09.00210.18869/acadpub.jhs.2.1.1610.1016/j.jhazmat.2007.02.00310.1002/j.1551-8833.2000.tb09023.x10.1016/j.psep.2019.03.02810.1051/ijmqe/201603010.1016/j.psep.2019.06.01010.1016/j.desal.2011.04.01410.1016/S0043-1354(00)00364-X10.5772/5734110.1016/S0011-9164(02)00750-610.1016/j.talanta.2008.05.01910.1080/19443994.2013.78665310.1016/j.cej.2018.10.09310.1016/j.desal.2011.11.05510.1016/j.cej.2013.10.10110.2166/978178040750010.1016/j.chemosphere.2020.12619810.1016/j.apcatb.2014.11.01610.1016/j.yrtph.2014.04.01110.3390/w302049510.30638/eemj.2008.11310.1016/j.jenvman.2021.11423410.1021/ie020951g10.1021/es060839010.14483/23448393.1794510.1016/j.chemosphere.2019.12515710.1007/s13201-019-0985-x10.1016/j.desal.2011.08.00410.1016/S0045-6535(02)00812-310.1016/j.jece.2015.09.03010.1016/j.jhazmat.2008.12.04210.4028/www.scientific.net/KEM.659.28410.1016/j.biortech.2018.01.01610.3184/146867811X1302184736617910.1080/10590501.2016.123660210.1016/j.jenvman.2018.11.09410.1021/ac60259a00710.6028/jres.090.03310.1002/clen.20100023310.1016/j.jhazmat.2007.03.02810.1351/pac19987004099310.4236/gsc.2019.9400910.1016/S1573-4285(06)80071-210.1016/j.watres.2006.08.00910.1080/1064338910938840910.25103/jestr.061.0710.1007/s10812-012-9547-910.1016/j.jclepro.2017.10.01510.1016/j.chemosphere.2008.11.07510.1016/j.scitotenv.2022.15588010.1007/s13762-022-04050-w10.1016/j.apcatb.2018.02.05710.5772/5365910.1016/j.jhazmat.2006.01.02210.1016/j.watres.2006.11.03810.1016/j.proeng.2017.03.20510.2175/106143006X9883110.1016/j.desal.2009.05.01010.5277/ppmp182510.2478/s11532-012-0183-210.2166/wst.1999.063310.5004/dwt.2011.261210.1016/j.jenvman.2008.12.01110.1007/s11243-008-9173-910.1016/j.arabjc.2013.02.00910.1016/j.cej.2009.05.02810.1016/j.jelechem.2017.07.01510.1080/09593330.2018.154203510.1007/s11356-016-7590-410.1007/978-981-10-4780-0_210.1016/j.indcrop.2015.06.02710.1016/S0043-1354(02)00481-510.1016/j.jhazmat.2008.07.09010.1007/s40710-014-0029-310.4236/oalib.110604510.5004/dwt.2009.11610.1007/s12088-011-0131-410.1002/cjce.2035310.2166/wst.2011.23210.2166/wst.2012.07810.1016/j.jenvman.2017.01.01510.1016/j.jwpe.2018.05.00710.1016/j.scitotenv.2018.09.12510.2166/wst.2009.51910.1007/s11356-016-6820-010.1016/S1093-0191(03)00032-710.35940/ijeat.F9218.08861910.1016/j.dyepig.2004.11.00310.1155/1969/472460610.20964/2016.09.4210.1016/j.seppur.2014.04.04610.15376/biores.13.2.2727-274710.4491/eer.2017.10810.20964/2019.06.3710.1007/s11356-018-3101-010.1007/978-3-319-33892-7_210.1016/j.desal.2016.10.01110.1021/ac00188a03310.1016/j.jwpe.2020.10169310.4028/www.scientific.net/AMR.295-297.112010.1016/S1452-3981(23)18332-510.1080/1093452840937515210.1016/j.chemosphere.2004.10.02310.2166/wst.2015.47710.1021/ac00238a00210.1093/jaoac/89.4.109510.1093/jaoac/63.6.134410.1016/j.molcata.2005.09.04410.1016/B976.2-0-12-816446.2-8.00006.2-310.1016/j.jhazmat.2018.10.02610.1016/j.jhazmat.2007.10.07710.1016/j.energy.2015.05.03910.3906/muh-1310-810.4067/S0718-0764201800050011110.1016/j.jenvman.2017.05.09510.1038/s41598-017-16131-910.1016/j.arabjc.2013.08.00710.1016/j.apcatb.2020.11900210.1016/j.dyepig.2005.10.01110.1016/j.jenvman.2016.04.00510.14233/ajchem.2020.2233810.1080/0959333080246884810.1016/j.jclepro.2017.06.24010.31274/rtd-180813-1146810.1016/S0045-6535(01)00159-X10.1016/S0043-1354(99)00388-710.1016/j.biortech.2008.11.02610.5004/dwt.2017.2027710.15680/IJIRSET.2014.030803410.2166/wst.2011.30610.12989/mwt.2017.8.3.25910.1016/j.jhazmat.2008.04.07510.1016/j.jece.2017.12.05410.1007/s13762-018-1731-x10.1080/19443994.2015.106309210.1080/10934529.2016.115987710.2166/wst.1997.012810.1016/j.cep.2015.11.01210.1111/cote.1209010.1016/j.jece.2021.10523410.1080/0149639070129018510.1016/j.biteb.2019.10031110.1016/j.jhazmat.2007.09.00710.1016/0043-1354(92)90192-710.1021/es803666910.1080/01496395.2017.129229410.1021/ed076p168910.1016/S0043-1354(97)00024-910.1080/09593330.1995.961826810.1007/978-0-387-68318-8_1010.2166/wst.2018.37210.1016/j.eti.2021.10164410.1016/j.proeng.2011.08.90210.1016/j.jhazmat.2007.02.06110.1016/j.scitotenv.2013.05.00410.1016/S0304-3894(98)00266.2-410.1016/j.watres.2006.12.01310.1016/j.dyepig.2005.07.00710.1080/19443994.2013.79176910.1016/S1383-5866(02)00200-910.1016/j.seppur.2019.01.05610.1016/j.rser.2012.01.07410.1016/j.cej.2014.04.09610.1016/0009-2509(96)00272-210.25103/jestr.091.1710.1016/j.psep.2022.05.06110.1016/j.jhazmat.2005.06.02810.1590/s1413-4152201715074310.1029/2007JG00053410.1007/s00128-003-8781-510.1021/ed300542410.1039/C6RA28578C10.3390/met1012157810.1021/je101012n10.4319/lom.2012.10.95210.1016/j.chemosphere.2003.08.0110.1504/IJEP.2005.00686510.1016/j.desal.2011.01.02910.1016/j.cej.2008.10.01810.1016/j.desal.2011.02.05510.1016/j.cej.2012.05.01510.1016/S0304-3894(01)00176-510.1080/10934529.2012.69567510.2166/wst.2016.56310.1080/19443994.2014.99571410.1016/j.jwpe.2014.09.00210.4067/S0718-3429201500010000910.2166/wst.2003.059810.1016/j.jhazmat.2007.04.09010.1016/j.jece.2015.10.00410.1016/j.jenvman.2016.03.03410.1515/revce-2016-001910.1016/S0304-3894(02)00282-010.30955/gnj.00173810.1016/j.jhazmat.2019.03.03010.1016/j.scitotenv.2010.08.06110.1016/j.watres.2019.01.06310.1039/C5RA26492H10.1002/clen.20100026310.5004/dwt.2020.2595410.1016/j.jtice.2017.02.02710.1016/j.jhazmat.2011.09.06410.9790/2402-08103293210.1016/j.vibspec.2022.10337710.1016/j.jenvman.2009.11.00810.1016/j.psep.2014.02.00810.1021/es00029a01210.1016/j.dyepig.2003.10.00910.1016/j.jscs.2013.12.00810.1016/j.jclepro.2013.09.01310.1149/1.242605110.1007/s11270-009-0065-110.1016/j.jhazmat.2007.09.05310.1155/2013/85376310.1016/B978-0-08-102633-5.00009-910.1016/j.cattod.2005.07.06010.1016/j.apcatb.2006.08.01210.1016/j.matpr.2017.01.05810.4236/gsc.2013.3201310.1088/1756.2-899X/162/1/01202610.1016/j.envres.2021.11095710.1016/j.seppur.2010.06.02410.1063/1.174012710.3390/microorganisms710038410.1016/S0043-1354(00)00285-210.1016/j.jenvman.2010.12.01510.1007/s11356-013-2208-610.1016/B978-0-08-102633-5.00003-810.1016/j.apcatb.2010.10.02310.1021/ic00261a01310.1016/j.jhazmat.2009.06.05710.1016/j.dyepig.2011.12.01410.1016/j.jhazmat.2008.04.10010.3390/molecules2803111310.1021/jp002564v10.1111/jtxs.1211210.1080/19443994.2014.93776310.1016/j.jpcs.2012.05.00810.1016/S0162-0134(00)80231-710.1016/0043-1354(95)00213-810.30955/gnj.00133010.1016/B978-0-12-803224-4.00315-010.1002/j.1551-8833.1968.tb03579.x10.1007/s11244-005-2532-210.1016/j.ultsonch.2006.12.01010.3390/w1423386510.1016/j.dyepig.2006.04.00610.1016/j.jhazmat.2008.04.08010.1016/S0045-6535(02)00615-X10.3390/w1308112110.1186/1735-2746-9-2310.1016/j.jhazmat.2005.12.04910.1016/j.jwpe.2021.10254710.1016/j.jenvman.2013.03.01610.1016/j.jhazmat.2008.08.04510.1016/j.apcatb.2013.12.01110.1016/j.jhazmat.2006.09.02310.1039/C8NA00129D10.1016/j.solener.2004.05.00410.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Torres10.1080/1064338080203930310.1016/S0273-1223(96)00815-310.1007/s11814-016-0351-810.1080/1093452060077915810.1007/s13762-018-1888-310.1016/0147-6513(81)90012-910.1016/B978-0-12-819227-6.00001-210.1016/j.jwpe.2017.11.00110.3303/CET144203010.1016/j.jenvman.2011.09.01210.1061/(ASCE)HZ.2153-5515.000017010.4067/S0717-9707201700020001910.1080/10934529.2015.110938510.1021/ja00790a04210.1109/SHUSER.2012.626886110.4028/www.scientific.net/AMR.331.36810.1016/j.jece.2015.12.01610.1016/j.dyepig.2007.01.01210.4028/www.scientific.net/AMR.281.27610.5772/2267010.1007/s10532-021-09961-y10.4236/cc.2016.4401010.1002/cjce.2275210.1088/1755-1315/100/1/01219910.1007/s13762-018-2130-z10.1007/s11356-014-2789-810.1016/j.colsurfa.2006.08.00510.1016/j.chemosphere.2021.13065010.1002/ep.1060110.1002/ep.1057410.5772/3237310.1016/j.jhazmat.2009.08.12010.1016/j.jhazmat.2005.09.02110.1016/j.compbiolchem.2018.08.00610.1016/j.jwpe.2019.02.00610.1007/BF0065722010.1007/s13762-017-1604-810.1016/j.scitotenv.2019.03.18010.1016/j.biortech.2017.07.07010.1007/s11783-024-1761-110.1016/j.desal.2010.04.02410.2166/wst.2009.12810.4067/S0718-50062018000600053
    https://repositorio.unal.edu.co/handle/unal/86293Test
    https://repositorio.unal.edu.coTest/

  4. 4
    دورية أكاديمية

    المؤلفون: Quintero-Arias, Jesús David1 (AUTHOR), Dobrosz-Gómez, Izabela2 (AUTHOR), de Lasa, Hugo3 (AUTHOR), Gómez-García, Miguel-Ángel1 (AUTHOR) magomez@unal.edu.co

    المصدر: Catalysts (2073-4344). Feb2023, Vol. 13 Issue 2, p284. 23p.

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية