يعرض 1 - 10 نتائج من 847 نتيجة بحث عن '"Protein immobilization"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: The work is performed within the State task of the Ministry of Health of the Russian Federation № 121031100284–7, Работа выполнена в рамках государственного задания Минздрава РФ № 121031100284–7

    المصدر: Translational Medicine; Том 11, № 1 (2024); 28-44 ; Трансляционная медицина; Том 11, № 1 (2024); 28-44 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/834/555Test; Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat. Med. 2020; 26: 450–452. DOI:10.1038/s41591-020-0820-9.; Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 17: 259–260. DOI:10.1038/s41569-020-0360-5.; Raj VS, Mou H, Saskia L, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495: 251–254. DOI:10.1038/nature12005.; Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020; 176: 104742. DOI:10.1016/j.antiviral.2020.104742.; Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance. 2020; 3(9). DOI:10.26508/lsa.202000786.; Serfozo P, Wysocki J, Gulua G, et al. Ang II (angiotensin II) conversion to angiotensin-(1-7) in the circulation is pop (prolyloligopeptidase)-dependent and ACE2 (angiotensin-converting enzyme 2)-independent. Hypertension. 2020; 75: 173–182. DOI:10.1161/HYPERTENSIONAHA.119.14071.; Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203: 631–637. DOI:10.1002/path.1570.; Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009; 7: 226–236. DOI:10.1038/nrmicro2090.; Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395: 565–574. DOI:10.1016/S0140-6736(20)30251-8.; Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015; 21: 1508–1513. DOI:10.1038/nm.3985.; Wysocki J, Ye M, Rodriguez E, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: Prevention of angiotensin II-dependent hypertension. Hypertension. 2010; 55: 90–98. DOI:10.1161/HYPERTENSIONAHA.109.138420.; Hofmann H, Geier M, Marzi A. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun. 2004; 319(4): 1216–1221. DOI:10.1016/j.bbrc.2004.05.114.; Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.). 2020; 134(5): 543–545. DOI:10.1042/CS20200163.; Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450–454. DOI:10.1038/nature02145.; Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348: 1953–1966. DOI:10.1056/NEJMoa030781.; Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun. 2020; 11(1): 2070. DOI:10.1038/s41467-020-16048-4.; Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260–1263. DOI:10.1126/science.abb2507.; Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020; 94(7). DOI:10.1128/JVI.00127-20.; Vankadari N, Wilce JA. Emerging WuHan COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes. Infect. 2020; 9(1): 601–604. DOI:10.1080/22221751.2020.1739565.; Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta. Gen. Subj. 2019; 1863(10): 1480–1497. DOI:10.1016/j.bbagen.2019.05.012.; Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol. Rev. 1998; 161: 55–70. DOI:10.1111/j.1600-065x.1998.tb01571.x.; Wang Q, Qi J, Yuan Y, et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host & Microbe. 2014; 16(3): 328–337. DOI:10.1016/j.chom.2014.08.009.; Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020; 63(3): 457–460. DOI:10.1007/s11427-020-1637-5.; Gohrbandt S, Veits J, Breithaupt A, et al. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J. Gen. Virol. 2011; 92: 1843–1853. DOI:10.1099/vir.0.031591-0.; Rabaan AA, Al-Ahmed Shamsah H, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview Infez Med. 2020; 28(2): 174–184.; Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281–292. DOI:10.1016/j.cell.2020.02.058.; Nao N, Yamagishi J, Miyamoto H, et al. Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. MBio. 2017; 8(1). DOI:10.1128/mBio.02298-16.; Jaimes JA, Millet JK, Whittaker GR. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. IScience. 2020; 23(6): 101212. DOI:10.1016/j.isci.2020.101212.; Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry. Virology. 2006; 350(2): 358–69. DOI:10.1016/j.virol.2006.02.003.; Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020; 181(4): 905–913. DOI:10.1016/j.cell.2020.04.004.; Чебуркин Ю.В., Сонин Д.Л., Полозов А.С. и др. Роль мембранной и циркулирующей форм ACE 2 в развитии различных патологических процессов на фоне COVID-19. Артериальная гипертензия. 2021; 27(6):608–616. DOI:10.18705/1607-419X-2021-27-6-608-616; Zhang G, Pomplun S, Loftis A, et al. Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. BioRxiv. 2020. [Preprint]. doi:10.1101/2020.03.19.999318.; Baum A, Fulton B, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020; 369(6506): 1014–1018. DOI:10.1126/science.abd0831.; Clinical Trial NCT04335136. Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients with COVID-19 (APN01-COVID-19). https://clinicaltrials.gov/ct2/show/NCT04335136Test.; Zorin VN, Naumisheva EB, Postnov VN, et al. Magnetic nanoparticles for medical application with a coating deposited with various methods. J. Phys. Conf. Series. IOP Publishing, 2018; 1124(3). DOI:10.1088/1742-6596/1124/3/031009.; Ивановская А.М., Воронин А.В., Серякова А.Н. Количественный анализ лекарственных средств органической природы. Самара: Инсома-пресс, 2018. C. 88; Мурашова В.И., Тананаева А.Н., Ховякова Р.Ф. Качественный химический дробный анализ. М.: Химия, 1976. С. 279; Сиггиа С. Инструментальные методы анализа функциональных групп органических соединений. М.: Мир, 1974. С. 464; Mahler GR, Cordes JG. Fundamentals of biological chemistry. Transl. from Eng. M.: Mir, 1970. P. 568. In Russian [Малер Г.Р., Кордес Ю.Г. Основы биологической химии. Пер. с англ. М.: Мир, 1970. С. 568].; Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chim. Acta. 1971; 31: 87–96. DOI:10.1016/s0009-8981(96)06447-9.; Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv. Drug. Deliv. Rev. 2011; 63(8): 640–658. DOI:10.1016/j.addr.2011.04.002.; Kozlowski LP. Proteome-pI: proteome isoelectric point database. Nuc. Acids Res. 2017; 45(D1): D1112–D1116. DOI:10.1093/nar/gkw978.; Gareev KG, Babikova KY, Postnov VN, et al. Fluorescence imaging of the nanoparticles modified with indocyanine green. J. Phys. 2017: Conf. Series 917 042008. DOI:10.1088/1742-6596/917/4/042008.; Korolev DV, Evreinova NV, Zakharova EV, et al. Phosphocreatine immobilization of the surface of silicaand magnetite nanoparticles for targeted drug delivery. Russian Chemical Bulletin. 2019; 68(5): 1096–1101. DOI:10.1007/s11172-019-2525-0.; Korolev DV, Postnov VN, Evreinovaa NV, et al. Synthesis of Magnetic Nanoparticles with Radiopaque Marker. Rus. J. Gen. Chem.2018; 88(12): 2698–2701. DOI:10.1134/S1070363218120381.; Han H, Wang Q, Liu X, et al. Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography/ J. Chromatogr. A. 2012; 1246: 9–14. DOI:10.1016/j.chroma.2011.12.029.; Lee BY, Li Z, Clemens DL, et al. Redox-triggered release of moxifloxacin from mesoporous silica nanoparticles functionalized with disulfide snap-tops enhances efficacy against pneumonic tularemia in mice. Small. 2016; 12(27): 3690–3702. DOI:10.1002/smll.201600892.; Klesiewicz K, Karczewska E, Budak A, et al. Anti-Helicobacter pylori activity of some newly synthesized derivatives of xanthone. The Journal of antibiotics. 2016; 69(11): 825–834. DOI:10.1038/ja.2016.36.; Sahudin MA, Su’ait MS, Tan LL, et al. Schiff base complex/TiO2 chemosensor for visual detection of food freshness level. Spectrochimica Acta Part A: Mol. Biomolec. Spectr.2021; 248: 119129. DOI:10.1016/j.saa.2020.119129.; Kim J, Cho J, Seidler PM, et al. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization. Langmuir. 2010; 26(4): 2599–608. DOI:10.1021/la904027p.; Li H, Pan J, Gao C, et al. Mercapto-functionalized porous organosilica monoliths loaded with gold nanoparticles for catalytic application. Molecules. 2019; 24(23): 4366. DOI:10.3390/molecules24234366.; Senkevich JJ, Mitchell CJ, Yang GR, et al. Surface chemistry of mercaptan and growth of pyridine short-chain alkoxy silane molecular layers. Langmuir. 2002; 18(5): 1587–1594. DOI:10.1021/la010970f.; Kocyigit A. Properties of silicon–ZnO hybrid nanoparticles. In: Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Applications. 2022: 65–88. DOI:10.1016/B978-0-12-824007-6.00001-0.; SpectraBase p-Toluenesulfonyl chloride 630–430 cm-1 wave number. https://spectrabase.com/spectrum/LNTt3QsvohKTest.; SpectraBase p-Toluenesulfonyl chloride 1260–1080 cm-1 wave number. https://spectrabase.com/spectrum/AODKWz6bA9PTest; Brunauer S, Deming LS, Deming WE, et al. On a theory of the van der Waals adsorption of gases. J.Americ. Chem. Soc. 1940; 62: 1723–1732. DOI:10.1021/ja01864a025.; Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J Control Release. 2016; 240:24–37. DOI:10.1016/j.jconrel.2015.10.012.; Chen M, Rosenberg J, Cai X, et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter. 2021; 4(6):2059–2082. DOI:10.1016/j.matt.2021.04.005.; https://transmed.almazovcentre.ru/jour/article/view/834Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المساهمون: Department of Biomedical Engineering, Department of Applied Biology and Chemical Technology, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy

    العلاقة: http://hdl.handle.net/10397/99348Test; 551; 562; 24; 2-s2.0-85147118836; a2174; 46874