يعرض 1 - 10 نتائج من 48 نتيجة بحث عن '"Potentially hazardous elements"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المؤلفون: Yafeng Wang, Hefa Cheng

    المصدر: Sustainability; Volume 15; Issue 10; Pages: 8040

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Pollution Prevention, Mitigation and Sustainability; https://dx.doi.org/10.3390/su15108040Test

  7. 7
    دورية أكاديمية

    المصدر: Water; Volume 15; Issue 7; Pages: 1254

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Biodiversity and Functionality of Aquatic Ecosystems; https://dx.doi.org/10.3390/w15071254Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    جغرافية الموضوع: Colombia

    وصف الملف: 11 Páginas; application/pdf

    العلاقة: Sustainability; 1. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Marcos LSOliveira, M.L.S.; da Boit, K.; Tutikian, B.F.; Crissien, T.J.; Pinto, D.C.; Serrano, I.D. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef] [PubMed]; 2. Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 2018, 193, 421–430. [CrossRef]; 3. Kessler, R. The Minamata Convention on Mercury: A First Step toward Protecting Future Generations. Natl. Inst. Environ. Health Sci. 2013, 121, A304–A309. [CrossRef] [PubMed]; 4. Evers, D.C.; Keane, S.E.; Basu, N.; Buck, D. Evaluating the effectiveness of the Minamata convention on Mercury: Principles and recommendations for next steps. Sci. Total Environ. 2016, 569–570, 888–903. [CrossRef] [PubMed]; 5. Mackey, T.K.; Contreras, J.T.; Liang, B.A. The Minamata Convention on Mercury: Attempting to address the global controversy of dental amalgam use and mercury waste disposal. Sci. Total Environ. 2014, 472, 125–129. [CrossRef] [PubMed]; 6. Selin, H.; Keane, S.E.; Wang, S.; ESelin, N.E.; Davis, K.; Bally, D. Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio 2018, 47, 198–215. [CrossRef] [PubMed]; 7. Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Sci. Total Environ. 2011, 410, 154–160. [CrossRef] [PubMed]; 8. Armah, F.A.; Luginaah, I.N.; Taabazuing, J.; Odoi, J.O. Artisanal gold mining and surface water pollution in Ghana: Have the foreign invaders come to stay? Environ. Justice 2013, 6, 94–102. [CrossRef]; 9. Dupee, M.C. Already a Scourge, Illegal Gold Mining in Colombia Is Getting Worse. 2018. Available online: https://wwwTest. worldpoliticsreview.com/insights/25266/already-a-scourge-illegal-gold-mining-in-colombia-is-getting-worse (accessed on 27 July 2018).; 11. Torrance, K.W.; Redwood, S.D.; Cecchi, A. The impact of artisanal gold mining, ore processing and mineralization on water quality in Marmato, Colombia. Environ. Geochem. Health 2021, 43, 4265–4282. [CrossRef]; 12. Olivero-Verbel, J.; Carranza-Lopez, L.; Caballero-Gallardo, K.; Ripoll-Arboleda, A.; Muñoz-Sosa, D. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ. Sci. Pollut. Res. 2016, 23, 20761–20771. [CrossRef] [PubMed]; 13. Saikia, B.K.; Saikia, J.; Rabha, S.; Silva, L.F.O.; Finkelman, R. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 2018, 9, 863–875. [CrossRef]; 14. Oliveira, M.L.S.; Da Boit, K.; Schneider, I.L.; Teixeira, E.C.; Borrero, T.J.C.; Silva, L.F.O. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 2018, 188, 662–669. [CrossRef]; 15. León-Mejía, G.; Machado, M.N.; Okuro, R.T.; Silva, L.F.; Telles, C.; Dias, J.; Niekraszewicz, L.; Da Silva, J.; Henriques, J.A.P.; Zin, W.A. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 2018, 625, 589–599. [CrossRef] [PubMed]; 16. Nordin, A.P.; Da Silva, J.; de Souza, C.T.; Niekraszewicz, L.A.B.; Dias, J.F.; da Boit, K.; Oliveira, M.L.S.; Grivicich, I.; Garcia, A.L.H.; Silva, L.F.O. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 2018, 346, 263–272. [CrossRef]; 17. Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [CrossRef] [PubMed]; 18. Rodríguez-de-Francisco, J.C.; del Cairo, C.; Ortiz-Gallego, D.; Velez-Triana, J.S.; Vergara-Gutiérrez, T.; Hein, J. Post-conflict transition and REDD+ in Colombia: Challenges to reducing deforestation in the Amazon. For. Policy Econ. 2021, 127, 102450. [CrossRef]; 19. Alvarez-Berríos, N.L.; L’Roe, J.; Naughton-Treves, L. Does formalizing artisanal gold mining mitigate environmental impacts? Deforestation evidence from the Peruvian Amazon. Environ. Res. Lett. 2021, 16, 064052. [CrossRef]; 20. Cerqueira, B.; Vega, F.A.; Silva, L.F.; Andrade, L. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 2012, 421–422, 220–229. [CrossRef]; 21. Arenas-Lago, D.; Vega, F.A.; Silva, L.F.O.; Andrade, M.L. Copper distribution in surface and subsurface soil horizons. Environ. Sci. Pollut. Res. 2014, 21, 10997–11008. [CrossRef] [PubMed]; 22. Akinyemi, S.A.; Gitari, W.M.; Petrik, L.F.; Nyakuma, B.B.; Hower, J.C.; Ward, C.R.; Oliveira, M.L.; Silva, L.F. Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Sci. Total Environ. 2019, 663, 177–188. [CrossRef] [PubMed]; 23. Akinyemi, S.A.; Nyakuma, B.B.; Jauro, A.; Olanipekun, T.A.; Mudzielwana, R.; Gitari, M.W.; Saikia, B.K.; Dotto, G.L.; Hower, J.C.; Silva, L.F.O. Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. Fuel 2021, 304, 121468. [CrossRef]; 24. Quispe, D.; Pérez-López, R.; Silva, L.F.O.; Nieto, J.M. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 2012, 94, 495–503. [CrossRef]; 25. Zaafarani, N.; Raabe, D.; Singh, R.N.; Roters, F.; Zaefferer, S. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 2006, 54, 1863–1876. [CrossRef]; 26. Oliveira, M.L.; Ward, C.; Izquierdo, M.; Sampaio, C.H.; de Brum, I.A.; Kautzmann, R.M.; Sabedot, S.; Querol, X.; Silva, L.F. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci. Total Environ. 2012, 430. [CrossRef] [PubMed]; 27. Oliveira, M.L.; da Boit, K.; Pacheco, F.; Teixeira, E.C.; Schneider, I.L.; Crissien, T.J.; Pinto, D.C.; Oyaga, R.M.; Silva, L.F. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 2018, 160, 562–567. [CrossRef] [PubMed]; 28. Silva, L.F.O.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.L.S.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; Macias, F. Leaching of potential hazardous elements of coal cleaning rejects. Environ. Monit. Assess. 2011, 175, 109–126. [CrossRef]; 29. Silva, L.; Macias, F.; Oliveira, M.; da Boit, M.K.; Waanders, F.B. Coal cleaning residues and Fe-minerals implications. Environ. Monit. Assess. 2011, 172, 367–378. [CrossRef] [PubMed]; 30. Meyer, H.; Meischein, M.; Ludwig, A. Rapid Assessment of Sputtered Nanoparticle Ionic Liquid Combinations. ACS Comb. Sci. 2018, 20, 243–250. [CrossRef]; 31. Garzón-Manjón, A.; Meyer, H.; Grochla, D.; Löffler, T.; Schuhmann, W.; Ludwig, A.; Scheu, C. Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in An Ionic Liquid. Nanomaterials 2018, 8, 903. [CrossRef] [PubMed]; 32. Ribeiro, J.; Valentim, B.; Ward, C.; Flores, D. Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. Int. J. Coal Geol. 2011, 86, 204–212. [CrossRef]; 33. Silva, L.F.O.; Oliveira, M.L.S.; Neace, E.R.; O’Keefe, J.M.K.; Henke, K.R.J.; Hower, J.C. Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. Int. J. Coal Geol. 2011, 85, 237–245. [CrossRef]; 34. Silva, L.F.O.; Milanes, C.; Diana Pinto, D.; Ramirez, O.; Lima, B.D. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 2020, 239, 124776. [CrossRef] [PubMed]; 35. Garcia, K.O.; Teixeira, E.C.; Agudelo-Castañeda, D.M.; Braga, M.; Alabarse, P.G.; Wiegand, F.; Kautzmann, R.M.; Silva, L.F. Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci. Total Environ. 2014, 479-480, 57–65. [CrossRef]; 36. Engin, A.B. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. In Protein Kinase-Mediated Decisions Between Life and Death; Springer: Cham, Switzerland, 2021; pp. 165–193.; 37. Kim, H.; Bishop, J.K.B.; Dietrich, W.E.; Fung, I.Y. Process dominance shift in solute chemistry as revealed by long-term highfrequency water chemistry observations of groundwater flowing through weathered argillite underlying a steep forested hillslope. Geochim. Cosmochim. Acta 2014, 140, 1–19. [CrossRef]; 38. Civeira, M.; Oliveira, M.; Hower, J.C.; Agudelo-Castañeda, D.M.; Taffarel, S.R.; Ramos, C.G.; Kautzmann, R.M.; Silva, L.F.O. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: Examples from copper mining refuse, Touro, Spain. Environ. Sci. Pollut. Res. 2015, 23, 6535–6545. [CrossRef]; 39. Civeira, M.S.; Pinheiro, R.N.; Gredilla, A.; de Vallejuelo, S.F.O.; Oliveira, M.L.; Ramos, C.G.; Taffarel, S.R.; Kautzmann, R.M.; Madariaga, J.M.; Silva, L.F. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire. Sci. Total Environ. 2016, 544, 892–900. [CrossRef]; 40. Hower, J.C.; O’Keefe, J.M.; Henke, K.R.; Wagner, N.J.; Copley, G.; Blake, D.R.; Garrison, T.; Oliveira, M.L.; Kautzmann, R.M.; Silva, L.F. Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 2013, 116–117, 63–74. [CrossRef]; 41. Martinello, K.; Oliveira, M.L.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [CrossRef]; 42. Schindler, M.; Hochella, M.F., Jr. Soil memory in mineral surface coatings: Environmental processes recorded at the nanoscale. Geology 2015, 43, 415–418. [CrossRef]; 43. Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, 6434. [CrossRef] [PubMed]; 44. Hower, J.C.; Campbell, J.; Teesdale, W.J.; Nejedly, Z.; Robertson, J.D. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int. J. Coal Geol. 2008, 75, 88–92. [CrossRef]; 45. Slater, E.T.; Kontak, D.J.; Mcdonald, A.M.; Fayek, M. Origin of a multi-stage epithermal Ag-Zn-Pb-Sn deposit: The Miocene Cortaderas breccia body, Pirquitas mine, NW Argentina. Miner. Depos. 2021, 56, 381–406. [CrossRef]; 46. Ramos, V.A. Las provincias geológicas del noroeste argentino. Cienc. De La Tierra Y Recur. Nat. Del NOA. Relat. Del XX Congr. Geológico Argent. 2017, 1–15.; 47. Silva, L.F.O.; Oliveira, M.L.S.; Serra, C.; Hower, J.C. Zinc speciation in power plant burning mixtures of coal and tires. Coal Combust. Gasif. Prod. 2011, 3, 41–50. [CrossRef]; 11; 20; 14; https://hdl.handle.net/11323/10842Test; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.coTest/