يعرض 1 - 10 نتائج من 369 نتيجة بحث عن '"Pinto, Alejandro"', وقت الاستعلام: 1.19s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: Göteborgs universitet, Sahlgrenska akademin, Institutionen för biomedicin, avdelningen för infektionssjukdomar, Gothenburg University, Sahlgrenska Academy, Institute of Biomedicine, Department of Infectious Medicine

    المصدر: NEJM evidence. 2(3)

    مصطلحات موضوعية: Infektionsmedicin, Infectious Medicine

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    وصف الملف: 15 páginas; application/pdf

    العلاقة: Agriculture; 1. Beckman, J.; Countryman, A.M. The Importance of Agriculture in the Economy: Impacts from COVID-19. Am. J. Agric. Econ. 2021, 103, 1595–1611. [CrossRef] [PubMed]; 2. Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; ArrabalCampos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. [CrossRef] [PubMed]; 3. International Society of Precision Agriculture Precision AG Definition. Available online: https://www.ispag.org/about/definitionTest (accessed on 3 April 2023).; 4. Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [CrossRef]; 5. Barrios-Ulloa, A.; Ariza-Colpas, P.P.; Sánchez-Moreno, H.; Quintero-Linero, A.P.; De la Hoz-Franco, E. Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review. Sensors 2022, 22, 5285. [CrossRef]; 6. Sander-Frigau, M.; Zhang, T.; Lim, C.Y.; Zhang, H.; Kamal, A.E.; Somani, A.K.; Hey, S.; Schnable, P. A Measurement Study of TVWS Wireless Channels in Crop Farms. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 344–354. [CrossRef]; 7. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. 2.4 GHz RF Received Signal Strength Based Node Separation in WSN Monitoring Infrastructure for Millet and Rice Vegetation. IEEE Sens. J. 2021, 21, 18298–18306. [CrossRef]; 8. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Cama-Pinto, A. Path loss determination using linear and cubic regression inside a classic tomato greenhouse. Int. J. Environ. Res. Public Health 2019, 16, 1744. [CrossRef]; 9. Ganev, Z. Log-normal shadowing model for outdoor propagation between sensor nodes. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2018; pp. 9–12.; 11. Navarro, A.; Guevara, D.; Florez, G.A. An Adjusted Propagation Model for Wireless Sensor Networks in Corn Fields. In Proceedings of the 020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020; pp. 1–3.; 12. FAO. Save and Grow: Cassava a Guide to Sustainable Production Intensification. Available online: https://www.fao.orgTest/ publications/card/en/c/c3ef3b0e-492e-5ea8-816c-8d1e3b86d66b/ (accessed on 4 April 2023).; 13. OECD-FAO Agricultural Outlook 2020–2029. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-faoagricultural-outlook-2020-2029_1112c23b-enTest (accessed on 4 April 2023).; 14. Caicedo-Ortiz, J.G.; De-la-Hoz-Franco, E.; Morales Ortega, R.; Piñeres-Espitia, G.; Combita-Niño, H.; Estévez, F.; Cama-Pinto, A. Monitoring system for agronomic variables based in WSN technology on cassava crops. Comput. Electron. Agric. 2018, 145, 275–281. [CrossRef]; 15. Manick; Srivastava, J. Cassava Leaf Disease Detection Using Deep Learning. In Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–4 June 2022. [CrossRef]; 16. Maryum, A.; Akram, M.U.; Salam, A.A. Cassava Leaf Disease Classification using Deep Neural Networks. In Proceedings of the 2021 IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), Karachi, Pakistan, 11–13 October 2021; pp. 32–37. [CrossRef]; 17. Chen, C.C.; Ba, J.Y.; Li, T.J.; Chan, C.C.K.; Wang, K.C.; Liu, Z. EfficientNet: A low-bandwidth IoT image sensor framework for cassava leaf disease classification. Sens. Mater. 2021, 33, 4031–4044. [CrossRef]; 18. Gao, Z.; Li, W.; Zhu, Y.; Tian, Y.; Pang, F.; Cao, W.; Ni, J. Wireless channel propagation characteristics and modeling research in rice field sensor networks. Sensors 2018, 18, 3116. [CrossRef]; 19. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. Machine Learning Regression for RF Path Loss Estimation Over Grass Vegetation in IoWSN Monitoring Infrastructure. IEEE Trans. Ind. Inform. 2022, 18, 6981–6990. [CrossRef]; 20. Phokharatkul, P.; Phaiboon, S. Path Loss Model for the Bananas and Weeds Environment Based on Grey System Theory. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 413–418. [CrossRef]; 21. Anzum, R.; Hadi Habaebi, M.; Islam, R.; Hakim, G.P.N. Modeling and Quantifying Palm Trees Foliage Loss using LoRa Radio Links for Smart Agriculture Applications. In Proceedings of the 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 23–25 August 2021; pp. 105–110. [CrossRef]; 22. Juan-Llacer, L.; Molina-Garcia-Pardo, J.M.; Sibille, A.; Torrico, S.A.; Rubiola, L.M.; Martinez-Ingles, M.T.; Rodriguez, J.V.; PascualGarcia, J. Path Loss Measurements and Modelling in a Citrus Plantation in the 1800 MHz, 3.5 GHz and 28 GHz in LoS. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022. [CrossRef]; 23. Wu, H.; Zhu, H.; Han, X.; Xu, W. Layout optimization for greenhouse WSN based on path loss analysis. Comput. Syst. Sci. Eng. 2021, 37, 89–104. [CrossRef]; 24. Kale, A.; Nguyen, T.; Harris, F.C.; Li, C.; Zhang, J.; Ma, X. Provenance documentation to enable explainable and trustworthy AI: A literature review. Data Intell. 2023, 5, 139–162. [CrossRef]; 25. Oroza, C.A.; Zhang, Z.; Watteyne, T.; Glaser, S.D. A Machine-Learning-Based Connectivity Model for Complex Terrain Large-Scale Low-Power Wireless Deployments. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 576–584. [CrossRef]; 26. Kochhar, A.; Kumar, N.; Arora, U. Signal Assessment Using ML for Evaluation of WSN Framework in greenhouse monitoring. Int. J. Sensors Wirel. Commun. Control 2022, 12, 669–679. [CrossRef]; 27. ITU-R. ITU-R Recommendation P.833-7 Attenuation in Vegetation; ITU-R: Geneva, Switzerland, 2012; Volume 7.; 28. Olasupo, T.O.; Otero, C.E. The Impacts of Node Orientation on Radio Propagation Models for Airborne-Deployed Sensor Networks in Large-Scale Tree Vegetation Terrains. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 256–269. [CrossRef]; 29. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 06020. [CrossRef]; 30. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef]; 31. Anzum, R.; Habaebi, M.H.; Islam, M.R.; Hakim, G.P.N.; Khandaker, M.U.; Osman, H.; Alamri, S.; AbdElrahim, E. A Multiwall Path-Loss Prediction Model Using 433 MHz LoRa-WAN Frequency to Characterize Foliage’s Influence in a Malaysian Palm Oil Plantation Environment. Sensors 2022, 22, 5397. [CrossRef]; 32. Dogan, H. A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensor network applications at sub-6 GHz frequency region. Int. J. RF Microw. Comput. Eng. 2021, 31, e22778. [CrossRef]; 33. Shaik, M.; Kabanni, A.; Nazeema, N. Millimeter wave propagation measurments in forest for 5G Wireless sensor communications. In Proceedings of the 2016 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, United Arab Emirates, 14–16 November 2016; pp. 1–4. [CrossRef]; 34. Olasupo, T.O.; Alsayyari, A.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for low power wireless sensor nodes deployed on the ground in different terrains. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 11–13 October 2017; pp. 1–8.; 35. Burkov, A. The Hundred-Page Machine Learning; Burkov, A., Ed.; Andriy Burkov: Quebec City, QC, Canada, 2019; ISBN 978-1-9995795-1-7.; 36. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; Tache, N., Ed.; O’Reilly Media: Sebastopol, CA, USA, 2019; ISBN 1098125975.; 37. Zhang, J.; Liu, L.; Fan, Y.; Zhuang, L.; Zhou, T.; Piao, Z. Wireless Channel Propagation Scenarios Identification: A Perspective of Machine Learning. IEEE Access 2020, 8, 47797–47806. [CrossRef]; 38. Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Wang, J. Path loss prediction based on machine learning: Principle, method, and data expansion. Appl. Sci. 2019, 9, 1908. [CrossRef]; 39. Theobald, O. Machine Learning for Absolute Beginners; Independently published, 2017; ISBN 978-1520951409.; 40. Moraitis, N.; Tsipi, L.; Vouyioukas, D.; Gkioni, A.; Louvros, S. Performance evaluation of machine learning methods for path loss prediction in rural environment at 3.7 GHz. Wirel. Netw. 2021, 27, 4169–4188. [CrossRef]; 41. Vergos, G.; Sotiroudis, S.P.; Athanasiadou, G.; Tsoulos, G.V.; Goudos, S.K. Comparing Machine Learning Methods for Airto-Ground Path Loss Prediction. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies, MOCAST, Thessaloniki, Greece, 5–7 July 2021; pp. 1–4.; 42. Elmezughi, M.K.; Salih, O.; Afullo, T.J.; Duffy, K.J. Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels. Sensors 2022, 22, 4967. [CrossRef] [PubMed]; 43. Breiman, L. Random Forest. Mach Learn 2001, 45, 5–32. [CrossRef]; 44. Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [CrossRef]; 45. Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random forests for global sensitivity analysis: A selective review. Reliab. Eng. Syst. Safe 2021, 206, 107312. [CrossRef]; 46. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Gómez-Mula, F.; Lao, J.A.M.; Cama-Pinto, A. Empirical model of radio wave propagation in the presence of vegetation inside greenhouses using regularized regressions. Sensors 2020, 20, 6621. [CrossRef]; 47. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef]; 48. Nagao, T.; Hayashi, T. Fine-Tuning for Propagation Modeling of Different Frequencies with Few Data. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, UK, 26–29 September 2022; pp. 1–5. [CrossRef]; 49. Goudos, S.K.; Athanasiadou, G.; Tsoulos, G.V.; Rekkas, V. Modelling Ray Tracing Propagation Data Using Different Machine Learning Algorithms. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020.; 50. Jo, H.S.; Park, C.; Lee, E.; Choi, H.K.; Park, J. Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process. Sensors 2020, 20, 1927. [CrossRef]; 15; 11; 13; Barrios-Ulloa, A.; Cama-Pinto, A.; De-la-Hoz-Franco, E.; Ramírez-Velarde, R.; Cama-Pinto, D. Modeling of Path Loss for Radio Wave Propagation in Wireless Sensor Networks in Cassava Crops Using Machine Learning. Agriculture 2023, 13, 2046. https://doi.org/10.3390Test/ agriculture13112046; https://hdl.handle.net/11323/10944Test; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.coTest/

  10. 10
    دورية أكاديمية

    جغرافية الموضوع: Medellín, Colombia

    وصف الملف: 19 páginas; application/pdf

    العلاقة: Sustainability; 1. Lederman, D.; Messina, J.; Pienknagura, S.; Rigolini, J. El Emprendimiento en América Latina: Muchas Empresas y Poca Innovación. World Bank. 2014, pp. 61–95. Available online: https://www.worldbank.org/content/dam/Worldbank/documentTest/ LAC/EmprendimientoAmericaLatina_resumen.pdf (accessed on 15 April 2023).; 2. Innpulsa Colombia. (s.f.). Boletín Analítica. Available online: https://www.innpulsacolombia.com/sites/default/filesTest/ documentos-recursos-pdf/Boletin%20Analitica.pdf (accessed on 15 April 2023).; 3. Pereira Laverde, F.; Osorio-Tinoco, F.; Pinzón, N. Nuestro Reto: Impactar la DINAMICA Emprendedora Colombiana: GEM Colombia 2021–2022; Ediciones: Bogotá, Colombia, 2022.; 4. Velasco Chávez, R.; Ordoñez Arias, C.; Marion, R.S.; Juan, C.E. Ley de Emprendimiento en Colombia. In Innpulsa, Colombia. Publications. 2021. Available online: https://www.innpulsacolombia.com/sites/default/files/documentos-recursos-pdfTest/ Boletin%20Analitica.pdf (accessed on 15 April 2023).; 5. Schade, P.; Schuhmacher, M.C. Predicting entrepreneurial activity using machine learning. J. Bus. Ventur. Insights 2023, 19, e00357. [CrossRef]; 6. Buitrago Nova, J.A. Emprendimiento en Colombia. Adm. Desarro. 2014, 43, 7–21. [CrossRef]; 7. Berger, E.S.; Von Briel, F.; Davidsson, P.; Kuckertz, A. Digital or not—The future of entrepreneurship and innovation: Introduction to the special issue. J. Bus. Res. 2021, 125, 436–442. [CrossRef]; 8. Cruz, P.D.A.; Covarrubias, L.P.C.; Pérez, P.A. The Effect of Resilience on Entrepreneurial Intention in Higher Education Students in a Post-Covid Stage 19. J. High. Educ. Theory Pract. 2022, 22, 6–20. [CrossRef]; 9. Bosse, D.A.; Harrison, J.S.; Pollack, J.M.; Schrempf-Stirling, J. Entrepreneurial Opportunities as Responsibility. Entrep. Theory Pract. 2022, 47, 3–16. [CrossRef]; 11. Shane, S.; Venkataraman, S. The Promise of Entrepreneurship as a Field of Research. Acad. Manag. Rev. 2000, 25, 217–226. [CrossRef]; 12. Van Gelderen, M.; Kautonen, T.; Fink, M. From entrepreneurial intentions to actions: Self-control and action-related doubt, fear, and aversion. J. Bus. Ventur. 2018, 33, 780–794. [CrossRef]; 13. Lumpkin, G.T.; Dess, G.G. Clarifying the entrepreneurial orientation construct and linking it to performance. Acad. Manag. Rev. 1996, 21, 135–172. [CrossRef]; 14. Baron, R.A.; Shane, S.A. Entrepreneurship: A process perspective. In The Psychology of Entrepreneurship, 2nd ed.; Psychology Press: Mason, OH, USA, 2007.; 15. Segal, S.; Mikulincer, M.; Hershkovitz, L.; Meir, Y.; Nagar, T.; Maaravi, Y. A Secure Base for Entrepreneurship: Attachment Orientations and Entrepreneurial Tendencies. Behav. Sci. 2023, 13, 61. [CrossRef]; 16. Elkayaly, D.; Fahim, I.S. Challenges and Motivations for Youth Entrepreneurship Start-Ups: Empirical study from Egypt. In Proceedings of the 2021 3rd International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; pp. 339–341. [CrossRef]; 17. Postigo, Á.; Cuesta, M.; García-Cueto, E.; Prieto-Díez, F.; Muñiz, J. General versus specific personality traits for predicting entrepreneurship. Pers. Individ. Differ. 2021, 182, 111094. [CrossRef]; 18. Lien, T.T.H.; Hoang, N.D. The impact of young employees’ perceptions of current paid jobs on the entrepreneurial intention with the mediator of job satisfaction: The case of Vietnam. Entrep. Bus. Econ. Rev. 2022, 10, 55–71. [CrossRef]; 19. Onjewu, A.K.E.; Haddoud, M.Y.; Nowi ´nski, W. The effect of entrepreneurship education on nascent entrepreneurship. Ind. High. Educ. 2021, 35, 419–431. [CrossRef]; 20. Wu, L.; Jiang, S.; Wang, X.; Yu, L.; Wang, Y.; Pan, H. Entrepreneurship Education and Entrepreneurial Intentions of College Students: The Mediating Role of Entrepreneurial Self-Efficacy and the Moderating Role of Entrepreneurial Competition Experience. Front. Psychol. 2022, 12, 727826. [CrossRef]; 21. Lyu, J.; Shepherd, D.; Lee, K. From intentional to nascent student entrepreneurs: The moderating role of university entrepreneurial offerings. J. Innov. Knowl. 2023, 8, 100305. [CrossRef]; 22. Ndofirepi, T.M. Predicting the Sustainability-Oriented Entrepreneurship Intentions of Business School Students: The Role of Individualistic Values. Soc. Sci. 2023, 12, 13. [CrossRef]; 23. Thomas, E.; Pugh, R.; Soetanto, D.; Jack, S.L. Beyond ambidexterity: Universities and their changing roles in driving regional development in challenging times. J. Technol. Transf. 2023, 1–20. [CrossRef]; 24. Liu, M.; Gorgievski, M.J.; Zwaga, J.; Paas, F. How entrepreneurship program characteristics foster students’ study engagement and entrepreneurial career intentions: A longitudinal study. Learn. Individ. Differ. 2023, 101, 102249. [CrossRef]; 25. Lechner, C.; Delanoë-Gueguen, S.; Gueguen, G. Entrepreneurial ecosystems and actor legitimacy. Int. J. Entrep. Behav. Res. 2022. ahead-of-print. [CrossRef]; 26. Banha, F.; Coelho, L.S.; Flores, A. Entrepreneurship Education: A Systematic Literature Review and Identification of an Existing Gap in the Field. Educ. Sci. 2022, 12, 336. [CrossRef]; 27. Riaño, Y. Migrant Entrepreneurs as Agents of Development? Geopolitical Context and Transmobility Strategies of Colombian Migrants Returning from Venezuela. J. Int. Migr. Integr. 2022, 24, 539–562. [CrossRef] [PubMed]; 28. Zulkifle, A.M.; Aziz, K.A. Determinants of Social Entrepreneurship Intention: A Longitudinal Study among Youth in Higher Learning Institutions. Soc. Sci. 2023, 12, 124. [CrossRef]; 29. Rusu, V.D.; Roman, A.; Tudose, M.B. Determinants of Entrepreneurial Intentions of Youth: The Role of Access to Finance. Eng. Econ. 2022, 33, 86–102. [CrossRef]; 30. Soomro, B.A.; Shah, N. Entrepreneurship education, entrepreneurial self-efficacy, need for achievement and entrepreneurial intention among commerce students in Pakistan. Educ.+ Train. 2022, 64, 107–125. [CrossRef]; 31. Fiet, J.O. The pedagogical side of entrepreneurship theory. J. Small Bus. Manag. 2017, 55, 126–141.; 32. Neck, H.M.; Greene, P.G.; Brush, C.G. Teaching Entrepreneurship: A Practice-Based Approach; Edward Elgar Publishing: Cheltenham, UK, 2019.; 33. Ramírez, K.; Serrano, L.; Pineda, J. Categorization the entrepreneur’s characteristics from the perspective of the person. In Proceedings of the 2017 Congreso Internacional de Innovacion y Tendencias en Ingenieria (CONIITI), Bogotá, Colombia, 4–6 October 2017.; 34. Chamorro, E.T.; Erazo, J.A.Z.; Montenegro, E.A. Knight y sus aportes a la teoría del emprendedor. In Estudios Gerenciales; Elsevier: Amsterdam, The Netherlands, 2008; Volume 24, pp. 83–98.; 35. Aparicio, S.; Audretsch, D.; Urbano, D. Why is export-oriented entrepreneurship more prevalent in some countries than others? Contextual antecedents and economic consequences. J. World Bus. 2021, 56, 101177. [CrossRef]; 36. Gutiérrez, J.G.; Baquero, J.E.G. New cross-proposal entrepreneurship and innovation in educational programs in third level (tertiary) education. Contaduría Y Adm. 2017, 62, 239–261. [CrossRef]; 37. Teixeira, R.; Ducci, N.; Sarrassini, N.; Munhê, V.; Ducci, L. Empreendedorismo jovem e a influência da família: A história de vida de uma empreendedora de sucesso. Rev. Gestão 2011, 18, 3–18. [CrossRef]; 38. Guerrero, M.; Espinoza-Benavides, J. Does entrepreneurship ecosystem influence business re-entries after failure? Int. Entrep. Manag. J. 2021, 17, 211–227. [CrossRef]; 39. Arnold, G. Does Entrepreneurship Work? Understanding What Policy Entrepreneurs Do and Whether It Matters. Policy Stud. J. 2021, 49, 968–991. [CrossRef]; 40. Aparicio, S.; Urbano, D.; Gómez, D. The role of innovative entrepreneurship within Colombian business cycle scenarios: A system dynamics approach. Futures 2016, 81, 130–147. [CrossRef]; 41. Kebede, G.F. Entrepreneurship and the Promises of Inclusive Urban Development in Ethiopia. Urban Forum 2022, 34, 1–30. [CrossRef]; 42. Pascucci, T.; Sanchez, B.H.; Carlos, J.; Garcia, S. Video Games Entrepreneurship: A Confrontation between Strong Multinational and Indie Software House. Int. J. Adv. Technol. 2023, 14, 1000229.; 43. Chatti, H.; Hamrouni, A.D. Identifying success factors and difficulties in setting up business opportunities in the context of collective entrepreneurship. Acad. Entrep. J. 2021, 27, 1–15.; 44. Sendra-Pons, P.; Comeig, I.; Mas-Tur, A. Institutional factors affecting entrepreneurship: A QCA analysis. Eur. Res. Manag. Bus. Econ. 2022, 28, 100187. [CrossRef]; 45. Shepherd, D.A.; Majchrzak, A. Machines augmenting entrepreneurs: Opportunities (and threats) at the Nexus of artificial intelligence and entrepreneurship. J. Bus. Ventur. 2022, 37, 106227. [CrossRef]; 46. Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2023, 216, 119456. [CrossRef]; 47. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.; 48. Pinto, J.F.; Cabral, M. Statistical Methods with Applications in Data Mining: A Review of the Most Recent Works. Mathematics 2022, 10, 1–22.; 49. Virupakshappa, K.; Oruklu, E. Unsupervised Machine Learning for Ultrasonic Flaw Detection using Gaussian Mixture Modeling, K-Means Clustering and Mean Shift Clustering. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 647–649. [CrossRef]; 50. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]; 51. Celebi, M.E.; Kingravi, H.A. Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm. In Partitional Clustering Algorithms; Springer: Berlin/Heidelberg, Germany, 2015; pp. 79–98. [CrossRef]; 52. Hoda, M.N.; Chauhan, N.; Quadri, S.M.K.; Srivastava, P.R. Software Engineering: Proceedings of CSI 2015; Springer Nature: Singapore, 2019.; 53. Pham, T.T.; Lobos, G.A. Innovación en Minería de Datos para el Tratamiento de Imágenes: Agrupamiento K-media para Conjuntos de Datos de Forma Alargada y su Aplicación en la Agroindustria—Innovation in Data Mining for the Image Processing: K-means Clustering for Data Sets of El. Inf. Tecnol. 2019, 30, 135–142. [CrossRef]; 54. Goverment of Colombia. Ley 2069 de 2020 Por Medio del Cual se Impulsa el Emprendimiento en Colombia. In Dapre.presidencia.gov.co. Available online: https://dapre.presidencia.gov.co/normativa/normativa/LEY-2069-del-31Test -dediciembre-de-2020.pdf (accessed on 20 May 2023).; 55. Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; ArrabalCampos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. [CrossRef] [PubMed]; 56. Torres, M.M.; Ramos, R.J.L.; Galvis, M.M.M.; Ramos, C.J.L.; Biswell, J.J.E. Determinantes del emprendimiento juvenil en Colombia: Un análisis desde la nueva economía institucional. Rev. Métodos Cuant. Econ. Empresa 2021, 32, 300–323. [CrossRef]; 57. Quillas, C.I.L.; Rodríguez, H.F.R.; Rodríguez, A.H. Instituciones informales, emprendimiento y progreso social: Un estudio comparativo y correlacional. Rev. Guillermo Ockham 2022, 21, 113–129. [CrossRef]; 58. Lu, Q.; Chai, Y.; Ren, L.; Ren, P.; Zhou, J.; Lin, C. Research on quality evaluation of innovation and entrepreneurship education for college students based on random forest algorithm and logistic regression model. PeerJ Comput. Sci. 2023, 9, e1329. [CrossRef]; 59. Graham, B.; Bonner, K. One size fit all? Using machine learning to study heterogeneity and dominance in the determinants of early-stage entrepreneurship. J. Bus. Res. 2022, 152, 42–59. [CrossRef]; 60. Gosztonyi, M.; Judit, C.F. Profiling (Non-)Nascent Entrepreneurs in Hungary Based on Machine Learning Approaches. Sustainability 2022, 14, 3571. [CrossRef]; 61. Zhang, L.; Fu, Y.; Wei, Y.; Chen, H.; Xia, C.; Cai, Z. Predicting Entrepreneurial Intention of Students: Kernel Extreme Learning Machine with Boosted Crow Search Algorithm. Appl. Sci. 2022, 12, 6907. [CrossRef]; 62. Ramírez, J.C.; de Aguas, J.M. Configuración Territorial de las Provincias de Colombia Ruralidad y Redes; Comisión Económica para América Latina y el Caribe (CEPAL): Bogotá, Colombia, 2016.; 63. Marcela, D.; García, A.; García, A.; Marcela, D. Crecer en sociedades desiguales: Interpretaciones de niñas y niños colombianos sobre la estratificación socioeconómica. Tempo E Argum. 2022, 14, e0203.; 64. Departamento Nacional de Estadística (DANE). Mesa de Expertos de Estratificación Socioeconómica (Informe Final). 2021. Available online: https://www.dnp.gov.co/programas/vivienda-agua-y-desarrollo-urbano/Paginas/Mesa-de-expertos-deEstatificacion-Socioeconomica.aspxTest (accessed on 20 June 2023).; 65. Morissette, L.; Chartier, S. The k-means clustering technique: General considerations and implementation in Mathematica. Tutor. Quant. Methods Psychol. 2013, 9, 15–24. [CrossRef]; 66. Arias Vargas, F.J.; Ribes-Giner, G.; Arango-Botero, D.; Garcés Giraldo, L.F. Factores sociodemográficos que inciden en el emprendimiento rural de jóvenes en Antioquia, Colombia. Rev. Venez. Gerenc. 2021, 26, 1218–1240. [CrossRef]; 67. Svotwa, T.D.; Jaiyeoba, O.; Roberts-Lombard, M.; Makanyeza, C. Perceived Access to Finance, Entrepreneurial Self-Efficacy, Attitude Toward Entrepreneurship, Entrepreneurial Ability, and Entrepreneurial Intentions: A Botswana Youth Perspective. SAGE Open 2022, 12, 21582440221096437. [CrossRef]; 68. Meng, X.; Huang, W. Analysis of Key Factors Affecting Undergraduate Entrepreneurship Ability from a Big Data Perspective. Wirel. Commun. Mob. Comput. 2022, 2022, 2198948. [CrossRef]; 69. Zhan, Z.; Fong, P.S.W.; Lin, K.-Y.; Zhong, B.; Yang, H.H. Editorial: Creativity, innovation, and entrepreneurship: The learning science toward higher order abilities. Front. Psychol. 2022, 13, 1063370. [CrossRef] [PubMed]; 70. Ojeda, A.D.; Solano-Barliza, A.D.; Ortega, D.D.; Cañavera, A.M. Análisis cuantitativo de un proceso de enseñanza soportado en una estrategia pedagógica de gamificación. Form. Univ. 2022, 15, 83–92. [CrossRef]; 71. Vargas, J.D.; Arregocés, I.C.; Solano, A.D.; Peña, K.K. Aprendizaje basado en proyectos soportado en un diseño tecno-pedagógico para la enseñanza de la estadística descriptiva. Form. Univ. 2021, 14, 77–86. [CrossRef]; 72. Solano, A.D.; Aarón, M.A. Enseñanza en ingeniería de manera colaborativa a partir de un diseño tecnopedagógico, usando SMILE. Form. Univ. 2020, 13, 201–210. [CrossRef]; 73. López-Núñez, M.I.; Rubio-Valdehita, S.; Díaz-Ramiro, E.M. The role of individual variables as antecedents of entrepreneurship processes: Emotional intelligence and self-efficacy. Front. Psychol. 2022, 13, 978313. [CrossRef]; 74. Thuy, D.T.T.; Viet, T.Q.; Van Phuc, V.; Pham, T.-H.; Lan, N.T.N.; Ho, H. Impact of Leadership Behavior on Entrepreneurship in State-Owned Enterprises: Evidence from Civil Servant Management Aimed at Improving Accountability. Economies 2022, 10, 245. [CrossRef]; 75. Weng, X.; Chiu, T.K.; Tsang, C.C. Promoting student creativity and entrepreneurship through real-world problem-based maker education. Think. Ski. Creat. 2022, 45, 101046. [CrossRef]; 76. Seckler, C.; Mauer, R.; Brocke, J.V. Design science in entrepreneurship: Conceptual foundations and guiding principles. J. Bus. Ventur. Des. 2021, 1, 100004. [CrossRef]; 77. Chou, D.C. Applying design thinking method to social entrepreneurship project. Comput. Stand. Interfaces 2018, 55, 1339–1351. [CrossRef]; 78. Dmytryshyn, M.; Goran, T. Proposal of an Effective Time Management System. Management 2022, 27, 283–298. [CrossRef]; 79. Zhiguo, L.; Yumei, W.; Shaoqin, L.; Beibei, L. The Efficiency Evaluation Study of “Creative Space” for Promoting the Development of Youth Innovation and Entrepreneurship Projects. In Proceedings of the 31st Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 3797–3802. [CrossRef]; 80. Brixiová, Z.; Ncube, M.; Bicaba, Z. Skills and Youth Entrepreneurship in Africa: Analysis with Evidence from Swaziland. World Dev. 2015, 67, 11–26. [CrossRef]; 81. Campo-Ternera, L.; Amar-Sepúlveda, P.; Olivero-Vega, E. Interaction of potential and effective entrepreneurial capabilities in adolescents: Modeling youth entrepreneurship structure using structural equation modeling. J. Innov. Entrep. 2022, 11, 13. [CrossRef]; 82. Kaminskiene, L.; Horlenko, K.; Chu, L.Y. Applying Eye-Tracking Technology in the Field of Entrepreneurship Education. FGF Studies in Small Business and Entrepreneurship. In Artificiality and Sustainability in Entrepreneurship; Springer: Cham, Switzerland, 2023; pp. 163–187. [CrossRef]; 83. Laouiti, R.; Haddoud, M.Y.; Nakara, W.A.; Onjewu, A.-K.E. A gender-based approach to the influence of personality traits on entrepreneurial intention. J. Bus. Res. 2022, 142, 819–829. [CrossRef]; 84. Oladipo, O.; Platt, K.; Shim, H.S. Female entrepreneurs managing from home. Small Bus. Econ. 2023, 1–18. [CrossRef]; 85. Avnimelech, G.; Rechter, E. How and why accelerators enhance female entrepreneurship. Res. Policy 2023, 52, 104669. [CrossRef]; 86. Georgieva, S. Women’s entrepreneurship—Segmentation and management dimensions. Pol. J. Manag. Stud. 2022, 26, 144–161. [CrossRef]; 87. Kille, T.; Wiesner, R.; Lee, S.Y.; Johnson Morgan, M.; Summers, J.; Davoodian, D. Capital Factors Influencing Rural, Regional and Remote Women’s Entrepreneurship Development: An Australian Perspective. Sustainability 2022, 14, 16442. [CrossRef]; 88. Manzanera-Román, S.; Brändle, G. Abilities and skills as factors explaining the differences in women entrepreneurship. Suma Neg. 2016, 7, 38–46. [CrossRef]; 89. Gieure, C.; del Mar Benavides-Espinosa, M.; Roig-Dobón, S. The entrepreneurial process: The link between intentions and behavior. J. Bus. Res. 2020, 112, 541–548. [CrossRef]; 19; 13; 15; Ojeda-Beltrán, A.; Solano-Barliza, A.; Arrubla-Hoyos, W.; Ortega, D.D.; Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas, M.; Toscano-Vanegas, G.; Cama-Pinto, A. Characterisation of Youth Entrepreneurship in MedellínColombia Using Machine Learning. Sustainability 2023, 15, 10297. https://doi.org/10.3390Test/ su151310297; https://hdl.handle.net/11323/10297Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/