يعرض 1 - 10 نتائج من 22 نتيجة بحث عن '"Pecan oil"', وقت الاستعلام: 2.35s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Forests; Volume 11; Issue 8; Pages: 818

    مصطلحات موضوعية: pecan oil content, fatty acid synthesis, CiWRI1, CiBCCP2

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Forest Ecophysiology and Biology; https://dx.doi.org/10.3390/f11080818Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Grasas y Aceites; Vol. 66 No. 3 (2015); e094 ; Grasas y Aceites; Vol. 66 Núm. 3 (2015); e094 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2015.v66.i3

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1560/1776Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1560/1777Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1560/1778Test; Aparicio R, Baeten V. 1998. Fats and oils authentication by FT-Raman. Oleag. Corps Lipids 5, 293–295.; Baeten V, Fernández-Pierna JA, Dardenne P, Meurens M, García-Gonzalez DL, Aparicio-Ruiz R. 2005. Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem. 53, 6201–6206. http://dx.doi.org/10.1021/jf050595nTest PMid:16076094; Baeten V, Hourant P, Morales MT, Aparicio R. 1998. Oil and Fat Classification by FT-Raman Spectroscopy. J. Agric. Food Chem. 46, 2638–2646. http://dx.doi.org/10.1021/jf9707851Test; Baeten V, Meurens M, Morales MT, Aparicio R. 1996. Detection of Virgin Olive Oil Adulteration by Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 44, 2225–2230. http://dx.doi.org/10.1021/jf9600115Test; Bailey GF, Horvat RJ. 1972. Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. J. Am. Oil Chem. Soc. 49, 494–498. http://dx.doi.org/10.1007/BF02582487Test; Baranska H, Labudzinska A. 1987. J. Laser Raman Spectroscopy: Analytical Application. Ellis Horward, Chichester, UK.; El-Abassy RM, Donfack P, Materny A. 2009. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J. Raman Spec. 40, 1284–1289. http://dx.doi.org/10.1002/jrs.2279Test; El-Abassy RM, Donfack P, Materay A. 2009. Rapid determination of free fatty acid in extra virgin olive oil by Raman spectroscopy and multivariate analysis. J. Am. Oil Chem. Soc. 86, 507–511. http://dx.doi.org/10.1007/s11746-009-1389-0Test; Farhad FU, Abedin KM, Islam R, Talukder AI, Haider AFMY. 2009. Determination of ratio of unsaturated to total fatty acids in edible oils by laser Raman spectroscopy. J. Appl. Sci. 9, 1538–1543. http://dx.doi.org/10.3923/jas.2009.1538.1543Test; Guillén MD, Ruiz A. 2003. Edible oils: Discrimination by 1H nuclear magnetic resonance. J. Sci. Food Agric. 83, 338–346. http://dx.doi.org/10.1002/jsfa.1317Test; Knothe G. 2010. Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 24, 2098–2103. http://dx.doi.org/10.1021/ef9013295Test; Korifi R, Le Dreau Y, Molinet J, Artand J, Dupuy N. 2011. Composition and authentication of virgin olive oil from French PDO regions by chemometric treatment of Raman spectra. J. Raman Spec. 42, 1540–1547. http://dx.doi.org/10.1002/jrs.2891Test; Maguire LS, O'Sullivan SM, Galvin K, O'Connor TP, O'Brien NM. 2004. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nut. 55, 171–178. http://dx.doi.org/10.1080/09637480410001725175Test PMid:15223592; Li-Chan ECY. 1994. Developments in the detection of adulteration of olive oil. Trends Food Sci. Technol. 5, 3–11. http://dx.doi.org/10.1016/0924-2244Test(94)90042-6; Mannina L, Patumi M, Proietti N, Bassi D, Segre AL. 2001. Geographical characterization of Italian extra virgin olive oils using high-field 1H NMR spectroscopy. J. Agric. Food Chem. 49, 2687–2696. http://dx.doi.org/10.1021/jf001408iTest PMid:11409952; Muik B, Lendl B, Molina-Díaz A, Ayora-Ca-ada MJ. 2003. Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry. Anal. Chim. Acta 487, 211–220. http://dx.doi.org/10.1016/S0003-2670Test(03)00560-9; Muik B, LendlB, Molina-Díaz A, Ayora-Ca-ada MJ. 2005. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. Phys. Lipids 134, 173–182. http://dx.doi.org/10.1016/j.chemphyslip.2005.01.003Test PMid:15784235; Muik B, Lendl B, Molina-Díaz A, Valcárcel M, Ayora-Ca-ada MJ. 2007. Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal. Chim. Acta 593, 54–67. http://dx.doi.org/10.1016/j.aca.2007.04.050Test PMid:17531824; Paiva-Martins F, Rodrigues V, Caleheiros R, Marques MPM. 2011. Characterization of antioxidant olive oil biophenols by spectroscopic methods. J. Agric. Food Chem. 91, 309–314. http://dx.doi.org/10.1002/jsfa.4186Test PMid:20949551; Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS. 1990. Determination of the total unsaturation in oils and margarines by fourier transform raman spectroscopy. J. Am. Oil Chem. Soc. 67, 483–486. http://dx.doi.org/10.1007/BF02540752Test; Shaw AD, Di Camillo A, Vlahov G, Jones A, Bianchi G, Rowland J, Kell DB. 1997. Discrimination of the variety and region of origin of extra virgin olive oil using 13C NMR and multivariate calibration with variable reduction. Anal. Chim. Acta 348, 357–374. http://dx.doi.org/10.1016/S0003-2670Test(97)00037-8; Yang H, Irudayaraj J. 2001. Comparison of near-infrared, Fourier transform-infrared, and Fourier transform-Raman methods for determining olive pomace oil adulteration in extra virgin olive oil. J. Am. Oil Chem. Soc. 78, 889–895. http://dx.doi.org/10.1007/s11746-001-0360-6Test; Zamora R, Gómez G, Hidalgo FJ. 2002. Classification of vegetable oils by high-resolution 13C NMR spectroscopy using chromatographically obtained oil fractions. J. Am. Oil Chem. Soc. 79, 267–272. http://dx.doi.org/10.1007/s11746-002-0472-zTest; Zhang XF, Zou MQ, Qi XH, Liu F, Zhang C, Yin F. 2011. Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. J. Raman Spec. 42, 1784–1788. http://dx.doi.org/10.1002/jrs.2933Test; Zou MQ, Zhang XF, Qi XH, Ma HL, Dong Y, Liu CW, Guo X, Wang H. 2009. Rapid authentication of olive oil adulteration by raman spectrometry. J. Agric. Food Chem. 67, 6001–6006. http://dx.doi.org/10.1021/jf900217sTest PMid:19537730; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1560Test

  8. 8

    المصدر: SEDICI (UNLP)
    Universidad Nacional de La Plata
    instacron:UNLP
    Brazilian Journal of Food Technology v.23 2020
    Brazilian Journal of Food Technology
    Instituto de Tecnologia de Alimentos (ITAL)
    instacron:ITAL
    CONICET Digital (CONICET)
    Consejo Nacional de Investigaciones Científicas y Técnicas
    instacron:CONICET
    Brazilian Journal of Food Technology, Vol 23 (2020)
    Brazilian Journal of Food Technology, Volume: 23, Article number: e2019177, Published: 07 DEC 2020

    وصف الملف: application/pdf; text/html

  9. 9
  10. 10