يعرض 1 - 10 نتائج من 213 نتيجة بحث عن '"Pérez-Londoño, Sandra"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المصدر: TecnoLógicas; Vol. 25 No. 55 (2022); e2353 ; TecnoLógicas; Vol. 25 Núm. 55 (2022); e2353 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    العلاقة: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2353/2584Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2353/2585Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2353/2586Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2353/2589Test; M. Zeyringer, J. Price, B. Fais, P.-H. Li, and E. Sharp, “Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather,” Nat Energy, vol. 3, no. 5, pp. 395–403, May 2018, https://doi.org/10.1038/s41560-018-0128-xTest; J. McDonald, “Adaptive intelligent power systems: Active distribution networks,” Energy Policy, vol. 36, no. 12, pp. 4346–4351, Dec. 2008, https://doi.org/10.1016/j.enpol.2008.09.038Test; P. P. Barker and R. W. de Mello, “Determining the impact of distributed generation on power systems. I. Radial distribution systems,” in 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Aug. 2000, vol. 3, pp. 1645–1656. https://doi.org/10.1109/PESS.2000.868775Test; S. Sarangi, B. K. Sahu, and P. K. Rout, “Review of distributed generator integrated AC microgrid protection: issues, strategies, and future trends,” Int J Energy Res, vol. 45, no. 10, pp. 14117–14144, Aug. 2021, https://doi.org/10.1002/er.6689Test; A. Hooshyar and R. Iravani, “Microgrid Protection,” in Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, Jul. 2017, https://doi.org/10.1109/JPROC.2017.2669342Test; J. D. Garzón-Hidalgo and A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, pp. 39–53, May 2017, https://doi.org/10.22430/22565337.687Test; M. Usama et al., “A Comprehensive Review on Protection Strategies to Mitigate the Impact of Renewable Energy Sources on Interconnected Distribution Networks,” IEEE Access, vol. 9, pp. 35740–35765, Feb. 2021, https://doi.org/10.1109/ACCESS.2021.3061919Test; G. Kaur, A. Prakash, and K. U. Rao, “A critical review of Microgrid adaptive protection techniques with distributed generation,” Renewable Energy Focus, vol. 39, pp. 99–109, Dec. 2021, https://doi.org/10.1016/j.ref.2021.07.005Test; H. Khalid and A. Shobole, “Existing Developments in Adaptive Smart Grid Protection: A Review,” Electric Power Systems Research, vol. 191, p. 106901, Feb. 2021, https://doi.org/10.1016/j.epsr.2020.106901Test; P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, Feb. 2020, https://doi.org/10.1016/j.rser.2019.109524Test; J. Pinheiro Nascimento, N. Silva Dantas Brito, and B. Alencar de Souza, “Proposition of an Adaptive Protection Scheme for Distribution Systems with Distributed Generation,” IEEE Latin America Transactions, vol. 16, no. 5, pp. 1439–1444, May 2018, https://doi.org/10.1109/TLA.2018.8408439Test; M. Singh, T. Vishnuvardhan, and S. G. Srivani, “Adaptive protection coordination scheme for power networks under penetration of distributed energy resources,” IET Generation, Transmission & Distribution, vol. 10, no. 15, pp. 3919–3929, Nov. 2016, https://doi.org/10.1049/iet-gtd.2016.0614Test; J. A. Montoya-Arias, O. A. Tobar-Rosero, G. D. Zapata-Madrigal, and R. García-Sierra, “Algoritmo adaptativo para protecciones de sobrecorriente en el caso de estudio IEEE9,” TecnoLógicas, vol. 22, no. 45, pp. 45–58, May 2019, https://doi.org/10.22430/22565337.1335Test; J. P. Nascimento, N. S. D. Brito, and B. A. Souza, “An adaptive overcurrent protection system applied to distribution systems,” Computers & Electrical Engineering, vol. 81, p. 106545, Jan. 2020, https://doi.org/10.1016/j.compeleceng.2019.106545Test; P. Naveen and P. Jena, “Adaptive Protection Scheme for Microgrid With Multiple Point of Common Couplings,” in IEEE Syst J, vol. 15, no. 4, pp. 5618–5629, Dec. 2021, https://doi.org/10.1109/JSYST.2020.3039881Test; F. Coffele, C. Booth, and A. Dyśko, “An Adaptive Overcurrent Protection Scheme for Distribution Networks,” IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 561–568, Apr. 2015, https://doi.org/10.1109/TPWRD.2013.2294879Test; H. Muda and P. Jena, “Sequence currents based adaptive protection approach for DNs with distributed energy resources,” IET Generation, Transmission & Distribution, vol. 11, no. 1, pp. 154–165, Jan. 2017, https://doi.org/10.1049/iet-gtd.2016.0727Test; H. Muda and P. Jena, “Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique,” IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 757–767, Apr. 2017, https://doi.org/10.1109/TPWRD.2016.2601921Test; R. Jain, D. L. Lubkeman, and S. M. Lukic, “Dynamic Adaptive Protection for Distribution Systems in Grid-Connected and Islanded Modes,” IEEE Transactions on Power Delivery, vol. 34, no. 1, pp. 281–289, Feb. 2019, https://doi.org/10.1109/TPWRD.2018.2884705Test; S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “Decentralized Adaptive Protection Coordination Based on Agents Social Activities for Microgrids With Topological and Operational Uncertainties,” IEEE Trans Ind Appl, vol. 57, no. 1, pp. 702–713, Jan. 2021, https://doi.org/10.1109/TIA.2020.3028351Test; S. Baloch, S. S. Samsani, and M. S. Muhammad, “Fault Protection in Microgrid Using Wavelet Multiresolution Analysis and Data Mining,” IEEE Access, vol. 9, pp. 86382–86391, Jun. 2021, https://doi.org/10.1109/ACCESS.2021.3088900Test; S. Baloch and M. S. Muhammad, “An Intelligent Data Mining-Based Fault Detection and Classification Strategy for Microgrid,” IEEE Access, vol. 9, pp. 22470–22479, Feb. 2021, https://ieeexplore.ieee.org/document/9344594Test; R. Tiwari, R. K. Singh, and N. K. Choudhary, “Coordination of dual setting overcurrent relays in microgrid with optimally determined relay characteristics for dual operating modes,” Protection and Control of Modern Power Systems, vol. 7, no. 1, p. 6, Feb. 2022, https://doi.org/10.1186/s41601-022-00226-1Test; S. A. F. Asl, M. Gandomkar, and J. Nikoukar, “Optimal protection coordination in the micro-grid including inverter-based distributed generations and energy storage system with considering grid-connected and islanded modes,” Electric Power Systems Research, vol. 184, p. 106317, Jul. 2020, https://doi.org/10.1016/j.epsr.2020.106317Test; P. Dorosti, M. Moazzami, B. Fani, and P. Siano, “An adaptive protection coordination scheme for microgrids with optimum PV resources,” J Clean Prod, vol. 340, p. 130723, Mar. 2022, https://doi.org/10.1016/j.jclepro.2022.130723Test; J. Marín-Quintero, C. Orozco-Henao, W. S. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector,” Appl Soft Comput, vol. 98, p. 106839, Jan. 2021, https://doi.org/10.1016/j.asoc.2020.106839Test; M.-G. Choi, S.-J. Ahn, J.-H. Choi, S.-M. Cho, and S.-Y. Yun, “Adaptive Protection Method of Distribution Networks Using the Sensitivity Analysis for Changed Network Topologies Based on Base Network Topology,” IEEE Access, vol. 8, pp. 148169–148180, Aug. 2020, https://doi.org/10.1109/ACCESS.2020.3015517Test; J. Ma, J. Liu, Z. Deng, S. Wu, and J. S. Thorp, “An adaptive directional current protection scheme for distribution network with DG integration based on fault steady-state component,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 223–234, Nov. 2018, https://doi.org/10.1016/j.ijepes.2018.04.024Test; M. A. Elsadd, T. A. Kawady, A.-M. I. Taalab, and N. I. Elkalashy, “Adaptive optimum coordination of overcurrent relays for deregulated distribution system considering parallel feeders,” Electrical Engineering, vol. 103, no. 3, pp. 1849–1867, Jun. 2021, https://doi.org/10.1007/s00202-020-01187-0Test; M. Bakkar, S. Bogarra, F. Córcoles, and J. Iglesias, “Overcurrent protection based on ANNs for smart distribution networks with grid‐connected VSIs,” IET Generation, Transmission & Distribution, vol. 15, no. 7, pp. 1159–1174, Apr. 2021, https://doi.org/10.1049/gtd2.12093Test; H. Wan, K. K. Li, and K. P. Wong, “An Adaptive Multiagent Approach to Protection Relay Coordination With Distributed Generators in Industrial Power Distribution System,” IEEE Trans Ind Appl, vol. 46, no. 5, pp. 2118–2124, Sep. 2010, https://doi.org/10.1109/TIA.2010.2059492Test; International Electrotechnical Commission, Measuring relays and protection equipment-Part 151: Functional requirements of over/under current protection. International Electrotechnical Commission, 2009, p. 63. [Online]. Available: https://webstore.iec.ch/publication/1166Test; IEEE, “IEEE Standard for Interconnection and Interoperability of Distributed EnergyResources with Associated Electric Power Systems Interfaces,” in IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, Apr. 2018, https://doi.org/10.1109/IEEESTD.2018.8332112Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2353Test

  4. 4
    دورية أكاديمية

    المصدر: Tecnura Journal; Vol. 25 No. 70 (2021): October - December; 146-165 ; Tecnura; Vol. 25 Núm. 70 (2021): Octubre - Diciembre ; 146-165 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/xml

    العلاقة: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627/17738Test; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627/18068Test; Alam, M. N. (2019). Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Transactions on Industrial Informatics, 15(1), 64-73. https://doi.org/10.1109/TII.2018.2834474Test; Bansal, R. (2019). Power system protection in smart grid environment. CRC Press. https://doi.org/10.1201/9780429401756Test; Barra, P., Coury, D., & Fernandes, R. (2020). A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renewable and Sustainable Energy Reviews,118, 109524. https://doi.org/10.1016/j.rser.2019.109524Test; Borlase, S. (2017). Smart grids: Advanced technologies and solutions. CRC press. Buitrago-Arroyave, L. F., & López-Lezama, J. M. (2013). Valoración de los impactos técnicos de la generación distribuida en sistemas de energía eléctrica. Tecnura, 17(36), 50-60. https://doi.org/10.14483/udistrital.jour.tecnura.2013.2.a04Test; Carvajal, S., & Marín-Jiménez, J. D. (2013). Impacto de la generación distribuida en el sistema eléctrico de potencia colombiano: un enfoque dinámico. Tecnura, 17(35), 77-89. https://doi.org/10.14483/udistrital.jour.tecnura.2013.1.a07Test; Chen, Y., Wen, M., Yin, X., Cai, Y., & Zheng, J. (2018). Distance protection for transmission lines of dfig-based wind power integration system. International Journal of Electrical Power Energy Systems, 100, 438-448. doi: https://doi.org/10.1016/j.ijepes.2018.02.041Test; El-Arroudi, K., & Joós, G. (2018). Performance of interconnection protection based on distance relaying for wind power distributed generation. IEEE Transactions on Power Delivery, 33(2), 620-629. https://doi.org/10.1109/TPWRD.2017.2693292Test; Ghorbani, A., Mehrjerdi, H., & Sanaye-Pasand, M. (2021). An accurate non-pilot scheme for accelerated trip of distance relay zone-2 faults. IEEE Transactions on PowerDelivery, 36(3), 1370-1379. https://doi.org/10.1109/TPWRD.2020.3007559Test; Giral, W., Celedón, H., Galvis, E., & Zona, A. (2017). Redes inteligentes en el sistema eléctrico colombiano: revisión de tema. Tecnura, 21(53), 119-137, https://doi.org/10.14483/22487638.12396Test; Hooshyar, A., & Iravani, R. (2017). Microgrid protection. Proceedings of the IEEE, 105(7), 1332-1353. https://doi.org/10.1109/JPROC.2017.2669342Test; Jia, J., Yang, G., Nielsen, A. H., & Rønne-Hansen, P. (2019). Impact of vsc control strategies and incorporation of synchronous condensers on distance protection under unbalanced faults. IEEE Transactions on Industrial Electronics, 66(2), 1108-1118. https://doi.org/10.1109/TIE.2018.2835389Test; Jin, X., Gokaraju, R., Wierckx, R., & Nayak, O. (2018). High speed digital distance relaying scheme using FPGA and IEC 61850. IEEE Transactions on Smart Grid, 9(5), 4383-4393. https://doi.org/10.1109/TSG.2017.2655499Test; Lavand, S. A., & Soman, S. A. (2016). Predictive analytic to supervise zone 1 of distance relay using synchrophasors. IEEE Transactions on Power Delivery, 31(4), 1844-1854. https://doi.org/10.1109/TPWRD.2016.2521784Test; Li, H., Deng, C., Zhang, Z., Liang, Y., & Wang, G. (2021). An adaptive fault-component-based current differential protection scheme for distribution networks with inverter-based distributed generators. International Journal of Electrical Power Energy Systems, 128, 106719. https://doi.org/10.1016/j.ijepes.2020.106719Test; Liang, Y., Li, W., Lu, Z., Xu, G., & Wang, C. (2020). A new distance protection scheme based on improved virtual measured voltage. IEEE Transactions on Power Delivery, 35(2), 774-786. https://doi.org/10.1109/TPWRD.2019.2926295Test; Liu, S., Jin, X. S., & Gokaraju, R. R. (2019). High-speed distance relaying using least error squares method and testing with FPGA. IET Generation, Transmission & Distribution, 13(16), 3591-3600. https://doi.org/10.1049/iet-gtd.2019.0088Test; Ma, J., Ma, W., Qiu, Y., & Thorp, J. S. (2015). An adaptive distance protection scheme based on the voltage drop equation. IEEE Transactions on Power Delivery, 30(4), 1931-1940. https://doi.org/10.1109/TPWRD.2015.240495Test; Ma, J., & Wang, Z. (2018). Hierarchical protection for smart grids. John Wiley & Sons. Mohajeri, A., Seyedi, H., & Sabahi, M. (2015). Optimal setting of distance relays quadrilateral characteristic considering the uncertain effective parameters. International Journal of Electrical Power & Energy Systems, 73, 1051-1059. https://doi.org/10.1016/j.ijepes.2015.06.011Test; Nikolaidis, V. C., Tsimtsios, A. M., & Safigianni, A. S. (2018). Investigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with dg. IEEE Access, 6, 11301-11312. https://doi.org/10.1109/ACCESS.2018.2804046Test; Rafique, Z., Khalid, H. M., & Muyeen, S. M. (2020). Communication systems in distributed generation: A bibliographical review and frameworks. IEEE Access, 8, 207226-207239. https://doi.org/10.1109/ACCESS.2020.3037196Test; Regulski, P., Rebizant, W., Kereit, M., & Schneider, S. (2021). Adaptive reach of the 3rdzone of a distance relay with synchronized measurements. IEEE Transactions on Power Delivery, 36(1), 135-144. https://doi.org/10.1109/TPWRD.2020.2974587Test; Sarangi, S., Sahu, B. K., & Rout, P. K. (2021). Review of distributed generator integrated ac microgrid protection: issues, strategies, and future trends. International Journal of Energy Research, 45(10), 14117-14144. https://doi.org/10.1002/er.6689Test; Sinclair, A., Finney, D., Martin, D., & Sharma, P. (2014). Distance protection in distribution systems: How it assists with integrating distributed resources. IEEE Transactions on Industry Applications, 50(3), 2186-2196. https://doi.org/10.1109/TIA.2013.2288426Test; Tsimtsios, A. M., Korres, G. N., & Nikolaidis, V. C. (2019). A pilot-based distance protection scheme for meshed distribution systems with distributed generation. International Journal of Electrical Power & Energy Systems, 105, 454-469. https://doi.org/10.1016/j.ijepes.2018.08.022Test; Tsimtsios, A. M., & Nikolaidis, V. C. (2018). Setting zero-sequence compensation factor in distance relays protecting distribution systems. IEEE Transactions on Power Delivery, 33(3), 1236-1246. https://doi.org/10.1109/TPWRD.2017.2762465Test; Tsimtsios, A. M., Safigianni, A. S., & Nikolaidis, V. C. (2019a). Generalized distance-based protection design for dg integrated mv radial distribution networks — part i: Guidelines. Electric Power Systems Research, 176, 105949. https://doi.org/10.1016/j.epsr.2019.105949Test; Tsimtsios, A. M., Safigianni, A. S., & Nikolaidis, V. C. (2019b). Generalized distance-based protection design for dg integrated mv radial distribution networks —part ii: Application to an actual distribution line. Electric Power Systems Research, 176, 105950. https://doi.org/10.1016/j.epsr.2019.105950Test; Usama, M., Mokhlis, H., Moghavvemi, M., Mansor, N. N., Alotaibi, M. A., Muhammad, M. A., & Bajwa, A. A. (2021). A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access, 9, 35740-35765. https://doi.org/10.1109/ACCESS.2021.3061919Test; Vázquez, M. E., Zamora-Méndez, A., Arrieta-Paternina, M. R., Trujillo-Guajardo, L. A., & de la O Serna, J. A. (2020). Dynamic phasor-driven digital distance relays protection. Electric Power Systems Research, 184, 106316. https://doi.org/10.1016/j.epsr.2020.106316Test; Yin, Y., Fu, Y., Zhang, Z., & Zamani, A. (2021). Protection of microgrid interconnection lines using distance relay with residual voltage compensation. IEEE Transactions on Power Delivery, 9369070. https://doi.org/10.1109/TPWRD.2021.3063684Test; Zamora-Méndez, A., Arrieta-Paternina, M. R. A., Vázquez, M. E., Ramírez, J. M., & la O de Serna, J. A. (2016). Distance relays based on the taylor–kalman-fourier filter. IEEE Transactions on Power Delivery, 31(3), 928-935. https://doi.org/10.1109/TPWRD.2015.239212Test; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    العنوان البديل: Modelizado de carga basado en datos para redes de distribución activa.

    المؤلفون: Osorio-Vásquez, Daladier1 daladier.osorio@utp.edu.co, Pérez-Londoño, Sandra1 saperez@utp.edu.co, Mora-Flórez, Juan1 jjmora@utp.edu.co

    المصدر: UIS Ingenierías. out-dic2023, Vol. 22 Issue 4, p93-102. 10p.

  9. 9
    دورية أكاديمية
  10. 10
    مؤتمر